1
|
Haiman ZB, Key A, D'Alessandro A, Palsson BO. RBC-GEM: A genome-scale metabolic model for systems biology of the human red blood cell. PLoS Comput Biol 2025; 21:e1012109. [PMID: 40072998 PMCID: PMC11925312 DOI: 10.1371/journal.pcbi.1012109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 03/20/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Advancements with cost-effective, high-throughput omics technologies have had a transformative effect on both fundamental and translational research in the medical sciences. These advancements have facilitated a departure from the traditional view of human red blood cells (RBCs) as mere carriers of hemoglobin, devoid of significant biological complexity. Over the past decade, proteomic analyses have identified a growing number of different proteins present within RBCs, enabling systems biology analysis of their physiological functions. Here, we introduce RBC-GEM, one of the most comprehensive, curated genome-scale metabolic reconstructions of a specific human cell type to-date. It was developed through meta-analysis of proteomic data from 29 studies published over the past two decades resulting in an RBC proteome composed of more than 4,600 distinct proteins. Through workflow-guided manual curation, we have compiled the metabolic reactions carried out by this proteome to form a genome-scale metabolic model (GEM) of the RBC. RBC-GEM is hosted on a version-controlled GitHub repository, ensuring adherence to the standardized protocols for metabolic reconstruction quality control and data stewardship principles. RBC-GEM represents a metabolic network is a consisting of 820 genes encoding proteins acting on 1,685 unique metabolites through 2,723 biochemical reactions: a 740% size expansion over its predecessor. We demonstrated the utility of RBC-GEM by creating context-specific proteome-constrained models derived from proteomic data of stored RBCs for 616 blood donors, and classified reactions based on their simulated abundance dependence. This reconstruction as an up-to-date curated GEM can be used for contextualization of data and for the construction of a computational whole-cell models of the human RBC.
Collapse
Affiliation(s)
- Zachary B Haiman
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Program, University of California, La Jolla, San Diego, California, United States of America
| |
Collapse
|
2
|
Kelly ED, Ranek MJ, Zhang M, Kass DA, Muller GK. Phosphodiesterases: Evolving Concepts and Implications for Human Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:415-441. [PMID: 39322437 DOI: 10.1146/annurev-pharmtox-031524-025239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides. While the 11 PDE subfamilies share common features, key differences confer signaling specificity. The differences include substrate selectivity, enzymatic activity regulation, tissue expression, and subcellular localization. Selective inhibitors of each subfamily have elucidated the protean role of PDEs in normal cell function. PDEs are also linked to diseases, some of which affect the immune, cardiac, and vascular systems. Selective PDE inhibitors are clinically used to treat these specific disorders. Ongoing preclinical studies and clinical trials are likely to lead to the approval of additional PDE-targeting drugs for therapy in human disease. In this review, we discuss the structure and function of PDEs and examine current and evolving therapeutic uses of PDE inhibitors, highlighting their mechanisms and innovative applications that could further leverage this crucial family of enzymes in clinical settings.
Collapse
Affiliation(s)
- Evan D Kelly
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA;
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manling Zhang
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Grace K Muller
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA;
| |
Collapse
|
3
|
Anastasiadi AT, Arvaniti VZ, Hudson KE, Kriebardis AG, Stathopoulos C, D’Alessandro A, Spitalnik SL, Tzounakas VL. Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein Cell 2024; 15:315-330. [PMID: 38270470 PMCID: PMC11074998 DOI: 10.1093/procel/pwae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Alkmini T Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 13001 Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Vassilis L Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Semenov AN, Lugovtsov AE, Rodionov SA, Maksimov EG, Priezzhev AV, Shirshin EA. Erythrocytes membrane fluidity changes induced by adenylyl cyclase cascade activation: study using fluorescence recovery after photobleaching. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:239-247. [PMID: 38625405 PMCID: PMC11098875 DOI: 10.1007/s00249-024-01707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
In this study, fluorescence recovery after photobleaching (FRAP) experiments were performed on RBC labeled by lipophilic fluorescent dye CM-DiI to evaluate the role of adenylyl cyclase cascade activation in changes of lateral diffusion of erythrocytes membrane lipids. Stimulation of adrenergic receptors with epinephrine (adrenaline) or metaproterenol led to the significant acceleration of the FRAP recovery, thus indicating an elevated membrane fluidity. The effect of the stimulation of protein kinase A with membrane-permeable analog of cAMP followed the same trend but was less significant. The observed effects are assumed to be driven by increased mobility of phospholipids resulting from the weakened interaction between the intermembrane proteins and RBC cytoskeleton due to activation of adenylyl cyclase signaling cascade.
Collapse
Affiliation(s)
- A N Semenov
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Campus E2 6, 66123, Saarbrücken, Germany.
| | - A E Lugovtsov
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, 119991, Moscow, Russia
| | - S A Rodionov
- N.N. Priorov National Medical Research Center for Traumatology and Orthopedics, Priorova St. 10, 127299, Moscow, Russia
| | - Eu G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991, Moscow, Russia
| | - A V Priezzhev
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, 119991, Moscow, Russia
| | - E A Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, 119991, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991, Moscow, Russia
- Institute of Spectroscopy of the Russian Academy of Sciences, 5 Fizicheskaya Str., 108840, Moscow, Russia
| |
Collapse
|