1
|
Mutsuda K, Nishii Y, Toyoshima T, Fukushima H, Motose H, Takahashi T. Specific enhancement of the translation of thermospermine-responsive uORF-containing mRNAs by ribosomal mutations in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2025; 20:2480231. [PMID: 40088139 PMCID: PMC11913374 DOI: 10.1080/15592324.2025.2480231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/15/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Auxin-induced xylem formation in angiosperms is negatively regulated by thermospermine, whose biosynthesis is also induced by auxin. In Arabidopsis thaliana, loss-of-function mutants of ACL5, which encodes thermospermine synthase, exhibit a dwarf phenotype accompanied by excessive xylem formation. Studies of suppressor mutants that recover from the acl5 dwarf phenotype suggest that thermospermine alleviates the inhibitory effect of an upstream open-reading frame (uORF) on the main ORF translation of SAC51 mRNA. Many suppressor mutations for acl5 have been mapped to the uORF conserved in the SAC51 family or to ribosomal protein genes, such as RPL10A, RPL4A, and RACK1A. In this study, we identified newly isolated acl5 suppressors, sac501, sac504, and sac506, which are additional alleles of RPL10A and the uORFs of SAC51 family members, SACL1 and SACL3, respectively. To investigate whether acl5-suppressor alleles of ribosomal genes broadly affect translation of uORF-containing mRNAs, we examined GUS activity in several 5'-GUS fusion constructs. Our results showed that these alleles enhanced GUS activity in SAC51 and SACL3 5'-fusion constructs but had no effect on other 5'-fusion constructs unrelated to thermospermine response. This suggests that these ribosomal proteins are specifically involved in the thermospermine-mediated regulation of mRNA translation.
Collapse
Affiliation(s)
- Koki Mutsuda
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yuichi Nishii
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tomohiko Toyoshima
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hiroko Fukushima
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hiroyasu Motose
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Takahashi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Dueñas MA, Craig RJ, Gallaher SD, Moseley JL, Merchant SS. Leaky ribosomal scanning enables tunable translation of bicistronic ORFs in green algae. Proc Natl Acad Sci U S A 2025; 122:e2417695122. [PMID: 40009642 PMCID: PMC11892635 DOI: 10.1073/pnas.2417695122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/04/2025] [Indexed: 02/28/2025] Open
Abstract
Advances in sequencing technology have unveiled examples of nucleus-encoded polycistrons, once considered rare. Exclusively polycistronic transcripts are prevalent in green algae, although the mechanism by which multiple polypeptides are translated from a single transcript is unknown. Here, we used bioinformatic and in vivo mutational analyses to evaluate competing mechanistic models for translation of bicistronic mRNAs in green algae. High-confidence manually curated datasets of bicistronic loci from two divergent green algae, Chlamydomonas reinhardtii and Auxenochlorella protothecoides, revealed a preference for weak Kozak-like sequences for ORF 1 and an underrepresentation of potential initiation codons before the ORF 2 start codon, which are suitable conditions for leaky ribosome scanning to allow ORF 2 translation. We used mutational analysis in A. protothecoides to test the mechanism. In vivo manipulation of the ORF 1 Kozak-like sequence and start codon altered reporter expression at ORF 2, with a weaker Kozak-like sequence enhancing expression and a stronger one diminishing it. A synthetic bicistronic dual reporter demonstrated inversely adjustable activity of green fluorescent protein expressed from ORF 1 and luciferase from ORF 2, depending on the strength of the ORF 1 Kozak-like sequence. Our findings demonstrate that translation of multiple ORFs in green algal bicistronic transcripts is consistent with episodic leaky scanning of ORF 1 to allow translation at ORF 2. This work has implications for the potential functionality of upstream open reading frames (uORFs) found across eukaryotic genomes and for transgene expression in synthetic biology applications.
Collapse
Affiliation(s)
- Marco A. Dueñas
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Rory J. Craig
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA94720
| | - Sean D. Gallaher
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA94720
| | - Jeffrey L. Moseley
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA94720
| | - Sabeeha S. Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| |
Collapse
|
3
|
Duenas MA, Craig RJ, Gallaher SD, Moseley JL, Merchant SS. Leaky ribosomal scanning enables tunable translation of bicistronic ORFs in green algae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.605010. [PMID: 39091764 PMCID: PMC11291117 DOI: 10.1101/2024.07.24.605010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Advances in sequencing technology have unveiled examples of nucleus-encoded polycistronic genes, once considered rare. Exclusively polycistronic transcripts are prevalent in green algae, although the mechanism by which multiple polypeptides are translated from a single transcript is unknown. Here, we used bioinformatic and in vivo mutational analyses to evaluate competing mechanistic models for polycistronic expression in green algae. High-confidence manually curated datasets of bicistronic loci from two divergent green algae, Chlamydomonas reinhardtii and Auxenochlorella protothecoides, revealed 1) a preference for weak Kozak-like sequences for ORF 1 and 2) an underrepresentation of potential initiation codons before ORF 2, which are suitable conditions for leaky scanning to allow ORF 2 translation. We used mutational analysis in Auxenochlorella protothecoides to test the mechanism. In vivo manipulation of the ORF 1 Kozak-like sequence and start codon altered reporter expression at ORF 2, with a weaker Kozak-like sequence enhancing expression and a stronger one diminishing it. A synthetic bicistronic dual reporter demonstrated inversely adjustable activity of green fluorescent protein expressed from ORF 1 and luciferase from ORF 2, depending on the strength of the ORF 1 Kozak-like sequence. Our findings demonstrate that translation of multiple ORFs in green algal bicistronic transcripts is consistent with episodic leaky ribosome scanning of ORF 1 to allow translation at ORF 2. This work has implications for the potential functionality of upstream open reading frames found across eukaryotic genomes and for transgene expression in synthetic biology applications.
Collapse
Affiliation(s)
- Marco A. Duenas
- Department of Plant and Microbial Biology, University of California Berkeley, University of California, Berkeley, CA 94720, USA
| | - Rory J. Craig
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Sean D. Gallaher
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jeffrey L. Moseley
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Sabeeha S. Merchant
- Department of Plant and Microbial Biology, University of California Berkeley, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, CA, USA
| |
Collapse
|
4
|
Kuznetsova X, Dodueva I, Afonin A, Gribchenko E, Danilov L, Gancheva M, Tvorogova V, Galynin N, Lutova L. Whole-Genome Sequencing and Analysis of Tumour-Forming Radish ( Raphanus sativus L.) Line. Int J Mol Sci 2024; 25:6236. [PMID: 38892425 PMCID: PMC11172632 DOI: 10.3390/ijms25116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Spontaneous tumour formation in higher plants can occur in the absence of pathogen invasion, depending on the plant genotype. Spontaneous tumour formation on the taproots is consistently observed in certain inbred lines of radish (Raphanus sativus var. radicula Pers.). In this paper, using Oxford Nanopore and Illumina technologies, we have sequenced the genomes of two closely related radish inbred lines that differ in their ability to spontaneously form tumours. We identified a large number of single nucleotide variants (amino acid substitutions, insertions or deletions, SNVs) that are likely to be associated with the spontaneous tumour formation. Among the genes involved in the trait, we have identified those that regulate the cell cycle, meristem activity, gene expression, and metabolism and signalling of phytohormones. After identifying the SNVs, we performed Sanger sequencing of amplicons corresponding to SNV-containing regions to validate our results. We then checked for the presence of SNVs in other tumour lines of the radish genetic collection and found the ERF118 gene, which had the SNVs in the majority of tumour lines. Furthermore, we performed the identification of the CLAVATA3/ESR (CLE) and WUSCHEL (WOX) genes and, as a result, identified two unique radish CLE genes which probably encode proteins with multiple CLE domains. The results obtained provide a basis for investigating the mechanisms of plant tumour formation and also for future genetic and genomic studies of radish.
Collapse
Affiliation(s)
- Xenia Kuznetsova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Irina Dodueva
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Alexey Afonin
- All-Russia Research Institute for Agricultural Microbiology, 190608 Saint Petersburg, Russia (E.G.)
| | - Emma Gribchenko
- All-Russia Research Institute for Agricultural Microbiology, 190608 Saint Petersburg, Russia (E.G.)
| | - Lavrentii Danilov
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Maria Gancheva
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Varvara Tvorogova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| | - Nikita Galynin
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Lyudmila Lutova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| |
Collapse
|
5
|
Wu J, Zhou M, Cheng Y, Chen X, Yan S, Deng S. Genome-Wide Analysis of C/S1-bZIP Subfamilies in Populus tomentosa and Unraveling the Role of PtobZIP55/21 in Response to Low Energy. Int J Mol Sci 2024; 25:5163. [PMID: 38791204 PMCID: PMC11120861 DOI: 10.3390/ijms25105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
C/S1 basic leucine zipper (bZIP) transcription factors are essential for plant survival under energy deficiency. However, studies on the responses of C/S1-bZIPs to low energy in woody plants have not yet been reported. In this study, members of C/S1-bZIP subfamilies in Populus tomentosa were systematically analyzed using bioinformatic approaches. Four C-bZIPs and 10 S1-bZIPs were identified, and their protein properties, phylogenetic relationships, gene structures, conserved motifs, and uORFs were systematically investigated. In yeast two-hybrid assays, direct physical interactions between C-bZIP and S1-bZIP members were observed, highlighting their potential functional synergy. Moreover, expression profile analyses revealed that low energy induced transcription levels of most C/S1-bZIP members, with bZIP55 and bZIP21 (a homolog of bZIP55) exhibiting particularly significant upregulation. When the expression of bZIP55 and bZIP21 was co-suppressed using artificial microRNA mediated gene silencing in transgenic poplars, root growth was promoted. Further analyses revealed that bZIP55/21 negatively regulated the root development of P. tomentosa in response to low energy. These findings provide insights into the molecular mechanisms by which C/S1-bZIPs regulate poplar growth and development in response to energy deprivation.
Collapse
Affiliation(s)
| | | | | | | | | | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.W.); (M.Z.); (Y.C.); (X.C.); (S.Y.)
| |
Collapse
|
6
|
Huang S, Shen Z, An R, Jia Q, Wang D, Wei S, Mu J, Zhang Y. Identification and characterization of the plasma membrane H +-ATPase genes in Brassica napus and functional analysis of BnHA9 in salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108566. [PMID: 38554537 DOI: 10.1016/j.plaphy.2024.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
As a primary proton pump, plasma membrane (PM) H+-ATPase plays critical roles in regulating plant growth, development, and stress responses. PM H+-ATPases have been well characterized in many plant species. However, no comprehensive study of PM H+-ATPase genes has been performed in Brassica napus (rapeseed). In this study, we identified 32 PM H+-ATPase genes (BnHAs) in the rapeseed genome, and they were distributed on 16 chromosomes. Phylogenetical and gene duplication analyses showed that the BnHA genes were classified into five subfamilies, and the segmental duplication mainly contributed to the expansion of the rapeseed PM H+-ATPase gene family. The conserved domain and subcellular analyses indicated that BnHAs encoded canonical PM H+-ATPase proteins with 14 highly conserved domains and localized on PM. Cis-acting regulatory element and expression pattern analyses indicated that the expression of BnHAs possessed tissue developmental stage specificity. The 25 upstream open reading frames with the canonical initiation codon ATG were predicted in the 5' untranslated regions of 11 BnHA genes and could be used as potential target sites for improving rapeseed traits. Protein interaction analysis showed that BnBRI1.c associated with BnHA2 and BnHA17, indicating that the conserved activity regulation mechanism of BnHAs may be present in rapeseed. BnHA9 overexpression in Arabidopsis enhanced the salt tolerance of the transgenic plants. Thus, our results lay a foundation for further research exploring the biological functions of PM H+-ATPases in rapeseed.
Collapse
Affiliation(s)
- Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Zhen Shen
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Qingli Jia
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Daojie Wang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shihao Wei
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China.
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Wu HYL, Jen J, Hsu PY. What, where, and how: Regulation of translation and the translational landscape in plants. THE PLANT CELL 2024; 36:1540-1564. [PMID: 37437121 PMCID: PMC11062462 DOI: 10.1093/plcell/koad197] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, transfer RNAs, and the ribosome machinery through both cis- and trans-regulation while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a "primer" that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through 3 conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs; translation in organelles and viruses is not covered in this review.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Joey Jen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Wu HYL, Ai Q, Teixeira RT, Nguyen PHT, Song G, Montes C, Elmore JM, Walley JW, Hsu PY. Improved super-resolution ribosome profiling reveals prevalent translation of upstream ORFs and small ORFs in Arabidopsis. THE PLANT CELL 2024; 36:510-539. [PMID: 38000896 PMCID: PMC10896292 DOI: 10.1093/plcell/koad290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023]
Abstract
A crucial step in functional genomics is identifying actively translated ORFs and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed noncoding RNAs. Proteomic data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of trans-acting small interfering RNAs (TAS1-4) and microRNAs (pri-MIR163 and pri-MIR169) and periodic ribosome stalling supporting cotranslational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2 to 10 amino acids) and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiaoyun Ai
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rita Teresa Teixeira
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Phong H T Nguyen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - J Mitch Elmore
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Inchingolo MA, Diman A, Adamczewski M, Humphreys T, Jaquier-Gubler P, Curran JA. TP53BP1, a dual-coding gene, uses promoter switching and translational reinitiation to express a smORF protein. iScience 2023; 26:106757. [PMID: 37216125 PMCID: PMC10193022 DOI: 10.1016/j.isci.2023.106757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The complexity of the metazoan proteome is significantly increased by the expression of small proteins (<100 aa) derived from smORFs within lncRNAs, uORFs, 3' UTRs and, reading frames overlapping the CDS. These smORF encoded proteins (SEPs) have diverse roles, ranging from the regulation of cellular physiological to essential developmental functions. We report the characterization of a new member of this protein family, SEP53BP1, derived from a small internal ORF that overlaps the CDS encoding 53BP1. Its expression is coupled to the utilization of an alternative, cell-type specific promoter coupled to translational reinitiation events mediated by a uORF in the alternative 5' TL of the mRNA. This uORF-mediated reinitiation at an internal ORF is also observed in zebrafish. Interactome studies indicate that the human SEP53BP1 associates with components of the protein turnover pathway including the proteasome, and the TRiC/CCT chaperonin complex, suggesting that it may play a role in cellular proteostasis.
Collapse
Affiliation(s)
- Marta A. Inchingolo
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Diman
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maxime Adamczewski
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Faculté de Médecine et Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Tom Humphreys
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Pascale Jaquier-Gubler
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joseph A. Curran
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Clauwaert J, McVey Z, Gupta R, Menschaert G. TIS Transformer: remapping the human proteome using deep learning. NAR Genom Bioinform 2023; 5:lqad021. [PMID: 36879896 PMCID: PMC9985340 DOI: 10.1093/nargab/lqad021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
The correct mapping of the proteome is an important step towards advancing our understanding of biological systems and cellular mechanisms. Methods that provide better mappings can fuel important processes such as drug discovery and disease understanding. Currently, true determination of translation initiation sites is primarily achieved by in vivo experiments. Here, we propose TIS Transformer, a deep learning model for the determination of translation start sites solely utilizing the information embedded in the transcript nucleotide sequence. The method is built upon deep learning techniques first designed for natural language processing. We prove this approach to be best suited for learning the semantics of translation, outperforming previous approaches by a large margin. We demonstrate that limitations in the model performance are primarily due to the presence of low-quality annotations against which the model is evaluated against. Advantages of the method are its ability to detect key features of the translation process and multiple coding sequences on a transcript. These include micropeptides encoded by short Open Reading Frames, either alongside a canonical coding sequence or within long non-coding RNAs. To demonstrate the use of our methods, we applied TIS Transformer to remap the full human proteome.
Collapse
Affiliation(s)
- Jim Clauwaert
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Oost-Vlaanderen 9000, Belgium
| | - Zahra McVey
- Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd., Crawley, South East England, RH6 0PA, UK
| | - Ramneek Gupta
- Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd., Crawley, South East England, RH6 0PA, UK
| | - Gerben Menschaert
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Oost-Vlaanderen 9000, Belgium
| |
Collapse
|
11
|
Feng Y, Jiang M, Yu W, Zhou J. Identification of short open reading frames in plant genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1094715. [PMID: 36875581 PMCID: PMC9975389 DOI: 10.3389/fpls.2023.1094715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The roles of short/small open reading frames (sORFs) have been increasingly recognized in recent years due to the rapidly growing number of sORFs identified in various organisms due to the development and application of the Ribo-Seq technique, which sequences the ribosome-protected footprints (RPFs) of the translating mRNAs. However, special attention should be paid to RPFs used to identify sORFs in plants due to their small size (~30 nt) and the high complexity and repetitiveness of the plant genome, particularly for polyploidy species. In this work, we compare different approaches to the identification of plant sORFs, discuss the advantages and disadvantages of each method, and provide a guide for choosing different methods in plant sORF studies.
Collapse
Affiliation(s)
- Yong Feng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Weichang Yu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Liaoning Peanut Research Institute, Liaoning Academy of Agricultural Sciences, Fuxing, China
| | - Jiannan Zhou
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
12
|
Podia V, Chatzopoulos D, Milioni D, Stravopodis DJ, Dervisi I, Roussis A, Roubelakis-Angelakis KA, Haralampidis K. GUS Reporter-Aided Promoter Deletion Analysis of A. thaliana POLYAMINE OXIDASE 3. Int J Mol Sci 2023; 24:ijms24032317. [PMID: 36768644 PMCID: PMC9916862 DOI: 10.3390/ijms24032317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Polyamine oxidases (PAOs) have been correlated with numerous physiological and developmental processes, as well as responses to biotic and abiotic stress conditions. Their transcriptional regulation is driven by signals generated by various developmental and environmental cues, including phytohormones. However, the inductive mechanism(s) of the corresponding genes remains elusive. Out of the five previously characterized Arabidopsis PAO genes, none of their regulatory sequences have been analyzed to date. In this study, a GUS reporter-aided promoter deletion approach was used to investigate the transcriptional regulation of AtPAO3 during normal growth and development as well as under various inductive environments. AtPAO3 contains an upstream open reading frame (uORF) and a short inter-cistronic sequence, while the integrity of both appears to be crucial for the proper regulation of gene expression. The full-length promoter contains several cis-acting elements that regulate the tissue-specific expression of AtPAO3 during normal growth and development. Furthermore, a number of TFBS that are involved in gene induction under various abiotic stress conditions display an additive effect on gene expression. Taken together, our data indicate that the transcription of AtPAO3 is regulated by multiple environmental factors, which probably work alongside hormonal signals and shed light on the fine-tuning mechanisms of PAO regulation.
Collapse
Affiliation(s)
- Varvara Podia
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimitris Chatzopoulos
- Section of Cell Biology and Biophysics, Biology Department, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimitra Milioni
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Biology Department, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Irene Dervisi
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Andreas Roussis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Kosmas Haralampidis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence: ; Tel.: +0030-2107274131
| |
Collapse
|
13
|
Pei MS, Liu HN, Wei TL, Yu YH, Guo DL. Large-scale discovery of non-conventional peptides in grape ( Vitis vinifera L.) through peptidogenomics. HORTICULTURE RESEARCH 2022; 9:uhac023. [PMID: 35531313 PMCID: PMC9070638 DOI: 10.1093/hr/uhac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Non-conventional peptides (NCPs), which are peptides derived from previously unannotated coding sequences, play important biological roles in plants. In this study, we used peptidogenomic methods that integrated mass spectrometry (MS) peptidomics and a six-frame translation database to extensively identify NCPs in grape. In total, 188 and 2021 non-redundant peptides from the Arabidopsis thaliana and Vitis vinifera L. protein database at Ensembl/URGI and an individualized peptidogenomic database were identified. Unlike conventional peptides, these NCPs derived mainly from intergenic, intronic, upstream ORF, 5'UTR, 3'UTR, and downstream ORF regions. These results show that unannotated regions are translated more broadly than we thought. We also found that most NCPs were derived from regions related to phenotypic variations, LTR retrotransposons, and domestication selection, indicating that the NCPs have an important function in complex biological processes. We also found that the NCPs were developmentally specific and had transient and specific functions in grape berry development. In summary, our study is the first to extensively identify NCPs in grape. It demonstrated that there was a large amount of translation in the genome. These results lay a foundation for studying the functions of NCPs and also provide a reference for the discovery of new functional genes in grape.
Collapse
Affiliation(s)
- Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | | |
Collapse
|
14
|
Causier B, Hopes T, McKay M, Paling Z, Davies B. Plants utilise ancient conserved peptide upstream open reading frames in stress-responsive translational regulation. PLANT, CELL & ENVIRONMENT 2022; 45:1229-1241. [PMID: 35128674 PMCID: PMC9305500 DOI: 10.1111/pce.14277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 05/08/2023]
Abstract
The regulation of protein synthesis plays an important role in the growth and development of all organisms. Upstream open reading frames (uORFs) are commonly found in eukaryotic messenger RNA transcripts and typically attenuate the translation of associated downstream main ORFs (mORFs). Conserved peptide uORFs (CPuORFs) are a rare subset of uORFs, some of which have been shown to conditionally regulate translation by ribosome stalling. Here, we show that Arabidopsis CPuORF19, CPuORF46 and CPuORF47, which are ancient in origin, regulate translation of any downstream ORF, in response to the agriculturally significant environmental signals, heat stress and water limitation. Consequently, these CPuORFs represent a versatile toolkit for inducible gene expression with broad applications. Finally, we note that different classes of CPuORFs may operate during distinct phases of translation, which has implications for the bioengineering of these regulatory factors.
Collapse
Affiliation(s)
- Barry Causier
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Tayah Hopes
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Mary McKay
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Zachary Paling
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Brendan Davies
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
15
|
Wang H, Zhang Y, Norris A, Jiang CZ. S1-bZIP Transcription Factors Play Important Roles in the Regulation of Fruit Quality and Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 12:802802. [PMID: 35095974 PMCID: PMC8795868 DOI: 10.3389/fpls.2021.802802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Sugar metabolism not only determines fruit sweetness and quality but also acts as signaling molecules to substantially connect with other primary metabolic processes and, therefore, modulates plant growth and development, fruit ripening, and stress response. The basic region/leucine zipper motif (bZIP) transcription factor family is ubiquitous in eukaryotes and plays a diverse array of biological functions in plants. Among the bZIP family members, the smallest bZIP subgroup, S1-bZIP, is a unique one, due to the conserved upstream open reading frames (uORFs) in the 5' leader region of their mRNA. The translated small peptides from these uORFs are suggested to mediate Sucrose-Induced Repression of Translation (SIRT), an important mechanism to maintain sucrose homeostasis in plants. Here, we review recent research on the evolution, sequence features, and biological functions of this bZIP subgroup. S1-bZIPs play important roles in fruit quality, abiotic and biotic stress responses, plant growth and development, and other metabolite biosynthesis by acting as signaling hubs through dimerization with the subgroup C-bZIPs and other cofactors like SnRK1 to coordinate the expression of downstream genes. Direction for further research and genetic engineering of S1-bZIPs in plants is suggested for the improvement of quality and safety traits of fruit.
Collapse
Affiliation(s)
- Hong Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
| | - Yunting Zhang
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ayla Norris
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
16
|
Chen Q, Lin X, Tang W, Deng Q, Wang Y, Lin Y, He W, Zhang Y, Li M, Luo Y, Zhang Y, Wang X, Tang H. Transcriptomic Complexity in Strawberry Fruit Development and Maturation Revealed by Nanopore Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:872054. [PMID: 35909727 PMCID: PMC9326444 DOI: 10.3389/fpls.2022.872054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 05/13/2023]
Abstract
The use of alternative transcription start or termination sites (aTSS or aTTS) as well as alternative splicing (AS) produce diverse transcript isoforms, playing indispensable roles in the plant development and environmental adaptations. Despite the advances in the finding of the genome-wide alternatively spliced genes in strawberry, it remains unexplored how AS responds to the developmental cues and what relevance do these outcomes have to the gene function. In this study, we have systematically investigated the transcriptome complexity using long-read Oxford Nanopore Technologies along the four successive developmental stages. The full-length cDNA sequencing results unraveled thousands of previously unexplored transcript isoforms raised from aTSS, aTTS, and AS. The relative contributions of these three processes to the complexity of strawberry fruit transcripts were compared. The aTSS and aTTS were more abundant than the AS. Differentially expressed transcripts unraveled the key transitional role of the white fruit stage. Isoform switches of transcripts from 757 genes were observed. They were associated with protein-coding potential change and domain gain or loss as the main consequences. Those genes with switched isoforms take part in the key processes of maturation in the late stages. A case study using yeast two hybrid analysis supported the functional divergence of the two isoforms of the B-box protein 22. Our results provided a new comprehensive overview of the dynamic transcriptomic landscape during strawberry fruit development and maturation.
Collapse
Affiliation(s)
- Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ximeng Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wenlu Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Haoru Tang
| |
Collapse
|
17
|
Translational and post-translational regulation of polyamine metabolic enzymes in plants. J Biotechnol 2021; 344:1-10. [PMID: 34915092 DOI: 10.1016/j.jbiotec.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/19/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Polyamines are small organic and basic polycations that perform essential regulatory functions in all living organisms. Fluctuations in polyamine content have been observed to occur during growth, development and under stress conditions, implying that polyamines play pivotal roles in diverse cellular and physiological processes. To achieve polyamine homeostasis, the entire metabolic pathway is subjected to a fine-tuned regulation of its biosynthetic and catabolic genes and enzymes. In this review, we describe and discuss the most important mechanisms implicated in the translational and post-translational regulation of polyamine metabolic enzymes in plants. At the translational level, we emphasize the role of polyamines in the modulation of upstream open reading frame (uORF) activities that control the translation of polyamine biosynthetic and catabolic mRNAs. At the post-translational level, different aspects of the regulation of polyamine metabolic proteins are depicted, such as the proteolytic activation of enzyme precursors, the importance of dimerization in protein stability as well as in protein intracellular localization.
Collapse
|
18
|
Unraveling the hidden role of a uORF-encoded peptide as a kinase inhibitor of PKCs. Proc Natl Acad Sci U S A 2021; 118:2018899118. [PMID: 34593629 PMCID: PMC8501901 DOI: 10.1073/pnas.2018899118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/01/2023] Open
Abstract
Approximately 40% of human messenger RNAs (mRNAs) contain upstream open reading frames (uORFs) in their 5' untranslated regions. Some of these uORF sequences, thought to attenuate scanning ribosomes or lead to mRNA degradation, were recently shown to be translated, although the function of the encoded peptides remains unknown. Here, we show a uORF-encoded peptide that exhibits kinase inhibitory functions. This uORF, upstream of the protein kinase C-eta (PKC-η) main ORF, encodes a peptide (uPEP2) containing the typical PKC pseudosubstrate motif present in all PKCs that autoinhibits their kinase activity. We show that uPEP2 directly binds to and selectively inhibits the catalytic activity of novel PKCs but not of classical or atypical PKCs. The endogenous deletion of uORF2 or its overexpression in MCF-7 cells revealed that the endogenously translated uPEP2 reduces the protein levels of PKC-η and other novel PKCs and restricts cell proliferation. Functionally, treatment of breast cancer cells with uPEP2 diminished cell survival and their migration and synergized with chemotherapy by interfering with the response to DNA damage. Furthermore, in a xenograft of MDA-MB-231 breast cancer tumor in mice models, uPEP2 suppressed tumor progression, invasion, and metastasis. Tumor histology showed reduced proliferation, enhanced cell death, and lower protein expression levels of novel PKCs along with diminished phosphorylation of PKC substrates. Hence, our study demonstrates that uORFs may encode biologically active peptides beyond their role as translation regulators of their downstream ORFs. Together, we point to a unique function of a uORF-encoded peptide as a kinase inhibitor, pertinent to cancer therapy.
Collapse
|
19
|
Guerra-Almeida D, Tschoeke DA, da-Fonseca RN. Understanding small ORF diversity through a comprehensive transcription feature classification. DNA Res 2021; 28:6317669. [PMID: 34240112 PMCID: PMC8435553 DOI: 10.1093/dnares/dsab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Small open reading frames (small ORFs/sORFs/smORFs) are potentially coding sequences smaller than 100 codons that have historically been considered junk DNA by gene prediction software and in annotation screening; however, the advent of next-generation sequencing has contributed to the deeper investigation of junk DNA regions and their transcription products, resulting in the emergence of smORFs as a new focus of interest in systems biology. Several smORF peptides were recently reported in noncanonical mRNAs as new players in numerous biological contexts; however, their relevance is still overlooked in coding potential analysis. Hence, this review proposes a smORF classification based on transcriptional features, discussing the most promising approaches to investigate smORFs based on their different characteristics. First, smORFs were divided into nonexpressed (intergenic) and expressed (genic) smORFs. Second, genic smORFs were classified as smORFs located in noncoding RNAs (ncRNAs) or canonical mRNAs. Finally, smORFs in ncRNAs were further subdivided into sequences located in small or long RNAs, whereas smORFs located in canonical mRNAs were subdivided into several specific classes depending on their localization along the gene. We hope that this review provides new insights into large-scale annotations and reinforces the role of smORFs as essential components of a hidden coding DNA world.
Collapse
Affiliation(s)
- Diego Guerra-Almeida
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Antonio Tschoeke
- Alberto Luiz Coimbra Institute of Graduate Studies and Engineering Research (COPPE), Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Nunes- da-Fonseca
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
21
|
Li YR, Liu MJ. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Res 2020; 30:1418-1433. [PMID: 32973042 PMCID: PMC7605272 DOI: 10.1101/gr.261834.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Translation initiation is a key step determining protein synthesis. Studies have uncovered a number of alternative translation initiation sites (TISs) in mammalian mRNAs and showed their roles in reshaping the proteome. However, the extent to which alternative TISs affect gene expression across plants remains largely unclear. Here, by profiling initiating ribosome positions, we globally identified in vivo TISs in tomato and Arabidopsis and found thousands of genes with more than one TIS. Of the identified TISs, >19% and >20% were located at unannotated AUG and non-AUG sites, respectively. CUG and ACG were the most frequently observed codons at non-AUG TISs, a phenomenon also found in mammals. In addition, although alternative TISs were usually found in both orthologous genes, the TIS sequences were not conserved, suggesting the conservation of alternative initiation mechanisms but flexibility in using TISs. Unlike upstream AUG TISs, the presence of upstream non-AUG TISs was not correlated with the translational repression of main open reading frames, a pattern observed across plants. Also, the generation of proteins with diverse N-terminal regions through the use of alternative TISs contributes to differential subcellular localization, as mutating alternative TISs resulted in the loss of organelle localization. Our findings uncovered the hidden coding potential of plant genomes and, importantly, the constraint and flexibility of translational initiation mechanisms in the regulation of gene expression across plant species.
Collapse
Affiliation(s)
- Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
22
|
Dever TE, Ivanov IP, Sachs MS. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu Rev Genet 2020; 54:237-264. [PMID: 32870728 DOI: 10.1146/annurev-genet-112618-043822] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
23
|
Takahashi H, Hayashi N, Hiragori Y, Sasaki S, Motomura T, Yamashita Y, Naito S, Takahashi A, Fuse K, Satou K, Endo T, Kojima S, Onouchi H. Comprehensive genome-wide identification of angiosperm upstream ORFs with peptide sequences conserved in various taxonomic ranges using a novel pipeline, ESUCA. BMC Genomics 2020; 21:260. [PMID: 32228449 PMCID: PMC7106846 DOI: 10.1186/s12864-020-6662-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022] Open
Abstract
Background Upstream open reading frames (uORFs) in the 5′-untranslated regions (5′-UTRs) of certain eukaryotic mRNAs encode evolutionarily conserved functional peptides, such as cis-acting regulatory peptides that control translation of downstream main ORFs (mORFs). For genome-wide searches for uORFs with conserved peptide sequences (CPuORFs), comparative genomic studies have been conducted, in which uORF sequences were compared between selected species. To increase chances of identifying CPuORFs, we previously developed an approach in which uORF sequences were compared using BLAST between Arabidopsis and any other plant species with available transcript sequence databases. If this approach is applied to multiple plant species belonging to phylogenetically distant clades, it is expected to further comprehensively identify CPuORFs conserved in various plant lineages, including those conserved among relatively small taxonomic groups. Results To efficiently compare uORF sequences among many species and efficiently identify CPuORFs conserved in various taxonomic lineages, we developed a novel pipeline, ESUCA. We applied ESUCA to the genomes of five angiosperm species, which belong to phylogenetically distant clades, and selected CPuORFs conserved among at least three different orders. Through these analyses, we identified 89 novel CPuORF families. As expected, ESUCA analysis of each of the five angiosperm genomes identified many CPuORFs that were not identified from ESUCA analyses of the other four species. However, unexpectedly, these CPuORFs include those conserved across wide taxonomic ranges, indicating that the approach used here is useful not only for comprehensive identification of narrowly conserved CPuORFs but also for that of widely conserved CPuORFs. Examination of the effects of 11 selected CPuORFs on mORF translation revealed that CPuORFs conserved only in relatively narrow taxonomic ranges can have sequence-dependent regulatory effects, suggesting that most of the identified CPuORFs are conserved because of functional constraints of their encoded peptides. Conclusions This study demonstrates that ESUCA is capable of efficiently identifying CPuORFs likely to be conserved because of the functional importance of their encoded peptides. Furthermore, our data show that the approach in which uORF sequences from multiple species are compared with those of many other species, using ESUCA, is highly effective in comprehensively identifying CPuORFs conserved in various taxonomic ranges.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan. .,Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan.
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichiro Motomura
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Anna Takahashi
- Faculty of Information Technologies and Control, Belarusian State University of Informatics and Radio Electronics, 220013, Minsk, Belarus
| | - Kazuyuki Fuse
- New Business Development Office, Churitsu Electric Corporation, Toyoake, 470-1112, Japan
| | - Kenji Satou
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Toshinori Endo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
24
|
Manipulating gene translation in plants by CRISPR-Cas9-mediated genome editing of upstream open reading frames. Nat Protoc 2020; 15:338-363. [PMID: 31915386 DOI: 10.1038/s41596-019-0238-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
Gene expression is regulated by multiple processes, and the translation of mRNAs into proteins is an especially critical step. Upstream open reading frames (uORFs) are widespread cis-elements in eukaryotic genes that usually suppress the translation of downstream primary ORFs (pORFs). Here, we describe a protocol for fine-tuning gene translation in plants by editing endogenous uORFs with the CRISPR-Cas9 system. The method we present readily yields transgene-free uorf mutant offspring. We provide detailed protocols for predicting uORFs and testing their effects on downstream pORFs using a dual-luciferase reporter system, designing and constructing single guide RNA (sgRNA)-Cas9 vectors, identifying transgene-free uorf mutants, and finally comparing the mRNA, protein and phenotypic levels of target genes in uorf mutants and controls. Predicting uORFs and confirming their effects in protoplasts takes only 2-3 weeks, and transgene-free mutants with edited target uORFs controlling different levels of pORF translation can be obtained within 4 months. Unlike previous methods, our strategy achieves fine-tuning of gene translation in transgene-free derivatives, which accelerates the analysis of gene function and the improvement of crop traits.
Collapse
|
25
|
van der Horst S, Filipovska T, Hanson J, Smeekens S. Metabolite Control of Translation by Conserved Peptide uORFs: The Ribosome as a Metabolite Multisensor. PLANT PHYSIOLOGY 2020; 182:110-122. [PMID: 31451550 PMCID: PMC6945846 DOI: 10.1104/pp.19.00940] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 05/19/2023]
Abstract
Ribosomes translate the mRNA code into protein, and this process can be controlled by metabolites that bind to the translating ribosome in interaction with the nascent protein.
Collapse
Affiliation(s)
- Sjors van der Horst
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Teodora Filipovska
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Johannes Hanson
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umea, Sweden
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| |
Collapse
|
26
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
27
|
van der Horst S, Snel B, Hanson J, Smeekens S. Novel pipeline identifies new upstream ORFs and non-AUG initiating main ORFs with conserved amino acid sequences in the 5' leader of mRNAs in Arabidopsis thaliana. RNA (NEW YORK, N.Y.) 2019; 25:292-304. [PMID: 30567971 PMCID: PMC6380273 DOI: 10.1261/rna.067983.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/10/2018] [Indexed: 05/10/2023]
Abstract
Eukaryotic mRNAs contain a 5' leader sequence preceding the main open reading frame (mORF) and, depending on the species, 20%-50% of eukaryotic mRNAs harbor an upstream ORF (uORF) in the 5' leader. An unknown fraction of these uORFs encode sequence conserved peptides (conserved peptide uORFs, CPuORFs). Experimentally validated CPuORFs demonstrated to regulate the translation of downstream mORFs often do so in a metabolite concentration-dependent manner. Previous research has shown that most CPuORFs possess a start codon context suboptimal for translation initiation, which turns out to be favorable for translational regulation. The suboptimal initiation context may even include non-AUG start codons, which makes CPuORFs hard to predict. For this reason, we developed a novel pipeline to identify CPuORFs unbiased of start codon using well-annotated sequence data from 31 eudicot plant species and rice. Our new pipeline was able to identify 29 novel Arabidopsis thaliana (Arabidopsis) CPuORFs, conserved across a wide variety of eudicot species of which 15 do not initiate with an AUG start codon. In addition to CPuORFs, the pipeline was able to find 14 conserved coding regions directly upstream and in frame with the mORF, which likely initiate translation on a non-AUG start codon. Altogether, our pipeline identified highly conserved coding regions in the 5' leaders of Arabidopsis transcripts, including in genes with proven functional importance such as LHY, a key regulator of the circadian clock, and the RAPTOR1 subunit of the target of rapamycin (TOR) kinase.
Collapse
Affiliation(s)
- Sjors van der Horst
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Johannes Hanson
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
28
|
Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism. Proc Natl Acad Sci U S A 2019; 116:2925-2934. [PMID: 30718434 DOI: 10.1073/pnas.1815361116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphatases of regenerating liver (PRL-1, PRL-2, and PRL-3, also known as PTP4A1, PTP4A2, and PTP4A3) control magnesium homeostasis through an association with the CNNM magnesium transport regulators. Although high PRL levels have been linked to cancer progression, regulation of their expression is poorly understood. Here we show that modulating intracellular magnesium levels correlates with a rapid change of PRL expression by a mechanism involving its 5'UTR mRNA region. Mutations or CRISPR-Cas9 targeting of the conserved upstream ORF present in the mRNA leader derepress PRL protein synthesis and attenuate the translational response to magnesium levels. Mechanistically, magnesium depletion reduces intracellular ATP but up-regulates PRL protein expression via activation of the AMPK/mTORC2 pathway, which controls cellular energy status. Hence, altered PRL-2 expression leads to metabolic reprogramming of the cells. These findings uncover a magnesium-sensitive mechanism controlling PRL expression, which plays a role in cellular bioenergetics.
Collapse
|
29
|
Clark DP, Pazdernik NJ, McGehee MR. Regulation of Protein Synthesis. Mol Biol 2019. [DOI: 10.1016/b978-0-12-813288-3.00018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Ishitsuka S, Yamamoto M, Miyamoto M, Kuwashiro Y, Imai A, Motose H, Takahashi T. Complexity and Conservation of Thermospermine-Responsive uORFs of SAC51 Family Genes in Angiosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:564. [PMID: 31118941 PMCID: PMC6504692 DOI: 10.3389/fpls.2019.00564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/15/2019] [Indexed: 05/10/2023]
Abstract
ACAULIS5 (ACL5) encodes thermospermine synthase in Arabidopsis and its loss-of-function mutant acl5 shows excess xylem differentiation and severe dwarfism. SAC51 encodes a basic helix-loop-helix (bHLH) protein and was identified from sac51-d, a dominant suppressor mutant of acl5, which restores the wild-type phenotype without thermospermine. The 5' leader of the SAC51 mRNA contains multiple upstream open-reading frames (uORFs) and sac51-d has a premature stop codon in the fourth uORF. This uORF is conserved among SAC51 family genes in vascular plants. According to the GUS reporter assay, the SAC51 promoter was not responsive to thermospermine but the SAC51 5' leader fused to the constitutive 35S promoter enhanced the GUS activity in response to thermospermine. Disruption experiments of each start codon of the SAC51 uORFs revealed that uORF4 and uORF6 whose start codon corresponds to the second methionine codon of uORF4 had an inhibitory effect on the main ORF translation while the other four uORFs rather had a stimulatory effect. The response of the 5' leader to thermospermine was retained after disruption of each one of six start codons of these uORFs but abolished by mutating both uORF4 and uORF6 start codons, suggesting the importance of the C-terminal sequence shared by these uORFs in the action of thermospermine. We introduced GUS fusions with 5' leaders of SAC51 family genes from other angiosperm species into Arabidopsis and found that all 5' leaders responsive to thermospermine, so far examined, contained these two conserved, and overlapping uORFs.
Collapse
|
31
|
Goldenkova-Pavlova IV, Pavlenko OS, Mustafaev ON, Deyneko IV, Kabardaeva KV, Tyurin AA. Computational and Experimental Tools to Monitor the Changes in Translation Efficiency of Plant mRNA on a Genome-Wide Scale: Advantages, Limitations, and Solutions. Int J Mol Sci 2018; 20:E33. [PMID: 30577638 PMCID: PMC6337405 DOI: 10.3390/ijms20010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
The control of translation in the course of gene expression regulation plays a crucial role in plants' cellular events and, particularly, in responses to environmental factors. The paradox of the great variance between levels of mRNAs and their protein products in eukaryotic cells, including plants, requires thorough investigation of the regulatory mechanisms of translation. A wide and amazingly complex network of mechanisms decoding the plant genome into proteome challenges researchers to design new methods for genome-wide analysis of translational control, develop computational algorithms detecting regulatory mRNA contexts, and to establish rules underlying differential translation. The aims of this review are to (i) describe the experimental approaches for investigation of differential translation in plants on a genome-wide scale; (ii) summarize the current data on computational algorithms for detection of specific structure⁻function features and key determinants in plant mRNAs and their correlation with translation efficiency; (iii) highlight the methods for experimental verification of existed and theoretically predicted features within plant mRNAs important for their differential translation; and finally (iv) to discuss the perspectives of discovering the specific structural features of plant mRNA that mediate differential translation control by the combination of computational and experimental approaches.
Collapse
Affiliation(s)
- Irina V Goldenkova-Pavlova
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Olga S Pavlenko
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Orkhan N Mustafaev
- Department of Biophysics and Molecular Biology, Baku State University, Zahid Khalilov Str. 23, Baku AZ 1148, Azerbaijan.
| | - Igor V Deyneko
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Ksenya V Kabardaeva
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Alexander A Tyurin
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| |
Collapse
|
32
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
33
|
Zhu Y, Vaughn JC. Experimental Verification and Evolutionary Origin of 5'-UTR Polyadenylation Sites in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:969. [PMID: 30026753 PMCID: PMC6041940 DOI: 10.3389/fpls.2018.00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Messenger RNA (mRNA) polyadenylation is an indispensable step during post-transcriptional pre-mRNA processing for most genes in eukaryotes. The usage of one poly(A) site over another is known as alternative polyadenylation (APA). APA has been implicated in gene expression regulation through its role of selecting the ends of a transcript. Recent studies of polyadenylation profiles in the Arabidopsis database unexpectedly predicted that a portion of the poly(A) sites are located in the 5'-UTR, which remains to be experimentally verified. We selected 16 genes from a dataset of 744, based on criteria designed to minimize problems in interpretation. Here, we experimentally verify 5'-UTR-APA in Arabidopsis for 10 of the 16 selected genes, and show for the first time existence of independent polyadenylated 5'-UTR transcripts, arising due to alternative polyadenylation. We used 3'-RACE and sequencing to validate poly(A) sites and northern blot to show that the observed short upstream transcripts do not arise from the 3'-end of a previously unrecognized convergent gene. Evidence is reported showing that two of the independent upstream open reading frame (uORF) transcripts studied, one containing a complex dual uORF, very likely arose by exon shuffling following duplication of the 5'-end from the downstream major open reading frame (mORF). Finally, results are presented to show that the uORF in this gene may encode two short functional proteins, based on observation of amino acid sequence conservation encoded by the dual uORFs.
Collapse
|
34
|
Ribone PA, Capella M, Arce AL, Chan RL. A uORF Represses the Transcription Factor AtHB1 in Aerial Tissues to Avoid a Deleterious Phenotype. PLANT PHYSIOLOGY 2017; 175:1238-1253. [PMID: 28956754 PMCID: PMC5664479 DOI: 10.1104/pp.17.01060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/25/2017] [Indexed: 05/19/2023]
Abstract
AtHB1 is an Arabidopsis (Arabidopsis thaliana) homeodomain-leucine zipper transcription factor that participates in hypocotyl elongation under short-day conditions. Here, we show that its expression is posttranscriptionally regulated by an upstream open reading frame (uORF) located in its 5' untranslated region. This uORF encodes a highly conserved peptide (CPuORF) that is present in varied monocot and dicot species. The Arabidopsis uORF and its maize (Zea mays) homolog repressed the translation of the main open reading frame in cis, independent of the sequence of the latter. Published ribosome footprinting results and the analysis of a frame-shifted uORF, in which the repression capability was lost, indicated that the uORF causes ribosome stalling. The regulation exerted by the CPuORF was tissue specific and did not act in the absence of light. Moreover, a photosynthetic signal is needed for the CPuORF action, since plants with uncoupled chloroplasts did not show uORF-dependent repression. Plants transformed with the native AtHB1 promoter driving AtHB1 expression did not show differential phenotypes, whereas those transformed with a construct in which the uORF was mutated exhibited serrated leaves, compact rosettes, and, most significantly, short nondehiscent anthers and siliques containing fewer or no seeds. Thus, we propose that the uncontrolled expression of AtHB1 is deleterious for the plant and, hence, finely repressed by a translational mechanism.
Collapse
Affiliation(s)
- Pamela A Ribone
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Científico Tecnológico Consejo Nacional de Investigaciones Científicas y Técnicas Santa Fe, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Científico Tecnológico Consejo Nacional de Investigaciones Científicas y Técnicas Santa Fe, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Agustín L Arce
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Científico Tecnológico Consejo Nacional de Investigaciones Científicas y Técnicas Santa Fe, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Científico Tecnológico Consejo Nacional de Investigaciones Científicas y Técnicas Santa Fe, Paraje El Pozo, 3000 Santa Fe, Argentina
| |
Collapse
|
35
|
Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proc Natl Acad Sci U S A 2017; 114:E10018-E10027. [PMID: 29087317 PMCID: PMC5699049 DOI: 10.1073/pnas.1708433114] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Noncoding RNAs are an underexplored reservoir of regulatory molecules in eukaryotes. We analyzed the environmental response of roots to phosphorus (Pi) nutrition to understand how a change in availability of an essential element is managed. Pi availability influenced translational regulation mediated by small upstream ORFs on protein-coding mRNAs. Discovery, classification, and evaluation of long noncoding RNAs (lncRNAs) associated with translating ribosomes uncovered diverse new examples of translational regulation. These included Pi-regulated small peptide synthesis, ribosome-coupled phased small interfering RNA production, and the translational regulation of natural antisense RNAs and other regulatory RNAs. This study demonstrates that translational control contributes to the stability and activity of regulatory RNAs, providing an avenue for manipulation of traits. Eukaryotic transcriptomes contain a major non–protein-coding component that includes precursors of small RNAs as well as long noncoding RNA (lncRNAs). Here, we utilized the mapping of ribosome footprints on RNAs to explore translational regulation of coding and noncoding RNAs in roots of Arabidopsis thaliana shifted from replete to deficient phosphorous (Pi) nutrition. Homodirectional changes in steady-state mRNA abundance and translation were observed for all but 265 annotated protein-coding genes. Of the translationally regulated mRNAs, 30% had one or more upstream ORF (uORF) that influenced the number of ribosomes on the principal protein-coding region. Nearly one-half of the 2,382 lncRNAs detected had ribosome footprints, including 56 with significantly altered translation under Pi-limited nutrition. The prediction of translated small ORFs (sORFs) by quantitation of translation termination and peptidic analysis identified lncRNAs that produce peptides, including several deeply evolutionarily conserved and significantly Pi-regulated lncRNAs. Furthermore, we discovered that natural antisense transcripts (NATs) frequently have actively translated sORFs, including five with low-Pi up-regulation that correlated with enhanced translation of the sense protein-coding mRNA. The data also confirmed translation of miRNA target mimics and lncRNAs that produce trans-acting or phased small-interfering RNA (tasiRNA/phasiRNAs). Mutational analyses of the positionally conserved sORF of TAS3a linked its translation with tasiRNA biogenesis. Altogether, this systematic analysis of ribosome-associated mRNAs and lncRNAs demonstrates that nutrient availability and translational regulation controls protein and small peptide-encoding mRNAs as well as a diverse cadre of regulatory RNAs.
Collapse
|
36
|
Hsu PY, Benfey PN. Small but Mighty: Functional Peptides Encoded by Small ORFs in Plants. Proteomics 2017; 18:e1700038. [PMID: 28759167 DOI: 10.1002/pmic.201700038] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Peptides encoded by small open reading frames (sORFs, usually <100 codons) play critical regulatory roles in plant development and environmental responses. Despite their importance, only a small number of these peptides have been identified and characterized. Genomic studies have revealed that many plant genomes contain thousands of possible sORFs, which could potentially encode small peptides. The challenge is to distinguish translated sORFs from nontranslated ones. Here, we highlight advances in methodologies for identifying these hidden sORFs in plant genomes, including ribosome profiling and proteomics. We also examine the evidence for new peptides arising from sORFs and discuss their functions in plant development, environmental responses, and translational control.
Collapse
Affiliation(s)
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA.,Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| |
Collapse
|
37
|
Hayashi N, Sasaki S, Takahashi H, Yamashita Y, Naito S, Onouchi H. Identification of Arabidopsis thaliana upstream open reading frames encoding peptide sequences that cause ribosomal arrest. Nucleic Acids Res 2017. [PMID: 28637336 PMCID: PMC5587730 DOI: 10.1093/nar/gkx528] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specific sequences of certain nascent peptides cause programmed ribosomal arrest during mRNA translation to control gene expression. In eukaryotes, most known regulatory arrest peptides are encoded by upstream open reading frames (uORFs) present in the 5′-untranslated region of mRNAs. However, to date, a limited number of eukaryotic uORFs encoding arrest peptides have been reported. Here, we searched for arrest peptide-encoding uORFs among Arabidopsis thaliana uORFs with evolutionarily conserved peptide sequences. Analysis of in vitro translation products of 22 conserved uORFs identified three novel uORFs causing ribosomal arrest in a peptide sequence-dependent manner. Stop codon-scanning mutagenesis, in which the effect of changing the uORF stop codon position on the ribosomal arrest was examined, and toeprint analysis revealed that two of the three uORFs cause ribosomal arrest during translation elongation, whereas the other one causes ribosomal arrest during translation termination. Transient expression assays showed that the newly identified arrest-causing uORFs exerted a strong sequence-dependent repressive effect on the expression of the downstream reporter gene in A. thaliana protoplasts. These results suggest that the peptide sequences of the three uORFs identified in this study cause ribosomal arrest in the uORFs, thereby repressing the expression of proteins encoded by the main ORFs.
Collapse
Affiliation(s)
- Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Chiba 263-8522, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
38
|
Guerrero-González MDLL, Ortega-Amaro MA, Juárez-Montiel M, Jiménez-Bremont JF. Arabidopsis Polyamine oxidase-2 uORF is required for downstream translational regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:381-390. [PMID: 27526386 DOI: 10.1016/j.plaphy.2016.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 05/10/2023]
Abstract
In eukaryotic mRNAs, small upstream open reading frames (uORFs) located in the 5'-untranslated region control the translation of the downstream main ORF. Polyamine oxidase (PAO) enzymes catalyze the oxidation of higher polyamines such as spermidine and spermine, and therefore contribute to the maintenance of intracellular polyamine content and to the regulation of physiological processes through their catabolic products. Recently, we reported that the Arabidopsis thaliana Polyamine Oxidase 2 (AtPAO2) is post-transcriptionally regulated by its 5'-UTR region through an uORF. In the present study, we analyzed whether the translation of the uORF is needed for the translational repression of the main ORF, and whether the inactivation of the uORF had an effect on the translational control mediated by polyamines. To this aim, we generated diverse single mutations in the uORF sequence; these mutant 5'-UTRs were fused to the GUS reporter gene, and tested in onion monolayer cells and A. thaliana transgenic seedlings. Removal of the start codon or introduction of a premature stop codon in the AtPAO2 uORF sequence abolished the negative regulation of the GUS expression exerted by the wild-type AtPAO2 uORF. An artificial uORF (32 amino acids in length) generated by the addition of a single nucleotide in AtPAO2 uORF proved to be less repressive than the wild-type uORF. Thus, our findings suggest that translation of the AtPAO2 uORF is necessary for the translational repression of the main ORF.
Collapse
Affiliation(s)
| | - María Azucena Ortega-Amaro
- Instituto Potosino de Investigación Científica y Tecnológica AC, División de Biología Molecular, San Luis Potosí, Mexico
| | - Margarita Juárez-Montiel
- Instituto Potosino de Investigación Científica y Tecnológica AC, División de Biología Molecular, San Luis Potosí, Mexico
| | - Juan Francisco Jiménez-Bremont
- Instituto Potosino de Investigación Científica y Tecnológica AC, División de Biología Molecular, San Luis Potosí, Mexico.
| |
Collapse
|
39
|
Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:E7126-E7135. [PMID: 27791167 DOI: 10.1073/pnas.1614788113] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deep sequencing of ribosome footprints (ribosome profiling) maps and quantifies mRNA translation. Because ribosomes decode mRNA every 3 nt, the periodic property of ribosome footprints could be used to identify novel translated ORFs. However, due to the limited resolution of existing methods, the 3-nt periodicity is observed mostly in a global analysis, but not in individual transcripts. Here, we report a protocol applied to Arabidopsis that maps over 90% of the footprints to the main reading frame and thus offers super-resolution profiles for individual transcripts to precisely define translated regions. The resulting data not only support many annotated and predicted noncanonical translation events but also uncover small ORFs in annotated noncoding RNAs and pseudogenes. A substantial number of these unannotated ORFs are evolutionarily conserved, and some produce stable proteins. Thus, our study provides a valuable resource for plant genomics and an efficient optimization strategy for ribosome profiling in other organisms.
Collapse
|
40
|
Curran JA, Weiss B. What Is the Impact of mRNA 5' TL Heterogeneity on Translational Start Site Selection and the Mammalian Cellular Phenotype? Front Genet 2016; 7:156. [PMID: 27630668 PMCID: PMC5005323 DOI: 10.3389/fgene.2016.00156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
A major determinant in the efficiency of ribosome loading onto mRNAs is the 5′ TL (transcript leader or 5′ UTR). In addition, elements within this region also impact on start site selection demonstrating that it can modulate the protein readout at both quantitative and qualitative levels. With the increasing wealth of data generated by the mining of the mammalian transcriptome, it has become evident that a genes 5′ TL is not homogeneous but actually exhibits significant heterogeneity. This arises due to the utilization of alternative promoters, and is further compounded by significant variability with regards to the precise transcriptional start sites of each (not to mention alternative splicing). Consequently, the transcript for a protein coding gene is not a unique mRNA, but in-fact a complexed quasi-species of variants whose composition may respond to the changing physiological environment of the cell. Here we examine the potential impact of these events with regards to the protein readout.
Collapse
Affiliation(s)
- Joseph A Curran
- Department of Microbiology and Molecular Medicine, Medical School, University of GenevaGeneva, Switzerland; Institute of Genetics and Genomics of Geneva, University of GenevaGeneva, Switzerland
| | - Benjamin Weiss
- Department of Microbiology and Molecular Medicine, Medical School, University of Geneva Geneva, Switzerland
| |
Collapse
|
41
|
Cai Q, Fukushima H, Yamamoto M, Ishii N, Sakamoto T, Kurata T, Motose H, Takahashi T. The SAC51 Family Plays a Central Role in Thermospermine Responses in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:1583-92. [PMID: 27388339 DOI: 10.1093/pcp/pcw113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/09/2016] [Indexed: 05/09/2023]
Abstract
The acaulis5 (acl5) mutant of Arabidopsis thaliana is defective in the biosynthesis of thermospermine and shows a dwarf phenotype associated with excess xylem differentiation. SAC51 was identified from a dominant suppressor of acl5, sac51-d, and encodes a basic helix-loop-helix protein. The sac51-d mutant has a premature termination codon in an upstream open reading frame (uORF) that is conserved among all four members of the SAC51 family, SAC51 and SACL1-SACL3 This suggests that thermospermine cancels the inhibitory effect of the uORF in main ORF translation. Another suppressor, sac57-d, has a mutation in the conserved uORF of SACL3 To define further the function of the SAC51 family in the thermospermine response, we analyzed T-DNA insertion mutants of each gene. Although sacl1-1 may not be a null allele, the quadruple mutant showed a semi-dwarf phenotype but with an increased level of thermospermine and decreased sensitivity to exogenous thermospermine that normally represses xylem differentiation. The sac51-1 sacl3-1 double mutant was also insensitive to thermospermine. These results suggest that SAC51 and SACL3 play a key role in thermospermine-dependent negative control of thermospermine biosynthesis and xylem differentiation. Using 5' leader-GUS (β-glucuronidase) fusion constructs, however, we detected a significant enhancement of the GUS activity by thermospermine only in SAC51 and SACL1 constructs. Furthermore, while acl5-1 sac51-1 showed the acl5 dwarf phenotype, acl5-1 sacl3-1 exhibited an extremely tiny-plant phenotype. These results suggest a complex regulatory network for the thermospermine response in which SAC51 and SACL3 function in parallel pathways.
Collapse
Affiliation(s)
- Qingqing Cai
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hiroko Fukushima
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mai Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Nami Ishii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tomoaki Sakamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tetsuya Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroyasu Motose
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
42
|
Baldrich P, Campo S, Wu MT, Liu TT, Hsing YIC, San Segundo B. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol 2016; 12:847-63. [PMID: 26083154 DOI: 10.1080/15476286.2015.1050577] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Increasing evidence also supports that plant miRNAs contribute to immune responses to pathogens. Here, we used deep sequencing of small RNA libraries for global identification of rice miRNAs that are regulated by fungal elicitors. We also describe 9 previously uncharacterized miRNAs in rice. Combined small RNA and degradome analyses revealed regulatory networks enriched in elicitor-regulated miRNAs supported by the identification of their corresponding target genes. Specifically, we identified an important number of miRNA/target gene pairs involved in small RNA pathways, including miRNA, heterochromatic and trans-acting siRNA pathways. We present evidence for miRNA/target gene pairs implicated in hormone signaling and cross-talk among hormone pathways having great potential in regulating rice immunity. Furthermore, we describe miRNA-mediated regulation of Conserved-Peptide upstream Open Reading Frame (CPuORF)-containing genes in rice, which suggests the existence of a novel regulatory network that integrates miRNA and CPuORF functions in plants. The knowledge gained in this study will help in understanding the underlying regulatory mechanisms of miRNAs in rice immunity and develop appropriate strategies for rice protection.
Collapse
Affiliation(s)
- Patricia Baldrich
- a Centre for Research in Agricultural Genomics (CRAG) ; Edifici CRAG ; Barcelona , Spain
| | | | | | | | | | | |
Collapse
|
43
|
Hellens RP, Brown CM, Chisnall MAW, Waterhouse PM, Macknight RC. The Emerging World of Small ORFs. TRENDS IN PLANT SCIENCE 2016; 21:317-328. [PMID: 26684391 DOI: 10.1016/j.tplants.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/23/2015] [Accepted: 11/05/2015] [Indexed: 05/10/2023]
Abstract
Small open reading frames (sORFs) are an often overlooked feature of plant genomes. Initially found in plant viral RNAs and considered an interesting curiosity, an increasing number of these sORFs have been shown to encode functional peptides or play a regulatory role. The recent discovery that many of these sORFs initiate with start codons other than AUG, together with the identification of functional small peptides encoded in supposedly noncoding primary miRNA transcripts (pri-miRs), has drastically increased the number of potentially functional sORFs within the genome. Here we review how advances in technology, notably ribosome profiling (RP) assays, are complementing bioinformatics and proteogenomic methods to provide powerful ways to identify these elusive features of plant genomes, and highlight the regulatory roles sORFs can play.
Collapse
Affiliation(s)
- Roger P Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Chris M Brown
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Matthew A W Chisnall
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Richard C Macknight
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand; New Zealand Institute for Plant and Food Research Ltd.
| |
Collapse
|
44
|
Sagor GHM, Berberich T, Tanaka S, Nishiyama M, Kanayama Y, Kojima S, Muramoto K, Kusano T. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1116-26. [PMID: 26402509 PMCID: PMC11388862 DOI: 10.1111/pbi.12480] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/27/2015] [Accepted: 08/26/2015] [Indexed: 05/19/2023]
Abstract
Enhancement of sugar content and sweetness is desirable in some vegetables and in almost all fruits; however, biotechnological methods to increase sugar content are limited. Here, a completely novel methodological approach is presented that produces sweeter tomato fruits but does not have any negative effects on plant growth. Sucrose-induced repression of translation (SIRT), which is mediated by upstream open reading frames (uORFs), was initially reported in Arabidopsis AtbZIP11, a class S basic region leucine zipper (bZIP) transcription factor gene. Here, two AtbZIP11 orthologous genes, SlbZIP1 and SlbZIP2, were identified in tomato (Solanum lycopersicum). SlbZIP1 and SlbZIP2 contained four and three uORFs, respectively, in the cDNA 5'-leader regions. The second uORFs from the 5' cDNA end were conserved and involved in SIRT. Tomato plants were transformed with binary vectors in which only the main open reading frames (ORFs) of SlbZIP1 and SlbZIP2, without the SIRT-responsive uORFs, were placed under the control of the fruit-specific E8 promoter. Growth and morphology of the resulting transgenic tomato plants were comparable to those of wild-type plants. Transgenic fruits were approximately 1.5-fold higher in sugar content (sucrose/glucose/fructose) than nontransgenic tomato fruits. In addition, the levels of several amino acids, such as asparagine and glutamine, were higher in transgenic fruits than in wild-type fruits. This was expected because SlbZIP transactivates the asparagine synthase and proline dehydrogenase genes. This 'sweetening' technology is broadly applicable to other plants that utilize sucrose as a major translocation sugar.
Collapse
Affiliation(s)
- G H M Sagor
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Thomas Berberich
- Laboratory Center, Biodiversity and Climate Research Center, Frankfurt am Main, Germany
| | - Shun Tanaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Manabu Nishiyama
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Seiji Kojima
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Koji Muramoto
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| |
Collapse
|
45
|
Cookson SJ, Yadav UP, Klie S, Morcuende R, Usadel B, Lunn JE, Stitt M. Temporal kinetics of the transcriptional response to carbon depletion and sucrose readdition in Arabidopsis seedlings. PLANT, CELL & ENVIRONMENT 2016; 39:768-786. [PMID: 26386165 DOI: 10.1111/pce.12642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
To investigate whether the transcriptional response to carbon (C) depletion and sucrose resupply depends on the duration and severity of the C depletion, Arabidopsis seedlings were grown in liquid culture and harvested 3, 6, 12, 24, 48 and 72 h after removing sucrose from the medium and 30 min after resupplying sucrose at each time. Expression profiling revealed early transcriptional inhibition of cell wall synthesis and remodelling of signalling, followed by induction of C recycling and photosynthesis and general inhibition of growth. The temporal sequence differed from the published response to progressive exhaustion of C during a night and extended night in vegetatively growing plants. The response to sucrose readdition was conserved across the C-depletion time course. Intriguingly, the vast majority of rapidly responding transcripts decreased rather than increased. The majority of transcripts that respond rapidly to sucrose and many transcripts that respond during C depletion also decrease after treating seedlings with the transcriptional inhibitor cordycepin A. Comparison with published responses to overexpression of otsA, AKIN10 and bZIP11 revealed that many genes that respond to C depletion, and especially sucrose resupply, respond to one or more of these C-signalling components. Thus, multiple factors contribute to C responsiveness, including many signalling components, transcriptional regulation and transcript turnover.
Collapse
Affiliation(s)
- Sarah Jane Cookson
- INRA, ISVV, EGFV, UMR 1287, Villenave d'Ornon, F-33140, France
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Umesh Prasad Yadav
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Sebastian Klie
- Targenomix GmbH, Am Mühlenberg 11, Potsdam-Golm, 14476, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Rosa Morcuende
- Instituto de Recursos Naturales y Agrobiología de Salamanca, CSIC, Apartado 257, Salamanca, 37071, Spain
| | - Björn Usadel
- Lehrstuhl für Botanik und Institut für Biologie I, RWTH Aachen, Worringer Weg 1, Aachen, 52062, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
46
|
Olexiouk V, Menschaert G. Identification of Small Novel Coding Sequences, a Proteogenomics Endeavor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 926:49-64. [PMID: 27686805 DOI: 10.1007/978-3-319-42316-6_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of small proteins and peptides has consistently proven to be challenging. However, technological advances as well as multi-omics endeavors facilitate the identification of novel small coding sequences, leading to new insights. Specifically, the application of next generation sequencing technologies (NGS), providing accurate and sample specific transcriptome / translatome information, into the proteomics field led to more comprehensive results and new discoveries. This book chapter focuses on the inclusion of RNA-Seq and RIBO-Seq also known as ribosome profiling, an RNA-Seq based technique sequencing the +/- 30 bp long fragments captured by translating ribosomes. We emphasize the identification of micropeptides and neo-antigens, two distinct classes of small translation products, triggering our current understanding of biology. RNA-Seq is capable of capturing sample specific genomic variations, enabling focused neo-antigen identification. RIBO-Seq can identify translation events in small open reading frames which are considered to be non-coding, leading to the discovery of micropeptides. The identification of small translation products requires the integration of multi-omics data, stressing the importance of proteogenomics in this novel research area.
Collapse
Affiliation(s)
- Volodimir Olexiouk
- Lab of Bioinformatics and Computational Genomics (BioBix), Faculty of Bioscience Engineering, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, Building A, Ghent, 9000, Belgium.
| | - Gerben Menschaert
- Lab of Bioinformatics and Computational Genomics (BioBix), Faculty of Bioscience Engineering, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, Building A, Ghent, 9000, Belgium
| |
Collapse
|
47
|
Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:114. [PMID: 26904076 PMCID: PMC4746267 DOI: 10.3389/fpls.2016.00114] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/21/2016] [Indexed: 05/18/2023]
Abstract
Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.
Collapse
Affiliation(s)
- Meng Guo
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jin-Hong Liu
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Xiao Ma
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | - De-Xu Luo
- Vegetable Research and Development Centre, Huaiyin Institute of Agricultural Sciences in Jiangsu Xuhuai RegionHuaian, China
| | - Zhen-Hui Gong
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
- *Correspondence: Zhen-Hui Gong
| | - Ming-Hui Lu
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
- Ming-Hui Lu
| |
Collapse
|
48
|
Kumar M, Srinivas V, Patankar S. Upstream AUGs and upstream ORFs can regulate the downstream ORF in Plasmodium falciparum. Malar J 2015; 14:512. [PMID: 26692187 PMCID: PMC4687322 DOI: 10.1186/s12936-015-1040-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background Upstream open reading frames (uORFs) and upstream AUGs (uAUGs) can regulate the translation of downstream ORFs. The AT rich genome of Plasmodium falciparum, due to the higher AT content of start and stop codons, has the potential to give rise to a large number of uORFs and uAUGs that may affect expression of their flanking ORFs. Methods A bioinformatics approach was used to detect uATGs associated with different genes in the parasite. To study the effect of some of these uAUGs on the expression of the downstream ORF, promoters and 5′ leaders containing uAUGs and uORFs were cloned upstream of a luciferase reporter gene. Luciferase assays were carried out in transient transfection experiments to assess the effects of uAUGs and mutations on reporter expression. Results The average number of uATGs and uORFs seen in P. falciparum coding sequences (CDS) is expectedly high compared to other less biased genomes. Certain genes, including the var gene family contain the maximum number of uATGs and uORFs in the parasite. They possess ~5 times more uORFs and ~4.5 times more uAUGs within 100 bases upstream of the start codons than other CDS of the parasite. A 60 bp upstream region containing three ORFs and five ATGs from var gene PF3D7_0400100 and a gene of unknown function (PF3D7_0517100) when cloned upstream of the luciferase start codon, driven by the hsp86 promoter, resulted in loss of luciferase activity. This was restored when all the ATGs present in the −60 bp were mutated to TTGs. Point mutations in the ATGs showed that even one AUG was sufficient to repress the luciferase gene. Conclusions Overall, this work indicates that the P. falciparum genome has a large number of uATGs and uORFs that can repress the expression of flanking ORFs. The role of AUGs in translation initiation suggests that this repression is mediated by preventing the translation initiation complex from reaching the main AUG of the downstream ORF. How the P. falciparum ribosome is able to bypass these uAUGs and uORFs for highly expressed genes remains a question for future research. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1040-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mayank Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Vivek Srinivas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
49
|
Aghamirzaie D, Batra D, Heath LS, Schneider A, Grene R, Collakova E. Transcriptome-wide functional characterization reveals novel relationships among differentially expressed transcripts in developing soybean embryos. BMC Genomics 2015; 16:928. [PMID: 26572793 PMCID: PMC4647491 DOI: 10.1186/s12864-015-2108-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcriptomics reveals the existence of transcripts of different coding potential and strand orientation. Alternative splicing (AS) can yield proteins with altered number and types of functional domains, suggesting the global occurrence of transcriptional and post-transcriptional events. Many biological processes, including seed maturation and desiccation, are regulated post-transcriptionally (e.g., by AS), leading to the production of more than one coding or noncoding sense transcript from a single locus. RESULTS We present an integrated computational framework to predict isoform-specific functions of plant transcripts. This framework includes a novel plant-specific weighted support vector machine classifier called CodeWise, which predicts the coding potential of transcripts with over 96 % accuracy, and several other tools enabling global sequence similarity, functional domain, and co-expression network analyses. First, this framework was applied to all detected transcripts (103,106), out of which 13 % was predicted by CodeWise to be noncoding RNAs in developing soybean embryos. Second, to investigate the role of AS during soybean embryo development, a population of 2,938 alternatively spliced and differentially expressed splice variants was analyzed and mined with respect to timing of expression. Conserved domain analyses revealed that AS resulted in global changes in the number, types, and extent of truncation of functional domains in protein variants. Isoform-specific co-expression network analysis using ArrayMining and clustering analyses revealed specific sub-networks and potential interactions among the components of selected signaling pathways related to seed maturation and the acquisition of desiccation tolerance. These signaling pathways involved abscisic acid- and FUSCA3-related transcripts, several of which were classified as noncoding and/or antisense transcripts and were co-expressed with corresponding coding transcripts. Noncoding and antisense transcripts likely play important regulatory roles in seed maturation- and desiccation-related signaling in soybean. CONCLUSIONS This work demonstrates how our integrated framework can be implemented to make experimentally testable predictions regarding the coding potential, co-expression, co-regulation, and function of transcripts and proteins related to a biological process of interest.
Collapse
Affiliation(s)
- Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Dhruv Batra
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Andrew Schneider
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
50
|
Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BPA. The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions. THE PLANT CELL 2015; 27:2095-118. [PMID: 26276833 PMCID: PMC4568509 DOI: 10.1105/tpc.15.00440] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/25/2015] [Indexed: 05/18/2023]
Abstract
Peptides fulfill a plethora of functions in plant growth, development, and stress responses. They act as key components of cell-to-cell communication, interfere with signaling and response pathways, or display antimicrobial activity. Strikingly, both the diversity and amount of plant peptides have been largely underestimated. Most characterized plant peptides to date acting as small signaling peptides or antimicrobial peptides are derived from nonfunctional precursor proteins. However, evidence is emerging on peptides derived from a functional protein, directly translated from small open reading frames (without the involvement of a precursor) or even encoded by primary transcripts of microRNAs. These novel types of peptides further add to the complexity of the plant peptidome, even though their number is still limited and functional characterization as well as translational evidence are often controversial. Here, we provide a comprehensive overview of the reported types of plant peptides, including their described functional and structural properties. We propose a novel, unifying peptide classification system to emphasize the enormous diversity in peptide synthesis and consequent complexity of the still expanding knowledge on the plant peptidome.
Collapse
Affiliation(s)
- Patrizia Tavormina
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven (KU Leuven), B-3000 Leuven, Belgium Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven (KU Leuven), B-3000 Leuven, Belgium Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Natalia Nikonorova
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, United Kingdom Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven (KU Leuven), B-3000 Leuven, Belgium Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| |
Collapse
|