1
|
Maqbool S, Hassan MA, Xia X, York LM, Rasheed A, He Z. Root system architecture in cereals: progress, challenges and perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:23-42. [PMID: 35020968 DOI: 10.1111/tpj.15669] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Roots are essential multifunctional plant organs involved in water and nutrient uptake, metabolite storage, anchorage, mechanical support, and interaction with the soil environment. Understanding of this 'hidden half' provides potential for manipulation of root system architecture (RSA) traits to optimize resource use efficiency and grain yield in cereal crops. Unfortunately, root traits are highly neglected in breeding due to the challenges of phenotyping, but could have large rewards if the variability in RSA traits can be fully exploited. Until now, a plethora of genes have been characterized in detail for their potential role in improving RSA. The use of forward genetics approaches to find sequence variations in genes underpinning desirable RSA would be highly beneficial. Advances in computer vision applications have allowed image-based approaches for high-throughput phenotyping of RSA traits that can be used by any laboratory worldwide to make progress in understanding root function and dissection of the genetics. At the same time, the frontiers of root measurement include non-invasive methods like X-ray computer tomography and magnetic resonance imaging that facilitate new types of temporal studies. Root physiology and ecology are further supported by spatiotemporal root simulation modeling. The discovery of component traits providing improved resilience and yield advantage in target environments is a key necessity for mainstreaming root-based cereal breeding. The integrated use of pan-genome resources, now available in most cereals, coupled with new in-field phenotyping platforms has the potential for precise selection of superior genotypes with improved RSA.
Collapse
Affiliation(s)
- Saman Maqbool
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Adeel Hassan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Wheat and Maize Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Wheat and Maize Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
2
|
Balduzzi M, Binder BM, Bucksch A, Chang C, Hong L, Iyer-Pascuzzi AS, Pradal C, Sparks EE. Reshaping Plant Biology: Qualitative and Quantitative Descriptors for Plant Morphology. FRONTIERS IN PLANT SCIENCE 2017; 8:117. [PMID: 28217137 PMCID: PMC5289971 DOI: 10.3389/fpls.2017.00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/19/2017] [Indexed: 05/04/2023]
Abstract
An emerging challenge in plant biology is to develop qualitative and quantitative measures to describe the appearance of plants through the integration of mathematics and biology. A major hurdle in developing these metrics is finding common terminology across fields. In this review, we define approaches for analyzing plant geometry, topology, and shape, and provide examples for how these terms have been and can be applied to plants. In leaf morphological quantifications both geometry and shape have been used to gain insight into leaf function and evolution. For the analysis of cell growth and expansion, we highlight the utility of geometric descriptors for understanding sepal and hypocotyl development. For branched structures, we describe how topology has been applied to quantify root system architecture to lend insight into root function. Lastly, we discuss the importance of using morphological descriptors in ecology to assess how communities interact, function, and respond within different environments. This review aims to provide a basic description of the mathematical principles underlying morphological quantifications.
Collapse
Affiliation(s)
| | - Brad M. Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee-KnoxvilleKnoxville, TN, USA
| | - Alexander Bucksch
- Department of Plant Biology, University of GeorgiaAthens, GA, USA
- Warnell School of Forestry and Environmental Resources, University of GeorgiaAthens, GA, USA
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| | - Cynthia Chang
- Division of Biological Sciences, University of Washington-BothellBothell, WA, USA
| | - Lilan Hong
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell UniversityIthaca, NY, USA
| | | | - Christophe Pradal
- INRIA, Virtual PlantsMontpellier, France
- CIRAD, UMR AGAPMontpellier, France
| | | |
Collapse
|