1
|
Zakynthinos GE, Tsolaki V, Mantzarlis K, Xanthopoulos A, Oikonomou E, Kalogeras K, Siasos G, Vavuranakis M, Makris D, Zakynthinos E. Navigating Heart-Lung Interactions in Mechanical Ventilation: Pathophysiology, Diagnosis, and Advanced Management Strategies in Acute Respiratory Distress Syndrome and Beyond. J Clin Med 2024; 13:7788. [PMID: 39768712 PMCID: PMC11728210 DOI: 10.3390/jcm13247788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Patients in critical condition who require mechanical ventilation experience intricate interactions between their respiratory and cardiovascular systems. These complex interactions are crucial for clinicians to understand as they can significantly influence therapeutic decisions and patient outcomes. A deep understanding of heart-lung interactions is essential, particularly under the stress of mechanical ventilation, where the right ventricle plays a pivotal role and often becomes a primary concern. Positive pressure ventilation, commonly used in mechanical ventilation, impacts right and left ventricular pre- and afterload as well as ventricular interplay. The right ventricle is especially susceptible to these changes, and its function can be critically affected, leading to complications such as right heart failure. Clinicians must be adept at recognizing and managing these interactions to optimize patient care. This perspective will analyze this matter comprehensively, covering the pathophysiology of these interactions, the monitoring of heart-lung dynamics using the latest methods (including ECHO), and management and treatment strategies for related conditions. In particular, the analysis will delve into the efficacy and limitations of various treatment modalities, including pharmaceutical interventions, nuanced ventilator management strategies, and advanced devices such as extracorporeal membrane oxygenation (ECMO). Each approach will be examined for its impact on optimizing right ventricular function, mitigating complications, and ultimately improving patient outcomes in the context of mechanical ventilation.
Collapse
Affiliation(s)
- George E. Zakynthinos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| | - Kostantinos Mantzarlis
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Demosthenes Makris
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| | - Epaminondas Zakynthinos
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| |
Collapse
|
2
|
Chen L, Qu H, Liu B, Chen BC, Yang Z, Shi DZ, Zhang Y. Low or oscillatory shear stress and endothelial permeability in atherosclerosis. Front Physiol 2024; 15:1432719. [PMID: 39314624 PMCID: PMC11417040 DOI: 10.3389/fphys.2024.1432719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Endothelial shear stress is a tangential stress derived from the friction of the flowing blood on the endothelial surface of the arterial wall and is expressed in units of force/unit area (dyne/cm2). Branches and bends of arteries are exposed to complex blood flow patterns that generate low or oscillatory endothelial shear stress, which impairs glycocalyx integrity, cytoskeleton arrangement and endothelial junctions (adherens junctions, tight junctions, gap junctions), thus increasing endothelial permeability. The lipoproteins and inflammatory cells penetrating intima due to the increased endothelial permeability characterizes the pathological changes in early stage of atherosclerosis. Endothelial cells are critical sensors of shear stress, however, the mechanisms by which the complex shear stress regulate endothelial permeability in atherosclerosis remain unclear. In this review, we focus on the molecular mechanisms of the endothelial permeability induced by low or oscillatory shear stress, which will shed a novel sight in early stage of atherosclerosis.
Collapse
Affiliation(s)
- Li Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Bin Liu
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Bing-Chang Chen
- Graduate school, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Ying Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
3
|
Douflé G, Katira BH. Extracorporeal Blood Flow Rate: Target the Right Thing! Am J Respir Crit Care Med 2024; 210:539-541. [PMID: 38747640 PMCID: PMC11389581 DOI: 10.1164/rccm.202403-0654ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2024] Open
Affiliation(s)
- Ghislaine Douflé
- Interdepartmental Division of Critical Care Medicine University of Toronto Toronto, Ontario, Canada
- Department of Anesthesia and Pain Management Toronto General Hospital Toronto, Ontario, Canada
| | - Bhushan H Katira
- Department of Pediatrics Washington University in St. Louis St. Louis, Missouri
| |
Collapse
|
4
|
Thornton LT, Kummer RL, Marini JJ. The place of positive end expiratory pressure in ventilator-induced lung injury generation. Curr Opin Crit Care 2024; 30:4-9. [PMID: 38085885 DOI: 10.1097/mcc.0000000000001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Describe the rationale for concern and accumulating pathophysiologic evidence regarding the adverse effects of high-level positive end expiratory pressure (PEEP) on excessive mechanical stress and ventilator-induced lung injury (VILI). RECENT FINDINGS Although the inclusion of PEEP in numerical estimates of mechanical power may be theoretically debated, its potential to increase stress, strain, and mean airway pressure are not. Recent laboratory data in a variety of animal models demonstrate that higher levels of PEEP coupled with additional fluids needed to offset its impediment of hemodynamic function are associated with increased VILI. Moreover, counteracting end-tidal hyperinflation by external chest wall pressure may paradoxically improve respiratory mechanics, indicating that lower PEEP helps protect the small 'baby lung' of advanced acute respiratory distress syndrome (ARDS). SUMMARY The potentially adverse effects of PEEP on VILI can be considered in three broad categories. First, the contribution of PEEP to total mechanical energy expressed through mechanical power, raised mean airway pressure, and end-tidal hyperinflation; second, the hemodynamic consequences of altered cardiac loading, heightened pulmonary vascular stress and total lung water; and third, the ventilatory consequences of compromised carbon dioxide eliminating efficiency. Minimizing ventilation demands, optimized body positioning and care to avoid unnecessary PEEP are central to lung protection in all stages of ARDS.
Collapse
Affiliation(s)
- Lauren T Thornton
- University of Minnesota, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Minneapolis, St. Paul, Minnesota, USA
| | | | | |
Collapse
|
5
|
Shi X, Shi Y, Fan L, Yang J, Chen H, Ni K, Yang J. Prognostic value of oxygen saturation index trajectory phenotypes on ICU mortality in mechanically ventilated patients: a multi-database retrospective cohort study. J Intensive Care 2023; 11:59. [PMID: 38031107 PMCID: PMC10685672 DOI: 10.1186/s40560-023-00707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Heterogeneity among critically ill patients undergoing invasive mechanical ventilation (IMV) treatment could result in high mortality rates. Currently, there are no well-established indicators to help identify patients with a poor prognosis in advance, which limits physicians' ability to provide personalized treatment. This study aimed to investigate the association of oxygen saturation index (OSI) trajectory phenotypes with intensive care unit (ICU) mortality and ventilation-free days (VFDs) from a dynamic and longitudinal perspective. METHODS A group-based trajectory model was used to identify the OSI-trajectory phenotypes. Associations between the OSI-trajectory phenotypes and ICU mortality were analyzed using doubly robust analyses. Then, a predictive model was constructed to distinguish patients with poor prognosis phenotypes. RESULTS Four OSI-trajectory phenotypes were identified in 3378 patients: low-level stable, ascending, descending, and high-level stable. Patients with the high-level stable phenotype had the highest mortality and fewest VFDs. The doubly robust estimation, after adjusting for unbalanced covariates in a model using the XGBoost method for generating propensity scores, revealed that both high-level stable and ascending phenotypes were associated with higher mortality rates (odds ratio [OR]: 1.422, 95% confidence interval [CI] 1.246-1.623; OR: 1.097, 95% CI 1.027-1.172, respectively), while the descending phenotype showed similar ICU mortality rates to the low-level stable phenotype (odds ratio [OR] 0.986, 95% confidence interval [CI] 0.940-1.035). The predictive model could help identify patients with ascending or high-level stable phenotypes at an early stage (area under the curve [AUC] in the training dataset: 0.851 [0.827-0.875]; AUC in the validation dataset: 0.743 [0.709-0.777]). CONCLUSIONS Dynamic OSI-trajectory phenotypes were closely related to the mortality of ICU patients requiring IMV treatment and might be a useful prognostic indicator in critically ill patients.
Collapse
Affiliation(s)
- Xiawei Shi
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangyang Shi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Liming Fan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, 310006, Zhejiang, China
| | - Hao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaiwen Ni
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Junchao Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|