1
|
Zhou XH, He WM. Warming, nitrogen deposition, and provenance shift above-belowground insect interactions and host compensatory growth. Ecology 2024; 105:e4445. [PMID: 39376114 DOI: 10.1002/ecy.4445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024]
Abstract
Above-belowground insect herbivore interactions and plant compensatory growth are crucial for reshaping the fitness of invasive plants, and it is likely that climate warming, nitrogen (N) deposition, and plant provenance influence this interaction and growth in a complex way. We performed an experiment with Solidago canadensis from home and introduced ranges, leaf-chewing Spodoptera litura, and root-feeding Protaetia brevitarsis under climate warming and N deposition, and addressed how these abiotic stressors and plant provenance jointly shaped the reciprocal effects between S. litura and P. brevitarsis and the compensatory growth of S. canadensis after herbivory. Under ambient conditions, S. litura and P. brevitarsis inhibited each other on the basis of growth; warming, N addition or warming plus N addition shifted or even reversed this competition depending on provenance. While the survival-based above-belowground interactions differed from growth-based ones, warming or warming plus N addition also shifted or even reversed the neutralism or amensalism detected under ambient conditions depending on provenance. S. canadensis from its home range was more tolerant of herbivory than from its introduced range under ambient conditions; warming, N addition or warming plus N addition decreased the plant compensatory growth of native S. canadensis, but increased that of invasive S. canadensis relative to ambient conditions. These findings suggest that climate warming and N deposition could enhance positive above-belowground insect interactions, increasing insect pressures on S. canadensis, and that plant provenance might be important in mediating climate change effects on insect interactions and host compensatory growth under plant invasions.
Collapse
Affiliation(s)
- Xiao-Hui Zhou
- College of Forestry, Hebei Agricultural University, Baoding, China
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Wei-Ming He
- College of Forestry, Hebei Agricultural University, Baoding, China
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, China
| |
Collapse
|
2
|
Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies. J Chem Ecol 2021; 47:889-906. [PMID: 34415498 PMCID: PMC8613123 DOI: 10.1007/s10886-021-01303-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 10/28/2022]
Abstract
How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.
Collapse
|
3
|
Contrasting responses of above- and below-ground herbivore communities along elevation. Oecologia 2020; 194:515-528. [PMID: 33078281 PMCID: PMC7644536 DOI: 10.1007/s00442-020-04778-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/06/2020] [Indexed: 11/25/2022]
Abstract
Above- and below-ground herbivory are key ecosystem processes that can be substantially altered by environmental changes. However, direct comparisons of the coupled variations of above- and below-ground herbivore communities along elevation gradients remain sparse. Here, we studied the variation in assemblages of two dominant groups of herbivores, namely, aboveground orthoptera and belowground nematodes, in grasslands along six elevation gradients in the Swiss Alps. By examining variations of community properties of herbivores and their food plants along montane clines, we sought to determine whether the structure and functional properties of these taxonomic groups change with elevation. We found that orthoptera decreased in both species richness and abundance with elevation. In contrast with aboveground herbivores, the taxonomic richness and the total abundance of nematode did not covary with elevation. We further found a stronger shift in above- than below-ground functional properties along elevation, where the mandibular strength of orthoptera matched a shift in leaf toughness. Nematodes showed a weaker pattern of declined sedentary behavior and increased mobility with elevation. In contrast to the direct exposal of aboveground organisms to the surface climate, conditions may be buffered belowground, which together with the influence of edaphic factors on the biodiversity of soil biota, may explain the differences between elevational patterns of above- and below-ground communities. Our study emphasizes the necessity to consider both the above- and below-ground compartments to understand the impact of current and future climatic variation on ecosystems, from a functional perspective of species interactions.
Collapse
|
4
|
Aguirrebengoa M, Menéndez R, Müller C, González‐Megías A. Altered rainfall patterns reduce plant fitness and disrupt interactions between below‐ and aboveground insect herbivores. Ecosphere 2020. [DOI: 10.1002/ecs2.3127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Rosa Menéndez
- Lancaster Environment Centre Lancaster University Lancaster LAI 4YW UK
| | - Caroline Müller
- Department of Chemical Ecology Bielefeld University Bielefeld 33501 Germany
| | | |
Collapse
|
5
|
Torode MD, Barnett KL, Facey SL, Nielsen UN, Power SA, Johnson SN. Altered Precipitation Impacts on Above- and Below-Ground Grassland Invertebrates: Summer Drought Leads to Outbreaks in Spring. FRONTIERS IN PLANT SCIENCE 2016; 7:1468. [PMID: 27766101 PMCID: PMC5052266 DOI: 10.3389/fpls.2016.01468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/15/2016] [Indexed: 05/09/2023]
Abstract
Climate change is predicted to result in altered precipitation patterns, which may reshape many grassland ecosystems. Rainfall is expected to change in a number of different ways, ranging from periods of prolonged drought to extreme precipitation events, yet there are few community wide studies to accurately simulate future changes. We aimed to test how above- and below-ground grassland invertebrate populations were affected by contrasting future rainfall scenarios. We subjected a grassland community to potential future rainfall scenarios including ambient, increased amount (+50% of ambient), reduced amount (-50% of ambient), reduced frequency (no water for 21 days, followed by the total ambient rainfall applied in a single application) and summer drought (no rainfall for 13 weeks during the growing season). During Austral spring (September 2015), we sampled aboveground invertebrates, belowground macro invertebrates and nematodes. Aboveground communities showed a significant response to altered rainfall regime with the greatest effects observed in summer drought plots. This was mostly due to a large increase in sucking herbivores (658% higher than ambient plots). Plots experiencing summer droughts also had higher populations of parasitoids, chewing herbivores and detritivores. These plots had 92% more plant biomass suggesting that primary productivity increased rapidly following the end of the summer drought 5 months earlier. We interpret these results as supporting the plant vigor hypothesis (i.e., that rapid plant growth is beneficial to aboveground invertebrates). While belowground invertebrates were less responsive to altered precipitation, we observed a number of correlations between the abundances of above- and below-ground invertebrate groups under ambient rainfall that dissipated under altered rainfall regimes. Mechanisms underpinning these associations, and reasons for them to become decoupled under altered precipitation regimes (we term this 'climatic decoupling'), remain speculative, but they provide the basis for formulating hypotheses and future work. In conclusion, we predict that shifts in rainfall patterns, especially summer drought, will likely have large, but probably short-term, impacts on grassland invertebrate communities. In particular, sucking herbivores show sensitivity to precipitation changes, which have the potential to cascade through the food chain and affect higher trophic levels.
Collapse
Affiliation(s)
- Marcel D. Torode
- School of Biosciences, Cardiff UniversityCardiff, UK
- Hawkesbury Institute for the Environment, Western Sydney University, RichmondNSW, Australia
| | - Kirk L. Barnett
- Hawkesbury Institute for the Environment, Western Sydney University, RichmondNSW, Australia
| | - Sarah L. Facey
- Hawkesbury Institute for the Environment, Western Sydney University, RichmondNSW, Australia
| | - Uffe N. Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, RichmondNSW, Australia
| | - Sally A. Power
- Hawkesbury Institute for the Environment, Western Sydney University, RichmondNSW, Australia
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, RichmondNSW, Australia
| |
Collapse
|
6
|
Sun Y, Guo H, Ge F. Plant-Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior. FRONTIERS IN PLANT SCIENCE 2016; 7:502. [PMID: 27148325 PMCID: PMC4829579 DOI: 10.3389/fpls.2016.00502] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/29/2016] [Indexed: 05/18/2023]
Abstract
Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies.
Collapse
Affiliation(s)
| | | | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
7
|
Ryalls JMW, Moore BD, Riegler M, Johnson SN. Above-Belowground Herbivore Interactions in Mixed Plant Communities Are Influenced by Altered Precipitation Patterns. FRONTIERS IN PLANT SCIENCE 2016; 7:345. [PMID: 27047522 PMCID: PMC4804199 DOI: 10.3389/fpls.2016.00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/07/2016] [Indexed: 05/11/2023]
Abstract
Root- and shoot-feeding herbivores have the capacity to influence one another by modifying the chemistry of the shared host plant. This can alter rates of nutrient mineralization and uptake by neighboring plants and influence plant-plant competition, particularly in mixtures combining grasses and legumes. Root herbivory-induced exudation of nitrogen (N) from legume roots, for example, may increase N acquisition by co-occurring grasses, with knock-on effects on grassland community composition. Little is known about how climate change may affect these interactions, but an important and timely question is how will grass-legume mixtures respond in a future with an increasing reliance on legume N mineralization in terrestrial ecosystems. Using a model grass-legume mixture, this study investigated how simultaneous attack on lucerne (Medicago sativa) by belowground weevils (Sitona discoideus) and aboveground aphids (Acyrthosiphon pisum) affected a neighboring grass (Phalaris aquatica) when subjected to drought, ambient, and elevated precipitation. Feeding on rhizobial nodules by weevil larvae enhanced soil water retention under ambient and elevated precipitation, but only when aphids were absent. While drought decreased nodulation and root N content in lucerne, grass root and shoot chemistry were unaffected by changes in precipitation. However, plant communities containing weevils but not aphids showed increased grass height and N concentrations, most likely associated with the transfer of N from weevil-attacked lucerne plants containing more nodules and higher root N concentrations compared with insect-free plants. Drought decreased aphid abundance by 54% but increased total and some specific amino acid concentrations (glycine, lysine, methionine, tyrosine, cysteine, histidine, arginine, aspartate, and glutamate), suggesting that aphid declines were being driven by other facets of drought (e.g., reduced phloem hydraulics). The presence of weevil larvae belowground decreased aphid numbers by 30%, likely associated with a significant reduction in proline in weevil-treated lucerne plants. This study demonstrates how predicted changes to precipitation patterns and indirect interactions between herbivores can alter the outcome of competition between N-fixing legumes and non-N-fixing grasses, with important implications for plant community structure and productivity.
Collapse
|
8
|
Lu X, Siemann E, Wei H, Shao X, Ding J. Effects of warming and nitrogen on above- and below-ground herbivory of an exotic invasive plant and its native congener. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0918-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Pineda A, Soler R, Pozo MJ, Rasmann S, Turlings TCJ. Editorial: Above-belowground interactions involving plants, microbes and insects. FRONTIERS IN PLANT SCIENCE 2015; 6:318. [PMID: 26074927 PMCID: PMC4444737 DOI: 10.3389/fpls.2015.00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/22/2015] [Indexed: 05/20/2023]
Affiliation(s)
- Ana Pineda
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
- *Correspondence: Ana Pineda,
| | - Roxina Soler
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, Netherlands
- R&D Microbiology, Koppert Biological SystemsBerkel en Rodenrijs, Netherlands
| | - Maria J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSICGranada, Spain
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| |
Collapse
|