1
|
Ahmed EZ, Sattar AMAE. Improvement of Vicia faba plant tolerance under salinity stress by the application of thiamine and pyridoxine vitamins. Sci Rep 2024; 14:22367. [PMID: 39333671 PMCID: PMC11436915 DOI: 10.1038/s41598-024-72511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
Enhancement of plant growth at early growth stages is usually associated with the stimulation of various metabolic activities, which is reflected on morphological features and yield quantity and quality. Vitamins is considered as anatural plant metabolites which makes it a safe and ecofriendly treatment when used in appropriate doses, for that this research aimed to study the effect of two different vitamin B forms (thiamine and pyridoxine) on Vicia faba plants as agrowth stimutator in addition to study it's effect on plant as astrong antioxidant under salinity stress.Our findings demonstrated that both vitamin forms significantly increased seedling growth at germination and early growth stages, especially at 50 ppm for pyridoxine and 100 ppm for thiamine. Pyridoxine at 50 ppm increased seedling length by approximately 35% compared to control, while thiamine at 100 ppm significantly promoted seedling fresh and dry wt by 4.36 and 1.36 g, respectively, compared to control seedling fresh wt 2.17 g and dry weight 1.07 g. Irrigation with 100 mM NaCl had a negative impact on plant growth and processes as well as the uptake of several critical ions, such as K+ and Mg+2, increasing Na uptake in comparison to that in control plants. Compared to control plants irrigated with NaCl solution, the photosynthetic pigments, soluble sugars, soluble proteins, and total antioxidant capacity increased in the presence of pyridoxine and thiamine, both at 50 and 100 ppm salinity. The proline content increased in both treated and untreated plants subjected to salt stress compared to that in control plants. Thiamine, especially at 50 ppm, was more effective than pyridoxine at improving plant health under saline conditions. An increase in Vicia faba plant tolerance to salinity was established by enhancing antioxidant capacity via foliar application of vitamin B through direct and indirect scavenging methods, which protect cell macromolecules from damage by oxidative stress, the highest antioxidant capacity value 28.14% was recorded at 50 ppm thiamine under salinity stress.The provided results is aguide for more researches in plant physiology and molecular biology to explain plant response to vitamins application and the suggest the sequence by which vitamins work inside plant cell.
Collapse
Affiliation(s)
- Eman Zakaria Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| | | |
Collapse
|
2
|
Fitzpatrick TB, Dalvit I, Chang F, Wang K, Fudge JB, Chang S, Maillot B, Gruissem W. Vitamin B 1 enhancement in the endosperm of rice through thiamine sequestration. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2330-2332. [PMID: 38536763 PMCID: PMC11258966 DOI: 10.1111/pbi.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 07/21/2024]
Affiliation(s)
| | - Ivan Dalvit
- Department of Plant SciencesUniversity of GenevaGenevaSwitzerland
| | - Fei‐Han Chang
- Advanced Plant and Food Crop Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Kai Wang
- Department of Plant SciencesUniversity of GenevaGenevaSwitzerland
| | - Jared B. Fudge
- Department of Plant SciencesUniversity of GenevaGenevaSwitzerland
| | - Shu‐Heng Chang
- Advanced Plant and Food Crop Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Benoît Maillot
- Department of Plant SciencesUniversity of GenevaGenevaSwitzerland
| | - Wilhelm Gruissem
- Advanced Plant and Food Crop Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
- Institute of Molecular Plant Biology, Department of BiologyETH ZurichZurichSwitzerland
| |
Collapse
|
3
|
Faustino M, Lourenço T, Strobbe S, Cao D, Fonseca A, Rocha I, Van Der Straeten D, Oliveira MM. OsTH1 is a key player in thiamin biosynthesis in rice. Sci Rep 2024; 14:13591. [PMID: 38866808 PMCID: PMC11169455 DOI: 10.1038/s41598-024-62326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Thiamin is a vital nutrient that acts as a cofactor for several enzymes primarily localized in the mitochondria. These thiamin-dependent enzymes are involved in energy metabolism, nucleic acid biosynthesis, and antioxidant machinery. The enzyme HMP-P kinase/thiamin monophosphate synthase (TH1) holds a key position in thiamin biosynthesis, being responsible for the phosphorylation of HMP-P into HMP-PP and for the condensation of HMP-PP and HET-P to form TMP. Through mathematical kinetic model, we have identified TH1 as a critical player for thiamin biofortification in rice. We further focused on the functional characterization of OsTH1. Sequence and gene expression analysis, along with phylogenetic studies, provided insights into OsTH1 bifunctional features and evolution. The indispensable role of OsTH1 in thiamin biosynthesis was validated by heterologous expression of OsTH1 and successful complementation of yeast knock-out mutants impaired in thiamin production. We also proved that the sole OsTH1 overexpression in rice callus significantly improves B1 concentration, resulting in 50% increase in thiamin accumulation. Our study underscores the critical role of OsTH1 in thiamin biosynthesis, shedding light on its bifunctional nature and evolutionary significance. The significant enhancement of thiamin accumulation in rice callus upon OsTH1 overexpression constitutes evidence of its potential application in biofortification strategies.
Collapse
Affiliation(s)
- Maria Faustino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium
| | - Tiago Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium
- University of Geneva, Quai E. Ansermet 30, 1211, Geneva, Switzerland
| | - Da Cao
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium
| | - André Fonseca
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Isabel Rocha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium.
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.
| |
Collapse
|
4
|
Johari NAF, Abidin AAZ, Ismail NFN, Yusof ZNB. Endophytic Bacteria Induce Thiamine (Vitamin B1) Production in Oil Palm ( Elaeis guineensis). Trop Life Sci Res 2024; 35:1-12. [PMID: 39262869 PMCID: PMC11383633 DOI: 10.21315/tlsr2024.35.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/25/2023] [Indexed: 09/13/2024] Open
Abstract
Thiamine or vitamin B1 is a micronutrient that has a crucial function in all living organisms and involved in several biochemical reactions. Concerning the capability of thiamine in inducing plant health, a study was carried out by applying bacterial endophytes (Pseudomonas aeruginosa and Burkholderia cepacia cultures) in four-month-old oil palm seedlings (Elaeis guineensis) via soil drenching technique to evaluate the effect towards thiamine. Spear leaves were sampled day 0 to 14 to analyse the expression of gene coding for the first two enzymes thiamine biosynthesis pathway, THI4 and THIC via qPCR analysis. The gene expression by qPCR showed a significant increase of up to 3-fold while high-performance liquid chromatography (HPLC) analysis for quantification of thiamine and its derivatives accumulated ~ 20-fold in total thiamine when compared to control seedlings. However, concentration of thiamine metabolites was negatively correlated with the expression of THIC and THI4 gene transcripts suggesting post-transcriptional regulation mediated by an RNA regulatory element, a thiamine pyrophosphate (TPP) riboswitch. Our findings demonstrated that the application of bacterial endophytes affected thiamine biosynthesis and enhanced overall thiamine content. This might increase the plant's resistance towards stress and would be useful in oil palm maintenance for maximum yield production.
Collapse
Affiliation(s)
- Nur Asna Faiqah Johari
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Aisamuddin Ardi Zainal Abidin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Farhah Nabihan Ismail
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Complex (BBRC), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Strobbe S, Verstraete J, Fitzpatrick TB, Stove C, Van Der Straeten D. A protocol for a turbidimetric assay using a Saccharomyces cerevisiae thiamin biosynthesis mutant to estimate total vitamin B 1 content in plant tissue samples. PLANT METHODS 2023; 19:144. [PMID: 38093342 PMCID: PMC10717716 DOI: 10.1186/s13007-023-01117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Understanding thiamin (thiamine; vitamin B1) metabolism in plants is crucial, as it impacts plant nutritional value as well as stress tolerance. Studies aimed at elucidating novel aspects of thiamin in plants rely on adequate assessment of thiamin content. Mass spectrometry-based methods provide reliable quantification of thiamin as well as closely related biomolecules. However, these techniques require expensive equipment and expertise. Microbiological turbidimetric assays can evaluate the presence of thiamin in a given sample, only requiring low-cost, standard lab equipment. Although these microbiological assays do not reach the accuracy provided by mass spectrometry-based methods, the ease with which they can be deployed in an inexpensive and high-throughput manner, makes them a favorable method in many circumstances. However, the thiamin research field could benefit from a detailed step-by-step protocol to perform such assays as well as a further assessment of its potential and limitations. RESULTS Here, we show that the Saccharomyces cerevisiae thiamin biosynthesis mutant thi6 is an ideal candidate to be implemented in a turbidimetric assay aimed at assessing the content of thiamin and its phosphorylated equivalents (total vitamer B1). An optimized protocol was generated, adapted from a previously established microbiological assay using the thi4 mutant. A step-by-step guidance for this protocol is presented. Furthermore, the applicability of the assay is illustrated by assessment of different samples, including plant as well as non-plant materials. In doing so, our work provides an extension of the applicability of the microbiological assay on top of providing important considerations upon implementing the protocol. CONCLUSIONS An inexpensive, user-friendly protocol, including step-by-step guidance, which allows adequate estimation of vitamer B1 content of samples, is provided. The method is well-suited to screen materials to identify altered vitamer B1 content, such as in metabolic engineering or screening of germplasm.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Teresa B Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Quai E. Ansermet 30, 1211, Geneva, Switzerland
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L, Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Moura Dias H, Vieira AP, de Jesus EM, de Setta N, Barros G, Van Sluys MA. Functional and comparative analysis of THI1 gene in grasses with a focus on sugarcane. PeerJ 2023; 11:e14973. [PMID: 37214086 PMCID: PMC10194071 DOI: 10.7717/peerj.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/07/2023] [Indexed: 05/24/2023] Open
Abstract
De novo synthesis of thiamine (vitamin B1) in plants depends on the action of thiamine thiazole synthase, which synthesizes the thiazole ring, and is encoded by the THI1 gene. Here, we investigated the evolution and diversity of THI1 in Poaceae, where C4 and C3 photosynthetic plants co-evolved. An ancestral duplication of THI1 is observed in Panicoideae that remains in many modern monocots, including sugarcane. In addition to the two sugarcane copies (ScTHI1-1 and ScTHI1-2), we identified ScTHI1-2 alleles showing differences in their sequence, indicating divergence between ScTHI1-2a and ScTHI1-2b. Such variations are observed only in the Saccharum complex, corroborating the phylogeny. At least five THI1 genomic environments were found in Poaceae, two in sugarcane, M. sinensis, and S. bicolor. The THI1 promoter in Poaceae is highly conserved at 300 bp upstream of the start codon ATG and has cis-regulatory elements that putatively bind to transcription factors associated with development, growth, development and biological rhythms. An experiment set to compare gene expression levels in different tissues across the sugarcane R570 life cycle showed that ScTHI1-1 was expressed mainly in leaves regardless of age. Furthermore, ScTHI1 displayed relatively high expression levels in meristem and culm, which varied with the plant age. Finally, yeast complementation studies with THI4-defective strain demonstrate that only ScTHI1-1 and ScTHI1-2b isoforms can partially restore thiamine auxotrophy, albeit at a low frequency. Taken together, the present work supports the existence of multiple origins of THI1 harboring genomic regions in Poaceae with predicted functional redundancy. In addition, it questions the contribution of the levels of the thiazole ring in C4 photosynthetic plant tissues or potentially the relevance of the THI1 protein activity.
Collapse
Affiliation(s)
| | | | | | - Nathalia de Setta
- Botanica/IB, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Universidade Federal do ABC, Sao Bernardo do Campo, Sao Paulo, Brazil
| | - Gesiele Barros
- Botanica/IB, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
7
|
Noordally Z, Land L, Trichtinger C, Dalvit I, de Meyer M, Wang K, Fitzpatrick TB. Clock and riboswitch control of THIC in tandem are essential for appropriate gauging of TDP levels under light/dark cycles in Arabidopsis. iScience 2023; 26:106134. [PMID: 36866249 PMCID: PMC9972560 DOI: 10.1016/j.isci.2023.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Metabolic homeostasis is regulated by enzyme activities, but the importance of regulating their corresponding coenzyme levels is unexplored. The organic coenzyme thiamine diphosphate (TDP) is suggested to be supplied as needed and controlled by a riboswitch-sensing mechanism in plants through the circadian-regulated THIC gene. Riboswitch disruption negatively impacts plant fitness. A comparison of riboswitch-disrupted lines to those engineered for enhanced TDP levels suggests that time-of-day regulation of THIC expression particularly under light/dark cycles is crucial. Altering the phase of THIC expression to be synchronous with TDP transporters disrupts the precision of the riboswitch implying that temporal separation of these processes by the circadian clock is important for gauging its response. All defects are bypassed by growing plants under continuous light conditions, highlighting the need to control levels of this coenzyme under light/dark cycles. Thus, consideration of coenzyme homeostasis within the well-studied domain of metabolic homeostasis is highlighted.
Collapse
Affiliation(s)
- Zeenat Noordally
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Lara Land
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Celso Trichtinger
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Ivan Dalvit
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Mireille de Meyer
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Kai Wang
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland,Corresponding author
| |
Collapse
|
8
|
Kareem O, Nisar S, Tanvir M, Muzaffer U, Bader GN. Thiamine deficiency in pregnancy and lactation: implications and present perspectives. Front Nutr 2023; 10:1080611. [PMID: 37153911 PMCID: PMC10158844 DOI: 10.3389/fnut.2023.1080611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
During pregnancy, many physiologic changes occur in order to accommodate fetal growth. These changes require an increase in many of the nutritional needs to prevent long-term consequences for both mother and the offspring. One of the main vitamins that are needed throughout the pregnancy is thiamine (vitamin B1) which is a water-soluble vitamin that plays an important role in many metabolic and physiologic processes in the human body. Thiamine deficiency during pregnancy can cause can have many cardiac, neurologic, and psychological effects on the mother. It can also dispose the fetus to gastrointestinal, pulmonological, cardiac, and neurologic conditions. This paper reviews the recently published literature about thiamine and its physiologic roles, thiamine deficiency in pregnancy, its prevalence, its impact on infants and subsequent consequences in them. This review also highlights the knowledge gaps within these topics.
Collapse
Affiliation(s)
- Ozaifa Kareem
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- *Correspondence: Ozaifa Kareem, ,
| | - Sobia Nisar
- Department of Medicine, Government Medical College, Srinagar, India
| | - Masood Tanvir
- Department of Medicine, Government Medical College, Srinagar, India
| | - Umar Muzaffer
- Department of Medicine, Government Medical College, Srinagar, India
| | - G. N. Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- G. N. Bader,
| |
Collapse
|
9
|
Strobbe S, Verstraete J, Fitzpatrick TB, Faustino M, Lourenço TF, Oliveira MM, Stove C, Van Der Straeten D. A novel panel of yeast assays for the assessment of thiamin and its biosynthetic intermediates in plant tissues. THE NEW PHYTOLOGIST 2022; 234:748-763. [PMID: 35037254 PMCID: PMC9303440 DOI: 10.1111/nph.17974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Thiamin (or thiamine), known as vitamin B1, represents an indispensable component of human diets, being pivotal in energy metabolism. Thiamin research depends on adequate vitamin quantification in plant tissues. A recently developed quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is able to assess the level of thiamin, its phosphorylated entities and its biosynthetic intermediates in the model plant Arabidopsis thaliana, as well as in rice. However, their implementation requires expensive equipment and substantial technical expertise. Microbiological assays can be useful in deter-mining metabolite levels in plant material and provide an affordable alternative to MS-based analysis. Here, we evaluate, by comparison to the LC-MS/MS reference method, the potential of a carefully chosen panel of yeast assays to estimate levels of total vitamin B1, as well as its biosynthetic intermediates pyrimidine and thiazole in Arabidopsis samples. The examined panel of Saccharomyces cerevisiae mutants was, when implemented in microbiological assays, capable of correctly assigning a series of wild-type and thiamin biofortified Arabidopsis plant samples. The assays provide a readily applicable method allowing rapid screening of vitamin B1 (and its biosynthetic intermediates) content in plant material, which is particularly useful in metabolic engineering approaches and in germplasm screening across or within species.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityK.L. Ledeganckstraat 35B‐9000GentBelgium
| | - Jana Verstraete
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityOttergemsesteenweg 460B‐9000GentBelgium
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in PlantsDepartment of Botany and Plant BiologyUniversity of GenevaQuai E. Ansermet 301211GenevaSwitzerland
| | - Maria Faustino
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - Tiago F. Lourenço
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - Christophe Stove
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityOttergemsesteenweg 460B‐9000GentBelgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityK.L. Ledeganckstraat 35B‐9000GentBelgium
| |
Collapse
|
10
|
Studies on the performance of functionalized Fe3O4 as phosphate adsorbent and assessment to its environmental compatibility. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Koç E, Karayiğit B. Assessment of Biofortification Approaches Used to Improve Micronutrient-Dense Plants That Are a Sustainable Solution to Combat Hidden Hunger. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2022; 22:475-500. [PMID: 34754134 PMCID: PMC8567986 DOI: 10.1007/s42729-021-00663-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 05/05/2023]
Abstract
Malnutrition causes diseases, immune system disorders, deterioration in physical growth, mental development, and learning capacity worldwide. Micronutrient deficiency, known as hidden hunger, is a serious global problem. Biofortification is a cost-effective and sustainable agricultural strategy for increasing the concentrations or bioavailability of essential elements in the edible parts of plants, minimizing the risks of toxic metals, and thus reducing malnutrition. It has the advantage of delivering micronutrient-dense food crops to a large part of the global population, especially poor populations. Agronomic biofortification and biofertilization, traditional plant breeding, and optimized fertilizer applications are more globally accepted methods today; however, genetic biofortification based on genetic engineering such as increasing or manipulating (such as CRISPR-Cas9) the expression of genes that affect the regulation of metal homeostasis and carrier proteins that serve to increase the micronutrient content for higher nutrient concentration and greater productivity or that affect bioavailability is also seen as a promising high-potential strategy in solving this micronutrient deficiency problem. Data that micronutrients can help strengthen the immune system against the COVID-19 pandemic and other diseases has highlighted the importance of tackling micronutrient deficiencies. In this study, biofortification approaches such as plant breeding, agronomic techniques, microbial fertilization, and some genetic and nanotechnological methods used in the fight against micronutrient deficiency worldwide were compiled.
Collapse
Affiliation(s)
- Esra Koç
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Belgizar Karayiğit
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Effect of pH and concentration on the chemical stability and reaction kinetics of thiamine mononitrate and thiamine chloride hydrochloride in solution. BMC Chem 2021; 15:47. [PMID: 34384471 PMCID: PMC8362232 DOI: 10.1186/s13065-021-00773-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
Thiamine (vitamin B1) is an essential micronutrient in the human diet, found both naturally and as a fortification ingredient in many foods and supplements. However, it is susceptible to degradation due to heat, light, alkaline pH, and sulfites, among effects from other food matrix components, and its degradation has both nutritional and sensory implications as in foods. Thiamine storage stability in solution was monitored over time to determine the effect of solution pH and thiamine concentration on reaction kinetics of degradation without the use of buffers, which are known to affect thiamine stability independent of pH. The study directly compared thiamine stability in solutions prepared with different pHs (3 or 6), concentrations (1 or 20 mg/mL), and counterion in solution (NO3−, Cl−, or both), including both commercially available salt forms of thiamine (thiamine mononitrate and thiamine chloride hydrochloride). Solutions were stored at 25, 40, 60, and 80 °C for up to one year, and degradation was quantified by high-performance liquid chromatography (HPLC) over time, which was then used to calculate degradation kinetics. Thiamine was significantly more stable in pH 3 than in pH 6 solutions. In pH 6 solutions, stability was dependent on initial thiamine concentration, with the 20 mg/mL thiamine salt solutions having an increased reaction rate constant (kobs) compared to the 1 mg/mL solutions. In pH 3 solutions, kobs was not dependent on initial concentration, attributed to differences in degradation pathway dependent on pH. Activation energies of degradation (Ea) were higher in pH 3 solutions (21–27 kcal/mol) than in pH 6 solutions (18–21 kcal/mol), indicating a difference in stability and degradation pathway due to pH. The fundamental reaction kinetics of thiamine reported in this study provide a basis for understanding thiamine stability and therefore improving thiamine delivery in many foods containing both natural and fortified thiamine. ![]()
Collapse
|
13
|
Strobbe S, Verstraete J, Stove C, Van Der Straeten D. Metabolic engineering provides insight into the regulation of thiamin biosynthesis in plants. PLANT PHYSIOLOGY 2021; 186:1832-1847. [PMID: 33944954 PMCID: PMC8331165 DOI: 10.1093/plphys/kiab198] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 05/06/2023]
Abstract
Thiamin (or thiamine) is a water-soluble B-vitamin (B1), which is required, in the form of thiamin pyrophosphate, as an essential cofactor in crucial carbon metabolism reactions in all forms of life. To ensure adequate metabolic functioning, humans rely on a sufficient dietary supply of thiamin. Increasing thiamin levels in plants via metabolic engineering is a powerful strategy to alleviate vitamin B1 malnutrition and thus improve global human health. These engineering strategies rely on comprehensive knowledge of plant thiamin metabolism and its regulation. Here, multiple metabolic engineering strategies were examined in the model plant Arabidopsis thaliana. This was achieved by constitutive overexpression of the three biosynthesis genes responsible for B1 synthesis, HMP-P synthase (THIC), HET-P synthase (THI1), and HMP-P kinase/TMP pyrophosphorylase (TH1), either separate or in combination. By monitoring the levels of thiamin, its phosphorylated entities, and its biosynthetic intermediates, we gained insight into the effect of either strategy on thiamin biosynthesis. Moreover, expression analysis of thiamin biosynthesis genes showed the plant's intriguing ability to respond to alterations in the pathway. Overall, we revealed the necessity to balance the pyrimidine and thiazole branches of thiamin biosynthesis and assessed its biosynthetic intermediates. Furthermore, the accumulation of nonphosphorylated intermediates demonstrated the inefficiency of endogenous thiamin salvage mechanisms. These results serve as guidelines in the development of novel thiamin metabolic engineering strategies.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, B-9000 Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, B-9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, B-9000 Ghent, Belgium
- Author for communication:
| |
Collapse
|
14
|
Strobbe S, Verstraete J, Stove C, Van Der Straeten D. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1253-1267. [PMID: 33448624 PMCID: PMC8196658 DOI: 10.1111/pbi.13545] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/01/2020] [Indexed: 05/07/2023]
Abstract
Rice is a major food crop to approximately half of the human population. Unfortunately, the starchy endosperm, which is the remaining portion of the seed after polishing, contains limited amounts of micronutrients. Here, it is shown that this is particularly the case for thiamin (vitamin B1). Therefore, a tissue-specific metabolic engineering approach was conducted, aimed at enhancing the level of thiamin specifically in the endosperm. To achieve this, three major thiamin biosynthesis genes, THIC, THI1 and TH1, controlled by strong endosperm-specific promoters, were employed to obtain engineered rice lines. The metabolic engineering approaches included ectopic expression of THIC alone, in combination with THI1 (bigenic) or combined with both THI1 and TH1 (trigenic). Determination of thiamin and thiamin biosynthesis intermediates reveals the impact of the engineering approaches on endosperm thiamin biosynthesis. The results show an increase of thiamin in polished rice up to threefold compared to WT, and stable upon cooking. These findings confirm the potential of metabolic engineering to enhance de novo thiamin biosynthesis in rice endosperm tissue and aid in steering future biofortification endeavours.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityGentBelgium
| | - Jana Verstraete
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityGentBelgium
| | - Christophe Stove
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityGentBelgium
| | | |
Collapse
|
15
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
16
|
Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s. Biochem J 2020; 477:2055-2069. [PMID: 32441748 DOI: 10.1042/bcj20200297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Abstract
Like fungi and some prokaryotes, plants use a thiazole synthase (THI4) to make the thiazole precursor of thiamin. Fungal THI4s are suicide enzymes that destroy an essential active-site Cys residue to obtain the sulfur atom needed for thiazole formation. In contrast, certain prokaryotic THI4s have no active-site Cys, use sulfide as sulfur donor, and are truly catalytic. The presence of a conserved active-site Cys in plant THI4s and other indirect evidence implies that they are suicidal. To confirm this, we complemented the Arabidopsistz-1 mutant, which lacks THI4 activity, with a His-tagged Arabidopsis THI4 construct. LC-MS analysis of tryptic peptides of the THI4 extracted from leaves showed that the active-site Cys was predominantly in desulfurated form, consistent with THI4 having a suicide mechanism in planta. Unexpectedly, transcriptome data mining and deep proteome profiling showed that barley, wheat, and oat have both a widely expressed canonical THI4 with an active-site Cys, and a THI4-like paralog (non-Cys THI4) that has no active-site Cys and is the major type of THI4 in developing grains. Transcriptomic evidence also indicated that barley, wheat, and oat grains synthesize thiamin de novo, implying that their non-Cys THI4s synthesize thiazole. Structure modeling supported this inference, as did demonstration that non-Cys THI4s have significant capacity to complement thiazole auxotrophy in Escherichia coli. There is thus a prima facie case that non-Cys cereal THI4s, like their prokaryotic counterparts, are catalytic thiazole synthases. Bioenergetic calculations show that, relative to suicide THI4s, such enzymes could save substantial energy during the grain-filling period.
Collapse
|
17
|
Fitzpatrick TB, Chapman LM. The importance of thiamine (vitamin B 1) in plant health: From crop yield to biofortification. J Biol Chem 2020; 295:12002-12013. [PMID: 32554808 PMCID: PMC7443482 DOI: 10.1074/jbc.rev120.010918] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Ensuring that people have access to sufficient and nutritious food is necessary for a healthy life and the core tenet of food security. With the global population set to reach 9.8 billion by 2050, and the compounding effects of climate change, the planet is facing challenges that necessitate significant and rapid changes in agricultural practices. In the effort to provide food in terms of calories, the essential contribution of micronutrients (vitamins and minerals) to nutrition is often overlooked. Here, we focus on the importance of thiamine (vitamin B1) in plant health and discuss its impact on human health. Vitamin B1 is an essential dietary component, and deficiencies in this micronutrient underlie several diseases, notably nervous system disorders. The predominant source of dietary vitamin B1 is plant-based foods. Moreover, vitamin B1 is also vital for plants themselves, and its benefits in plant health have received less attention than in the human health sphere. In general, vitamin B1 is well-characterized for its role as a coenzyme in metabolic pathways, particularly those involved in energy production and central metabolism, including carbon assimilation and respiration. Vitamin B1 is also emerging as an important component of plant stress responses, and several noncoenzyme roles of this vitamin are being characterized. We summarize the importance of vitamin B1 in plants from the perspective of food security, including its roles in plant disease resistance, stress tolerance, and crop yield, and review the potential benefits of biofortification of crops with increased vitamin B1 content to improve human health.
Collapse
Affiliation(s)
- Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
| | - Lottie M Chapman
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Amorphization of Thiamine Chloride Hydrochloride: Effects of Physical State and Polymer Type on the Chemical Stability of Thiamine in Solid Dispersions. Int J Mol Sci 2020; 21:ijms21165935. [PMID: 32824791 PMCID: PMC7460579 DOI: 10.3390/ijms21165935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 11/26/2022] Open
Abstract
Thiamine is an essential micronutrient, but delivery of the vitamin in supplements or foods is challenging because it is unstable under heat, alkaline pH, and processing/storage conditions. Although distributed as a crystalline ingredient, thiamine chloride hydrochloride (TClHCl) likely exists in the amorphous state, specifically in supplements. Amorphous solids are generally less chemically stable than their crystalline counterparts, which is an unexplored area related to thiamine delivery. The objective of this study was to document thiamine degradation in the amorphous state. TClHCl:polymer dispersions were prepared by lyophilizing solutions containing TClHCl and amorphous polymers (pectin and PVP (poly[vinylpyrrolidone])). Samples were stored in controlled temperature (30–60 °C) and relative humidity (11%) environments for 8 weeks and monitored periodically by X-ray diffraction (to document physical state) and HPLC (to quantify degradation). Moisture sorption, glass transition temperature (Tg), intermolecular interactions, and pH were also determined. Thiamine was more labile in the amorphous state than the crystalline state and when present in lower proportions in amorphous polymer dispersions, despite increasing Tg values. Thiamine was more stable in pectin dispersions than PVP dispersions, attributed to differences in presence and extent of intermolecular interactions between TClHCl and pectin. The results of this study can be used to control thiamine degradation in food products and supplements to improve thiamine delivery and decrease rate of deficiency.
Collapse
|
19
|
Subki A, Ho CL, Ismail NFN, Zainal Abidin AA, Balia Yusof ZN. Identification and characterisation of thiamine pyrophosphate (TPP) riboswitch in Elaeis guineensis. PLoS One 2020; 15:e0235431. [PMID: 32726320 PMCID: PMC7390266 DOI: 10.1371/journal.pone.0235431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
The oil palm (Elaeis guineensis) is an important crop in Malaysia but its productivity is hampered by various biotic and abiotic stresses. Recent studies suggest the importance of signalling molecules in plants in coping against stresses, which includes thiamine (vitamin B1). Thiamine is an essential microelement that is synthesized de novo by plants and microorganisms. The active form of thiamine, thiamine pyrophosphate (TPP), plays a prominent role in metabolic activities particularly as an enzymatic cofactor. Recently, thiamine biosynthesis pathways in oil palm have been characterised but the search of novel regulatory element known as riboswitch is yet to be done. Previous studies showed that thiamine biosynthesis pathway is regulated by an RNA element known as riboswitch. Riboswitch binds a small molecule, resulting in a change in production of the proteins encoded by the mRNA. TPP binds specifically to TPP riboswitch to regulate thiamine biosynthesis through a variety of mechanisms found in archaea, bacteria and eukaryotes. This study was carried out to hunt for TPP riboswitch in oil palm thiamine biosynthesis gene. Riboswitch detection software like RiboSW, RibEx, Riboswitch Scanner and Denison Riboswitch Detector were utilised in order to locate putative TPP riboswitch in oil palm ThiC gene sequence that encodes for the first enzyme in the pyrimidine branch of the pathway. The analysis revealed a 192 bp putative TPP riboswitch located at the 3' untranslated region (UTR) of the mRNA. Further comparative gene analysis showed that the 92-nucleotide aptamer region, where the metabolite binds was conserved inter-species. The secondary structure analysis was also carried out using Mfold Web server and it showed a stem-loop structure manifested with stems (P1-P5) with minimum free energy of -12.26 kcal/mol. Besides that, the interaction of riboswitch and its ligand was determined using isothermal titration calorimetry (ITC) and it yielded an exothermic reaction with 1:1 stoichiometry interaction with binding affinities of 0.178 nM, at 30°C. To further evaluate the ability of riboswitch to control the pathway, exogenous thiamine was applied to four months old of oil palm seedlings and sampling of spear leaves tissue was carried out at days 0, 1, 2 and 3 post-treatment for expression analysis of ThiC gene fragment via quantitative polymerase chain reaction (qPCR). Results showed an approximately 5-fold decrease in ThiC gene expression upon application of exogenous thiamine. Quantification of thiamine and its derivatives was carried out via HPLC and the results showed that it was correlated to the down regulation of ThiC gene expression. The application of exogenous thiamine to oil palm affected ThiC gene expression, which supported the prediction of the presence of TPP riboswitch in the gene. Overall, this study provides the first evidence on the presence, binding and the functionality of TPP riboswitch in oil palm. This study is hoped to pave a way for better understanding on the regulation of thiamine biosynthesis pathway in oil palm, which can later be exploited for various purposes especially in manipulation of thiamine biosynthesis pathways in combating stresses in oil palm.
Collapse
Affiliation(s)
- Atiqah Subki
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nur Farhah Nabihan Ismail
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Aisamuddin Ardi Zainal Abidin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
20
|
Verstraete J, Strobbe S, Van Der Straeten D, Stove C. The First Comprehensive LC-MS/MS Method Allowing Dissection of the Thiamine Pathway in Plants. Anal Chem 2020; 92:4073-4081. [PMID: 32056423 DOI: 10.1021/acs.analchem.9b05717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Arabidopsis thaliana serves as a model plant for genetic research, including vitamin research. When aiming at engineering the thiamine (vitamin B1) pathway in plants, the availability of tools that allow the quantitative determination of different intermediates in the biosynthesis pathway is of pivotal importance. This is a challenge, given the nature of the compounds and the minute quantities of genetically engineered material that may be available for analysis. Here, we report on the first LC-MS/MS method for the simultaneous quantification of thiamine, its mono- and diphosphate derivatives and its precursors 4-methyl-5-(2-hydroxyethyl) thiazole (HET) and 4-amino-2-methyl-5-hydroxymethylpyrimidine (HMP). This method was optimized and validated for the quantitative determination of these analytes in Arabidopsis thaliana. All analytes were chromatographically separated within less than 2.5 min during an 8 min run. No unacceptable interferences were found. The method was fully validated based on international guidelines. Accuracy (%bias) and total imprecision (%CV) were within preset acceptance criteria for all analytes in both QC and real samples. All analytes were stable in extracted samples when stored for 48 h at 4 °C (autosampler stability) and when reanalyzed after storage at -80 °C and -20 °C for 2 weeks (freeze/thaw stability). We demonstrated the start material should be stored at -80 °C to ensure stability of all analytes during short- and long-term storage (up to 3 months). The validity and applicability of the developed procedure was demonstrated via its successful application on Arabidopsis lines, genetically engineered to enhance thiamine content.
Collapse
Affiliation(s)
- Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
21
|
Minhas AP, Tuli R, Puri S. Corrigendum: Pathway Editing Targets for Thiamine Biofortification in Rice Grains. FRONTIERS IN PLANT SCIENCE 2019; 9:1813. [PMID: 30719027 PMCID: PMC6348389 DOI: 10.3389/fpls.2018.01813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
[This corrects the article DOI: 10.3389/fpls.2018.00975.].
Collapse
|
22
|
Whitfield KC, Bourassa MW, Adamolekun B, Bergeron G, Bettendorff L, Brown KH, Cox L, Fattal‐Valevski A, Fischer PR, Frank EL, Hiffler L, Hlaing LM, Jefferds ME, Kapner H, Kounnavong S, Mousavi MP, Roth DE, Tsaloglou M, Wieringa F, Combs GF. Thiamine deficiency disorders: diagnosis, prevalence, and a roadmap for global control programs. Ann N Y Acad Sci 2018; 1430:3-43. [PMID: 30151974 PMCID: PMC6392124 DOI: 10.1111/nyas.13919] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
Thiamine is an essential micronutrient that plays a key role in energy metabolism. Many populations worldwide may be at risk of clinical or subclinical thiamine deficiencies, due to famine, reliance on staple crops with low thiamine content, or food preparation practices, such as milling grains and washing milled rice. Clinical manifestations of thiamine deficiency are variable; this, along with the lack of a readily accessible and widely agreed upon biomarker of thiamine status, complicates efforts to diagnose thiamine deficiency and assess its global prevalence. Strategies to identify regions at risk of thiamine deficiency through proxy measures, such as analysis of food balance sheet data and month-specific infant mortality rates, may be valuable for understanding the scope of thiamine deficiency. Urgent public health responses are warranted in high-risk regions, considering the contribution of thiamine deficiency to infant mortality and research suggesting that even subclinical thiamine deficiency in childhood may have lifelong neurodevelopmental consequences. Food fortification and maternal and/or infant thiamine supplementation have proven effective in raising thiamine status and reducing the incidence of infantile beriberi in regions where thiamine deficiency is prevalent, but trial data are limited. Efforts to determine culturally and environmentally appropriate food vehicles for thiamine fortification are ongoing.
Collapse
Affiliation(s)
- Kyly C. Whitfield
- Department of Applied Human NutritionMount Saint Vincent UniversityHalifaxNova ScotiaCanada
| | - Megan W. Bourassa
- The Sackler Institute for Nutrition ScienceThe New York Academy of SciencesNew YorkNew York
| | - Bola Adamolekun
- University of Tennessee Health Science CenterMemphisTennessee
| | - Gilles Bergeron
- The Sackler Institute for Nutrition ScienceThe New York Academy of SciencesNew YorkNew York
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA‐NeurosciencesUniversity of LiègeLiègeBelgium
| | | | - Lorna Cox
- Medical Research Council Elsie Widdowson LaboratoryCambridgeUnited Kingdom
| | - Aviva Fattal‐Valevski
- Tel Aviv Medical Center, Dana‐Dwek Children's Hospital, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | | | | | | | - Lwin Mar Hlaing
- National Nutrition Center, Ministry of Health and SportsMyanmar
| | | | | | - Sengchanh Kounnavong
- The Lao Tropical and Public Health Institute, Ministry of HealthVientianeLao PDR
| | - Maral P.S. Mousavi
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMassachusetts
| | - Daniel E. Roth
- Hospital for Sick Children and University of TorontoTorontoOntarioCanada
| | | | - Frank Wieringa
- Institut de Recherche pour le DeveloppmentMontpellierFrance
| | - Gerald F. Combs
- Jean Mayer USDA Human Nutrition Research CenterTufts UniversityBostonMassachusetts
| |
Collapse
|
23
|
Cohen NR, Gong W, Moran DM, McIlvin MR, Saito MA, Marchetti A. Transcriptomic and proteomic responses of the oceanic diatom
Pseudo‐nitzschia granii
to iron limitation. Environ Microbiol 2018; 20:3109-3126. [DOI: 10.1111/1462-2920.14386] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Natalie R Cohen
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Weida Gong
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
| | - Dawn M. Moran
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Matthew R. McIlvin
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Mak A. Saito
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Adrian Marchetti
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
| |
Collapse
|
24
|
Paerl RW, Bertrand EM, Rowland E, Schatt P, Mehiri M, Niehaus TD, Hanson AD, Riemann L, Bouget FY. Carboxythiazole is a key microbial nutrient currency and critical component of thiamin biosynthesis. Sci Rep 2018; 8:5940. [PMID: 29654239 PMCID: PMC5899164 DOI: 10.1038/s41598-018-24321-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Almost all cells require thiamin, vitamin B1 (B1), which is synthesized via the coupling of thiazole and pyrimidine precursors. Here we demonstrate that 5-(2-hydroxyethyl)-4-methyl-1,3-thiazole-2-carboxylic acid (cHET) is a useful in vivo B1 precursor for representatives of ubiquitous marine picoeukaryotic phytoplankton and Escherichia coli – drawing attention to cHET as a valuable exogenous micronutrient for microorganisms with ecological, industrial, and biomedical value. Comparative utilization experiments with the terrestrial plant Arabidopsis thaliana revealed that it can also use exogenous cHET, but notably, picoeukaryotic marine phytoplankton and E. coli were adapted to grow on low (picomolar) concentrations of exogenous cHET. Our results call for the modification of the conventional B1 biosynthesis model to incorporate cHET as a key precursor for B1 biosynthesis in two domains of life, and for consideration of cHET as a microbial micronutrient currency modulating marine primary productivity and community interactions in human gut-hosted microbiomes.
Collapse
Affiliation(s)
- Ryan W Paerl
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA 27695, USA. .,Department of Biology, University of Copenhagen, 3000, Helsingør, Denmark.
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Elden Rowland
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Phillippe Schatt
- Sorbonne Universités, Université Pierre and Marie Curie (Paris 06), UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls/mer, France
| | - Mohamed Mehiri
- University Nice Côte d'Azur, CNRS, Institute of Chemistry of Nice, UMR 7272, Marine Natural Products Team, Nice, France
| | - Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA 32611, USA
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA 32611, USA
| | - Lasse Riemann
- Department of Biology, University of Copenhagen, 3000, Helsingør, Denmark
| | - Francois-Yves Bouget
- University Nice Côte d'Azur, CNRS, Institute of Chemistry of Nice, UMR 7272, Marine Natural Products Team, Nice, France
| |
Collapse
|
25
|
Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:443. [PMID: 29681913 PMCID: PMC5897740 DOI: 10.3389/fpls.2018.00443] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta.
Collapse
|
26
|
Idris ZHC, Abidin AAZ, Subki A, Yusof ZNB. The Effect of Oxidative Stress Towards The Expression of Thiamine Biosynthesis Genes (THIC and THI1/THI4) in Oil Palm ( Elaeis guineensis). Trop Life Sci Res 2018; 29:71-85. [PMID: 29644016 PMCID: PMC5893237 DOI: 10.21315/tlsr2018.29.1.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Thiamine is known to be an important compound in human diet and it is a cofactor required for vital metabolic processes such as acetyl-CoA biosynthesis, amino acid biosynthesis, Krebs and Calvin cycle. Besides that, thiamine has been shown to be involved in plant protection against stress. In this study, the level of expression of THIC and THI1/THI4, the genes for the first two enzymes in the thiamine biosynthesis pathway were observed when oil palm (Elaeis guineensis) was subjected to oxidative stress. Primers were designed based on the consensus sequence of thiamine biosynthesis genes obtained from Arabidopsis thaliana, Zea mays, Oryza sativa, and Alnus glutinosa. Oxidative stress were induced with various concentrations of paraquat and samplings were done at various time points post-stress induction. The expression of THIC and THI1/THI4 genes were observed via RT-PCR and qPCR analysis. The expression of THIC was increased 2-fold, while THI1/THI4 gene transcript was increased 4-fold upon induction of oxidative stress. These findings showed that oil palm responded to oxidative stress by over-expressing the genes involved in thiamine biosynthesis. These findings support the suggestion that thiamine may play an important role in plant protection against stress.
Collapse
Affiliation(s)
- Zainor Hafisah Che Idris
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Aisamuddin Ardi Zainal Abidin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Atiqah Subki
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
27
|
Minhas AP, Tuli R, Puri S. Pathway Editing Targets for Thiamine Biofortification in Rice Grains. FRONTIERS IN PLANT SCIENCE 2018; 9:975. [PMID: 30042775 PMCID: PMC6048418 DOI: 10.3389/fpls.2018.00975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/15/2018] [Indexed: 05/21/2023]
Abstract
Thiamine deficiency is common in populations consuming polished rice as a major source of carbohydrates. Thiamine is required to synthesize thiamine pyrophosphate (TPP), an essential cofactor of enzymes of central metabolism. Its biosynthesis pathway has been partially elucidated and the effect of overexpression of a few genes such as thi1 and thiC, on thiamine accumulation in rice has been reported. Based on current knowledge, this review focuses on the potential of gene editing in metabolic engineering of thiamine biosynthesis pathway to improve thiamine in rice grains. Candidate genes, suitable for modification of the structural part to evolve more efficient versions of enzymes in the pathway, are discussed. For example, adjacent cysteine residues may be introduced in the catalytic domain of thi4 to improve the turn over activity of thiamine thiazole synthase 2. Motif specific editing to modify promoter regulatory regions of genes is discussed to modulate gene expression. Editing cis acting regulatory elements in promoter region can shift the expression of transporters and thiamine binding proteins to endosperm. This can enhance dietary availability of thiamine from rice grains. Differential transcriptomics on rice varieties with contrasting grain thiamine and functional genomic studies will identify more strategic targets for editing in future. Developing functionally enhanced foods by biofortification is a sustainable approach to make diets wholesome.
Collapse
|
28
|
Hsieh WY, Liao JC, Wang HT, Hung TH, Tseng CC, Chung TY, Hsieh MH. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B 1 biosynthesis pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:145-157. [PMID: 28346710 DOI: 10.1111/tpj.13552] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 05/24/2023]
Abstract
Thiamin diphosphate (TPP, vitamin B1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jo-Chien Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Tzu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Huan Hung
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Ching-Chih Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
29
|
Mangel N, Fudge JB, Fitzpatrick TB, Gruissem W, Vanderschuren H. Vitamin B1 diversity and characterization of biosynthesis genes in cassava. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3351-3363. [PMID: 28859374 PMCID: PMC5853225 DOI: 10.1093/jxb/erx196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/22/2017] [Indexed: 05/06/2023]
Abstract
Vitamin B1, which consists of the vitamers thiamin and its phosphorylated derivatives, is an essential micronutrient for all living organisms because it is required as a metabolic cofactor in several enzymatic reactions. Genetic diversity of vitamin B1 biosynthesis and accumulation has not been investigated in major crop species other than rice and potato. We analyzed cassava germplasm for accumulation of B1 vitamers. Vitamin B1 content in leaves and roots of 41 cassava accessions showed significant variation between accessions. HPLC analyses of B1 vitamers revealed distinct profiles in cassava leaves and storage roots, with nearly equal relative levels of thiamin pyrophosphate and thiamin monophosphate in leaves, but mostly thiamin pyrophosphate in storage roots. Unusually, the cassava genome has two genes encoding the 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate synthase, THIC (MeTHIC1 and MeTHIC2), both of which carry a riboswitch in the 3'-UTR, as well as the adenylated thiazole synthase, THI1 (MeTHI1a and MeTHI1b). The THIC and THI1 genes are expressed at very low levels in storage roots compared with the accumulation of vitamin B1, indicating only limited biosynthesis de novo therein. In leaves, vitamin B1 content is negatively correlated with THIC and THI1 expression levels, suggesting post-transcriptional regulation of THIC by the riboswitch present in the 3'-UTR of the THIC mRNA and regulation of THI1 by promoter activity or alternative post-transcriptional mechanisms.
Collapse
Affiliation(s)
| | - Jared B Fudge
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Hervé Vanderschuren
- Department of Biology, ETH Zurich, Zurich, Switzerland
- AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
30
|
Kamarudin AN, Lai KS, Lamasudin DU, Idris AS, Balia Yusof ZN. Enhancement of Thiamine Biosynthesis in Oil Palm Seedlings by Colonization of Endophytic Fungus Hendersonia toruloidea. FRONTIERS IN PLANT SCIENCE 2017; 8:1799. [PMID: 29089959 PMCID: PMC5651052 DOI: 10.3389/fpls.2017.01799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/03/2017] [Indexed: 05/18/2023]
Abstract
Thiamine, or vitamin B1 plays an indispensable role as a cofactor in crucial metabolic reactions including glycolysis, pentose phosphate pathway and the tricarboxylic acid cycle in all living organisms. Thiamine has been shown to play a role in plant adaptation toward biotic and abiotic stresses. The modulation of thiamine biosynthetic genes in oil palm seedlings was evaluated in response to root colonization by endophytic Hendersonia toruloidea. Seven-month-old oil palm seedlings were inoculated with H. toruloidea and microscopic analyses were performed to visualize the localization of endophytic H. toruloidea in oil palm roots. Transmission electron microscopy confirmed that H. toruloidea colonized cortical cells. The expression of thiamine biosynthetic genes and accumulation of total thiamine in oil palm seedlings were also evaluated. Quantitative real-time PCR was performed to measure transcript abundances of four key thiamine biosynthesis genes (THI4, THIC, TH1, and TPK) on days 1, 7, 15, and 30 in response to H. toruloidea colonization. The results showed an increase of up to 12-fold in the expression of all gene transcripts on day 1 post-inoculation. On days 7, 15, and 30 post-inoculation, the relative expression levels of these genes were shown to be downregulated. Thiamine accumulation was observed on day 7 post-colonization and subsequently decreased until day 30. This work provides the first evidence for the enhancement of thiamine biosynthesis by endophytic colonization in oil palm seedlings.
Collapse
Affiliation(s)
- Amirah N. Kamarudin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Ganoderma and Diseases Research Group, Biology Division, Malaysian Palm Oil Board, Kajang, Malaysia
| | - Kok S. Lai
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Dhilia U. Lamasudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abu S. Idris
- Ganoderma and Diseases Research Group, Biology Division, Malaysian Palm Oil Board, Kajang, Malaysia
| | - Zetty N. Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Zetty N. Balia Yusof,
| |
Collapse
|
31
|
Paerl RW, Bouget FY, Lozano JC, Vergé V, Schatt P, Allen EE, Palenik B, Azam F. Use of plankton-derived vitamin B1 precursors, especially thiazole-related precursor, by key marine picoeukaryotic phytoplankton. ISME JOURNAL 2016; 11:753-765. [PMID: 27935586 PMCID: PMC5322297 DOI: 10.1038/ismej.2016.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 08/18/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Several cosmopolitan marine picoeukaryotic phytoplankton are B1 auxotrophs requiring exogenous vitamin B1 or precursor to survive. From genomic evidence, representatives of picoeukaryotic phytoplankton (Ostreococcus and Micromonas spp.) were predicted to use known thiazole and pyrimidine B1 precursors to meet their B1 demands, however, recent culture-based experiments could not confirm this assumption. We hypothesized these phytoplankton strains could grow on precursors alone, but required a thiazole-related precursor other the well-known and extensively tested 4-methyl-5-thiazoleethanol. This hypothesis was tested using bioassays and co-cultures of picoeukaryotic phytoplankton and bacteria. We found that specific B1-synthesizing proteobacteria and phytoplankton are sources of a yet-to-be chemically identified thiazole-related precursor(s) that, along with pyrimidine B1 precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine, can support growth of Ostreococcus spp. (also Micromonas spp.) without B1. We additionally found that the B1-synthesizing plankton do not require contact with picoeukaryotic phytoplankton cells to produce thiazole-related precursor(s). Experiments with wild-type and genetically engineered Ostreococcus lines revealed that the thiazole kinase, ThiM, is required for growth on precursors, and that thiazole-related precursor(s) accumulate to appreciable levels in the euphotic ocean. Overall, our results point to thiazole-related B1 precursors as important micronutrients promoting the survival of abundant phytoplankton influencing surface ocean production and biogeochemical cycling.
Collapse
Affiliation(s)
- Ryan W Paerl
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Francois-Yves Bouget
- Sorbonne Universités, Université Pierre and Marie Curie (Paris 06), UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Jean-Claude Lozano
- Sorbonne Universités, Université Pierre and Marie Curie (Paris 06), UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Valérie Vergé
- Sorbonne Universités, Université Pierre and Marie Curie (Paris 06), UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Philippe Schatt
- Sorbonne Universités, Université Pierre and Marie Curie (Paris 06), UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Brian Palenik
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Farooq Azam
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
Hanson AD, Beaudoin GA, McCarty DR, Gregory JF. Does Abiotic Stress Cause Functional B Vitamin Deficiency in Plants? PLANT PHYSIOLOGY 2016; 172:2082-2097. [PMID: 27807106 PMCID: PMC5129723 DOI: 10.1104/pp.16.01371] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/19/2016] [Indexed: 05/20/2023]
Abstract
B vitamins are the precursors of essential metabolic cofactors but are prone to destruction under stress conditions. It is therefore a priori reasonable that stressed plants suffer B vitamin deficiencies and that certain stress symptoms are metabolic knock-on effects of these deficiencies. Given the logic of these arguments, and the existence of data to support them, it is a shock to realize that the roles of B vitamins in plant abiotic stress have had minimal attention in the literature (100-fold less than hormones) and continue to be overlooked. In this article, we therefore aim to explain the connections among B vitamins, enzyme cofactors, and stress conditions in plants. We first outline the chemistry and biochemistry of B vitamins and explore the concept of vitamin deficiency with the help of information from mammals. We then summarize classical and recent evidence for stress-induced vitamin deficiencies and for plant responses that counter these deficiencies. Lastly, we consider potential implications for agriculture.
Collapse
Affiliation(s)
- Andrew D Hanson
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Guillaume A Beaudoin
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Donald R McCarty
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Jesse F Gregory
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| |
Collapse
|
33
|
Mimura M, Zallot R, Niehaus TD, Hasnain G, Gidda SK, Nguyen TND, Anderson EM, Mullen RT, Brown G, Yakunin AF, de Crécy-Lagard V, Gregory JF, McCarty DR, Hanson AD. Arabidopsis TH2 Encodes the Orphan Enzyme Thiamin Monophosphate Phosphatase. THE PLANT CELL 2016; 28:2683-2696. [PMID: 27677881 PMCID: PMC5134987 DOI: 10.1105/tpc.16.00600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 05/18/2023]
Abstract
To synthesize the cofactor thiamin diphosphate (ThDP), plants must first hydrolyze thiamin monophosphate (ThMP) to thiamin, but dedicated enzymes for this hydrolysis step were unknown and widely doubted to exist. The classical thiamin-requiring th2-1 mutation in Arabidopsis thaliana was shown to reduce ThDP levels by half and to increase ThMP levels 5-fold, implying that the THIAMIN REQUIRING2 (TH2) gene product could be a dedicated ThMP phosphatase. Genomic and transcriptomic data indicated that TH2 corresponds to At5g32470, encoding a HAD (haloacid dehalogenase) family phosphatase fused to a TenA (thiamin salvage) family protein. Like the th2-1 mutant, an insertional mutant of At5g32470 accumulated ThMP, and the thiamin requirement of the th2-1 mutant was complemented by wild-type At5g32470 Complementation tests in Escherichia coli and enzyme assays with recombinant proteins confirmed that At5g32470 and its maize (Zea mays) orthologs GRMZM2G148896 and GRMZM2G078283 are ThMP-selective phosphatases whose activity resides in the HAD domain and that the At5g32470 TenA domain has the expected thiamin salvage activity. In vitro and in vivo experiments showed that alternative translation start sites direct the At5g32470 protein to the cytosol and potentially also to mitochondria. Our findings establish that plants have a dedicated ThMP phosphatase and indicate that modest (50%) ThDP depletion can produce severe deficiency symptoms.
Collapse
Affiliation(s)
- Manaki Mimura
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Rémi Zallot
- Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611
| | - Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Ghulam Hasnain
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Thuy N D Nguyen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | | | - Jesse F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
34
|
Rozpądek P, Rąpała-Kozik M, Wężowicz K, Grandin A, Karlsson S, Ważny R, Anielska T, Turnau K. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:264-272. [PMID: 27318800 DOI: 10.1016/j.plaphy.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 05/23/2023]
Abstract
Improving the nutritional value of commonly cultivated crops is one of the most pending problems for modern agriculture. In natural environments plants associate with a multitude of fungal microorganisms that improve plant fitness. The best described group are arbuscular mycorrhizal fungi (AMF). These fungi have been previously shown to improve the quality and yield of several common crops. In this study we tested the potential utilization of Rhizophagus irregularis in accelerating growth and increasing the content of important dietary phytochemicals in onion (Allium cepa). Our results clearly indicate that biomass production, the abundance of vitamin B1 and its analogues and organic acid concentration can be improved by inoculating the plant with AM fungi. We have shown that improved growth is accompanied with up-regulated electron transport in PSII and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Piotr Rozpądek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Maria Rąpała-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Wężowicz
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Grandin
- Man-Technology-Environment Research Centre, Örebro University, Örebro, Sweden
| | - Stefan Karlsson
- Man-Technology-Environment Research Centre, Örebro University, Örebro, Sweden
| | - Rafał Ważny
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Teresa Anielska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland.
| |
Collapse
|
35
|
Dong W, Thomas N, Ronald PC, Goyer A. Overexpression of Thiamin Biosynthesis Genes in Rice Increases Leaf and Unpolished Grain Thiamin Content But Not Resistance to Xanthomonas oryzae pv. oryzae. FRONTIERS IN PLANT SCIENCE 2016; 7:616. [PMID: 27242822 PMCID: PMC4861732 DOI: 10.3389/fpls.2016.00616] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/22/2016] [Indexed: 05/06/2023]
Abstract
Thiamin diphosphate (ThDP), also known as vitamin B1, serves as an enzymatic cofactor in glucose metabolism, the Krebs cycle, and branched-chain amino acid biosynthesis in all living organisms. Unlike plants and microorganisms, humans are not able to synthesize ThDP de novo and must obtain it from their diet. Staple crops such as rice are poor sources of thiamin. Hence, populations that mainly consume rice commonly suffer thiamin deficiency. In addition to thiamin's nutritional function, studies in rice have shown that some thiamin biosynthesis genes are involved in resistance to Xanthomonas oryzae, which causes a serious disease in rice fields. This study shows that overexpression of two thiamin biosynthesis genes, 4-methyl-5-β-hydroxyethylthiazole phosphate synthase and 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate synthase, involved in the first steps of the thiazole and pyrimidine synthesis branches, respectively, increased thiamin content up to fivefold in unpolished seeds that retain the bran. However, thiamin levels in polished seeds with removed bran were similar to those found in polished control seeds. Plants with higher accumulation of thiamin did not show enhanced resistance to X. oryzae. These results indicate that stacking of two traits can enhance thiamin accumulation in rice unpolished grain. We discuss potential roadblocks that prevent thiamin accumulation in the endosperm.
Collapse
Affiliation(s)
- Wei Dong
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
- Hermiston Agricultural Research and Extension Center, Oregon State UniversityHermiston, OR, USA
| | - Nicholas Thomas
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Aymeric Goyer
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
- Hermiston Agricultural Research and Extension Center, Oregon State UniversityHermiston, OR, USA
- *Correspondence: Aymeric Goyer,
| |
Collapse
|
36
|
Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK. Progress and challenges in improving the nutritional quality of rice (Oryza sativaL.). Crit Rev Food Sci Nutr 2015; 57:2455-2481. [DOI: 10.1080/10408398.2015.1084992] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Deep Shikha Birla
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Kapil Malik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Manish Sainger
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Darshna Chaudhary
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ranjana Jaiwal
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Pawan K. Jaiwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
37
|
Yousaf A, Qadir A, Anjum T, Ahmad A. Identification of Microbial Metabolites Elevating Vitamin Contents in Barley Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7304-10. [PMID: 26173019 DOI: 10.1021/acs.jafc.5b01817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The current investigation analyzes metabolites of Acetobacter aceti to explore chemical compounds responsible for the induction of vitamins in barley seeds. A bioactivity guided assay of bacterial extracts and chromatographic analyses of barley produce revealed 13 chemical compounds, which were subjected to principal component analysis (PCA). PCA determined four chemical compounds (i.e., quinolinic acid, pyridoxic acid, p-aminobenzoate, and α-oxobutanoic acid) highly associated with increased quantities of vitamins. Further experimentations confirmed that quinolinic acid and p-aminobenzoate were the most efficient vitamin inducers. The results indicated chloroform/ethanol (4:1) as the best solvent system for the extraction of active compounds from crude metabolites of A. aceti. Significant quantities of mevalonic acid were detected in the extracted fraction, indicating the possible induction of the isoprenoid pathway. Altogether, the current investigation broadens the frontiers in plant-microbe interaction.
Collapse
Affiliation(s)
- Anam Yousaf
- †College of Earth and Environmental Sciences and ‡Institute of Agricultural Sciences, University of the Punjab, Lahore-54590, Pakistan
| | - Abdul Qadir
- †College of Earth and Environmental Sciences and ‡Institute of Agricultural Sciences, University of the Punjab, Lahore-54590, Pakistan
| | - Tehmina Anjum
- †College of Earth and Environmental Sciences and ‡Institute of Agricultural Sciences, University of the Punjab, Lahore-54590, Pakistan
| | - Aqeel Ahmad
- †College of Earth and Environmental Sciences and ‡Institute of Agricultural Sciences, University of the Punjab, Lahore-54590, Pakistan
| |
Collapse
|
38
|
Khozaei M, Fisk S, Lawson T, Gibon Y, Sulpice R, Stitt M, Lefebvre SC, Raines CA. Overexpression of plastid transketolase in tobacco results in a thiamine auxotrophic phenotype. THE PLANT CELL 2015; 27:432-47. [PMID: 25670766 PMCID: PMC4456921 DOI: 10.1105/tpc.114.131011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/11/2015] [Accepted: 01/28/2015] [Indexed: 05/03/2023]
Abstract
To investigate the effect of increased plastid transketolase on photosynthetic capacity and growth, tobacco (Nicotiana tabacum) plants with increased levels of transketolase protein were produced. This was achieved using a cassette composed of a full-length Arabidopsis thaliana transketolase cDNA under the control of the cauliflower mosaic virus 35S promoter. The results revealed a major and unexpected effect of plastid transketolase overexpression as the transgenic tobacco plants exhibited a slow-growth phenotype and chlorotic phenotype. These phenotypes were complemented by germinating the seeds of transketolase-overexpressing lines in media containing either thiamine pyrophosphate or thiamine. Thiamine levels in the seeds and cotyledons were lower in transketolase-overexpressing lines than in wild-type plants. When transketolase-overexpressing plants were supplemented with thiamine or thiamine pyrophosphate throughout the life cycle, they grew normally and the seed produced from these plants generated plants that did not have a growth or chlorotic phenotype. Our results reveal the crucial importance of the level of transketolase activity to provide the precursor for synthesis of intermediates and to enable plants to produce thiamine and thiamine pyrophosphate for growth and development. The mechanism determining transketolase protein levels remains to be elucidated, but the data presented provide evidence that this may contribute to the complex regulatory mechanisms maintaining thiamine homeostasis in plants.
Collapse
Affiliation(s)
- Mahdi Khozaei
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Stuart Fisk
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Yves Gibon
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 114476 Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 114476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 114476 Potsdam-Golm, Germany
| | - Stephane C Lefebvre
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Christine A Raines
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
39
|
Murgia I, De Gara L, Grusak MA. Biofortification: how can we exploit plant science and biotechnology to reduce micronutrient deficiencies? FRONTIERS IN PLANT SCIENCE 2013; 4:429. [PMID: 24223578 PMCID: PMC3818469 DOI: 10.3389/fpls.2013.00429] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 05/23/2023]
Affiliation(s)
- Irene Murgia
- Department of Biosciences, Università degli Studi di MilanoMilano, Italy
| | - Laura De Gara
- Centro Integrato di Ricerca, Università Campus Bio-Medico di RomaRoma, Italy
| | - Michael A. Grusak
- Department of Pediatrics, USDA-ARS Children's Nutrition Research Center, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|