1
|
Carvalho RF, Aguiar-Perecin MLR, Clarindo WR, Fristche-Neto R, Mondin M. A Heterochromatic Knob Reducing the Flowering Time in Maize. Front Genet 2022; 12:799681. [PMID: 35280927 PMCID: PMC8908004 DOI: 10.3389/fgene.2021.799681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Maize flowering time is an important agronomic trait, which has been associated with variations in the genome size and heterochromatic knobs content. We integrated three steps to show this association. Firstly, we selected inbred lines varying for heterochromatic knob composition at specific sites in the homozygous state. Then, we produced homozygous and heterozygous hybrids for knobs. Second, we measured the genome size and flowering time for all materials. Knob composition did not affect the genome size and flowering time. Finally, we developed an association study and identified a knob marker on chromosome 9 showing the strongest association with flowering time. Indeed, modelling allele substitution and dominance effects could offer only one heterochromatic knob locus that could affect flowering time, making it earlier rather than the knob composition.
Collapse
Affiliation(s)
- Renata Flávia Carvalho
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
| | | | | | - Roberto Fristche-Neto
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
- International Rice Research Institute (IRRI) - Breeding Analytics and Data, Management Unit, Laguna, Philippines
| | - Mateus Mondin
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
2
|
Silva JC, Soares FAF, Sattler MC, Clarindo WR. Repetitive sequences and structural chromosome alterations promote intraspecific variations in Zea mays L. karyotype. Sci Rep 2020; 10:8866. [PMID: 32483238 PMCID: PMC7264354 DOI: 10.1038/s41598-020-65779-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/07/2020] [Indexed: 12/02/2022] Open
Abstract
LTR-retrotransposons, knobs and structural chromosome alterations contribute to shape the structure and organization of the Zea mays karyotype. Our initial nuclear DNA content data of Z. mays accessions revealed an intraspecific variation (2 C = 2.00 pg to 2 C = 6.10 pg), suggesting differences in their karyotypes. We aimed to compare the karyotypes of three Z. mays accessions in search of the differences and similarities among them. Karyotype divergences were demonstrated among the accessions, despite their common chromosome number (2n = 20) and ancestral origin. Cytogenomic analyses showed that repetitive sequences and structural chromosome alterations play a significant role in promoting intraspecific nuclear DNA content variation. In addition, heterozygous terminal deletion in chromosome 3 was pointed out as a cause of lower nuclear 2 C value. Besides this, translocation was also observed in the short arm of chromosome 1. Differently, higher 2 C value was associated with the more abundant distribution of LTR-retrotransposons from the family Grande in the karyotype. Moreover, heteromorphism involving the number and position of the 180-bp knob sequence was found among the accessions. Taken together, we provide insights on the pivotal role played by repetitive sequences and structural chromosome alterations in shaping the karyotype of Z. mays.
Collapse
Affiliation(s)
- Jéssica Coutinho Silva
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, ZIP 36570-900, Viçosa, MG, Brazil.
| | - Fernanda Aparecida Ferrari Soares
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, ZIP 36570-900, Viçosa, MG, Brazil
| | - Mariana Cansian Sattler
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, ZIP 36570-900, Viçosa, MG, Brazil
| | - Wellington Ronildo Clarindo
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, ZIP 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
3
|
Pizzaia D, Oliveira-Maekawa VM, Martins AR, Mondin M, Aguiar-Perecin MLR. Karyotype structure and NOR activity in Brazilian Smilax Linnaeus, 1753 species (Smilacaceae). COMPARATIVE CYTOGENETICS 2019; 13:245-263. [PMID: 31528267 PMCID: PMC6715645 DOI: 10.3897/compcytogen.v13i3.35775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
The genus Smilax Linnaeus, 1753 (Smilacaceae) is a large genus of dioecious plants distributed in tropical, subtropical and temperate regions. Some Smilax species have medicinal importance and their identification is important for the control of raw material used in the manufacture of phytotherapeutical products. The karyotypes of seven Brazilian Smilax species were investigated. Mitotic metaphases of roots from young plants were analysed in Feulgen-stained preparations. The karyotypes were asymmetric and modal with 2n = 2x = 32 chromosomes gradually decreasing in size. In S. goyazana A De Candolle & C De Candolle, 1878, a polyploid species, 2n = 4x = 64. In all the species, the large and medium-sized chromosomes were subtelocentric and submetacentric and the small chromosomes were submetacentric or metacentric. Their karyotypes were quite similar, with differences in the arm ratio of some chromosomes. S. fluminensis Steudel, 1841 differed from the other species by having a large metacentric chromosome 1. These findings suggest that evolution occurred without drastic changes in the chromosomal structure in the species analyzed. Terminal secondary constrictions were visualized on the short arm of some chromosomes, but they were detected only in one homologue of each pair. Due to the terminal location and the degree of chromosome condensation, secondary constrictions were not visualized in some species. The nucleolus organizer regions (NORs) were mapped by silver-staining and fluorescent in situ hybridization (FISH) in S. rufescens Grisebach, 1842 and S. fluminensis. Silver-staining and FISH signals were colocalized on the short arms of six chromosomes in S. rufescens and four chromosomes in S. fluminensis. In FISH preparations, one of the largest chromosomes had the secondary constrictions highly decondensed in some cells. This finding and the heteromorphism observed in Feulgen-stained chromosomes suggest that differential rRNA gene expression between homologous rDNA loci can occur in some cells, resulting in different degrees of ribosomal chromatin decondensation. The presence of a heteromorphic chromosome pair in S. rufescens, S. polyantha Grisebach, 1842 and S. goyazana suggests a chromosomal sex determination in these dioecious species.
Collapse
Affiliation(s)
- Daniel Pizzaia
- Department of Genetics, Luiz de Queiroz College of Agriculture, ESALQ, University of São Paulo, Avenida Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Vanessa M Oliveira-Maekawa
- Department of Plant Biology, The University of Campinas, UNICAMP, Barão Geraldo, 13083-970, Campinas, SP, Brazil
| | - Aline R Martins
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, ESALQ, University of São Paulo, Avenida Pádua Dias,11 13418-900, Piracicaba, SP, Brazil
| | - Mateus Mondin
- Department of Genetics, Luiz de Queiroz College of Agriculture, ESALQ, University of São Paulo, Avenida Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Margarida L R Aguiar-Perecin
- Department of Genetics, Luiz de Queiroz College of Agriculture, ESALQ, University of São Paulo, Avenida Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
4
|
Fourastié MF, Gottlieb AM, Poggio L, González GE. Are cytological parameters of maize landraces (Zea mays ssp. mays) adapted along an altitudinal cline? JOURNAL OF PLANT RESEARCH 2018; 131:285-296. [PMID: 29177755 DOI: 10.1007/s10265-017-0996-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
The Northwestern Argentina (NWA) highland region is one of the southernmost areas of native maize cultivation. We studied variations of different cytological parameters, such as DNA contents, presence/absence of B chromosomes (Bs), and number and sequence composition of heterochromatic knobs in ten accessions of four maize landraces growing along a broad altitudinal cline in NWA. The aim of this work was to assess variations in cytological parameters and their relationship with the crop altitude of cultivation, in an adaptive context. The A-DNA content of the A chromosome complements showed 40% of difference between the lowest (4.5 pg) and the highest (6.3 pg) 2C value. This variation could be attributed to differences in number and size of heterochromatic knobs. Fluorescent in situ hybridization studies revealed the sequence composition of each knob, with a higher proportion of knobs composed of 180-bp repeats rather than TR-1 repeats, in all accessions. We also found numerical polymorphisms and the highest frequency of Bs reported in maize to this date. These results lead us to propose that the frequencies and doses of Bs are influenced by the landrace genotypical make-up. The Bs might be maintained in higher frequencies in those accessions having lower heterochromatin content, so as to preserve an optimal nucleotype. Furthermore, selective forces acting along the altitudinal gradient might be modulating the cytological parameters studied, as suggested by the significant correlations found among them.
Collapse
Affiliation(s)
- María Florencia Fourastié
- Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alexandra Marina Gottlieb
- Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lidia Poggio
- Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Graciela Esther González
- Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Silva JC, Carvalho CR, Clarindo WR. Updating the maize karyotype by chromosome DNA sizing. PLoS One 2018; 13:e0190428. [PMID: 29293613 PMCID: PMC5749775 DOI: 10.1371/journal.pone.0190428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species' karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes.
Collapse
Affiliation(s)
- Jéssica Coutinho Silva
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa–MG, Brazil
| | - Carlos Roberto Carvalho
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa–MG, Brazil
| | - Wellington Ronildo Clarindo
- Laboratório de Citogenética, Departamento de Biologia, Campus Alegre, Universidade Federal do Espírito Santo, Alegre–ES, Brazil
| |
Collapse
|
6
|
Waminal NE, Choi HI, Kim NH, Jang W, Lee J, Park JY, Kim HH, Yang TJ. A refined Panax ginseng karyotype based on an ultra-high copy 167-bp tandem repeat and ribosomal DNAs. J Ginseng Res 2016; 41:469-476. [PMID: 29021693 PMCID: PMC5628329 DOI: 10.1016/j.jgr.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/25/2016] [Accepted: 08/03/2016] [Indexed: 12/29/2022] Open
Abstract
Background Panax ginseng Meyer (Asian ginseng) has a large nuclear genome size of > 3.5 Gbp in haploid genome equivalent of 24 chromosomes. Tandem repeats (TRs) occupy significant portions of the genome in many plants and are often found in specific genomic loci, making them a valuable molecular cytogenetic tool in discriminating chromosomes. In an effort to understand the P. ginseng genome structure, we characterized an ultrahigh copy 167-bp TR (Pg167TR) and explored its chromosomal distribution as well as its utility for chromosome identification. Methods Polymerase chain reaction amplicons of Pg167TR were labeled, along with 5S and 45S rDNA amplicons, using a direct nick-translation method. Direct fluorescence in situ hybridization (FISH) was used to analyze the chromosomal distribution of Pg167TR. Results Recently, we reported a method of karyotyping the 24 chromosome pairs of P. ginseng using rDNA and DAPI (4′,6-diamidino-2-phenylindole) bands. Here, a unique distribution of Pg167TR in all 24 P. ginseng chromosomes was observed, allowing easy identification of individual homologous chromosomes. Additionally, direct labeling of 5S and 45S rDNA probes allowed the identification of two additional 5S rDNA loci not previously reported, enabling the refinement of the P. ginseng karyotype. Conclusion Identification of individual P. ginseng chromosomes was achieved using Pg167TR-FISH. Chromosome identification is important in understanding the P. ginseng genome structure, and our method will be useful for future integration of genetic linkage maps and genome scaffold anchoring. Additionally, it is a good tool for comparative studies with related species in efforts to understand the evolution of P. ginseng.
Collapse
Affiliation(s)
- Nomar Espinosa Waminal
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Life Science, Plant Biotechnology Institute, Sahmyook University, Seoul, Republic of Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Nam-Hoon Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Woojong Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junki Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Hee Kim
- Department of Life Science, Plant Biotechnology Institute, Sahmyook University, Seoul, Republic of Korea
- Corresponding authors. Hyun Hee Kim, Department of Life Science, Plant Biotechnology Institute, Sahmyook University, 2nd Science Building Room 408, Gongneung 2-dong, Nowon-gu, Seoul 01795, Republic of Korea; Tae-Jin Yang, Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Gwanangno, Gwanak-gu, Seoul National University 200-4119, Seoul 08826, Republic of Korea.
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Corresponding authors. Hyun Hee Kim, Department of Life Science, Plant Biotechnology Institute, Sahmyook University, 2nd Science Building Room 408, Gongneung 2-dong, Nowon-gu, Seoul 01795, Republic of Korea; Tae-Jin Yang, Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Gwanangno, Gwanak-gu, Seoul National University 200-4119, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Santos-Serejo JA, Aguiar-Perecin MLR. Breakage-fusion-bridge cycles and de novo telomere formation on broken chromosomes in maize callus cultures. Genome 2016; 59:367-78. [PMID: 27203556 DOI: 10.1139/gen-2015-0211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breakpoints involved in chromosome alterations associated with heterochromatin have been detected in maize plants regenerated from callus culture. A cytogenetic analysis of plants regenerated from a maize callus was performed aiming to analyze the stability of a chromosome 7 bearing a deficiency-duplication (Df-Dp), which was interpreted as derived from a chromatid type breakage-fusion-bridge (BFB) cycle. The Df-Dp chromosome 7 was stable in mitotic and meiotic cells of the regenerated plants. Fluorescence in situ hybridization showed signals of telomeric sequences on the broken chromosome arm and provided evidence of de novo telomere formation. The stability of two types of altered chromosome 7 was investigated in C-banded metaphases from samples of the original callus that were collected during a period of 30-42 months after culture initiation. New alterations involving heterochromatic knobs of chromosomes 7 and 9 were observed. The aberrant chromosomes were stable in the subcultures, thus providing evidence of broken chromosome healing. The examination of anaphases showed the presence of bridges, which was consistent with the occurrence of BFB cycles. De novo telomere formation occurred in euchromatic and heterochromatic chromosome termini. The results point to events of chromosomal evolution that might occur in plants.
Collapse
Affiliation(s)
- Janay A Santos-Serejo
- Department of Genetics, Luiz de Queiroz Agriculture College, University of São Paulo, 13418-900 Piracicaba, SP, Brazil.,Department of Genetics, Luiz de Queiroz Agriculture College, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Margarida L R Aguiar-Perecin
- Department of Genetics, Luiz de Queiroz Agriculture College, University of São Paulo, 13418-900 Piracicaba, SP, Brazil.,Department of Genetics, Luiz de Queiroz Agriculture College, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
8
|
Realini MF, Poggio L, Cámara-Hernández J, González GE. Intra-specific variation in genome size in maize: cytological and phenotypic correlates. AOB PLANTS 2015; 8:plv138. [PMID: 26644343 PMCID: PMC4742330 DOI: 10.1093/aobpla/plv138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/07/2015] [Indexed: 05/15/2023]
Abstract
Genome size variation accompanies the diversification and evolution of many plant species. Relationships between DNA amount and phenotypic and cytological characteristics form the basis of most hypotheses that ascribe a biological role to genome size. The goal of the present research was to investigate the intra-specific variation in the DNA content in maize populations from Northeastern Argentina and further explore the relationship between genome size and the phenotypic traits seed weight and length of the vegetative cycle. Moreover, cytological parameters such as the percentage of heterochromatin as well as the number, position and sequence composition of knobs were analysed and their relationships with 2C DNA values were explored. The populations analysed presented significant differences in 2C DNA amount, from 4.62 to 6.29 pg, representing 36.15 % of the inter-populational variation. Moreover, intra-populational genome size variation was found, varying from 1.08 to 1.63-fold. The variation in the percentage of knob heterochromatin as well as in the number, chromosome position and sequence composition of the knobs was detected among and within the populations. Although a positive relationship between genome size and the percentage of heterochromatin was observed, a significant correlation was not found. This confirms that other non-coding repetitive DNA sequences are contributing to the genome size variation. A positive relationship between DNA amount and the seed weight has been reported in a large number of species, this relationship was not found in the populations studied here. The length of the vegetative cycle showed a positive correlation with the percentage of heterochromatin. This result allowed attributing an adaptive effect to heterochromatin since the length of this cycle would be optimized via selection for an appropriate percentage of heterochromatin.
Collapse
Affiliation(s)
- María Florencia Realini
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lidia Poggio
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julián Cámara-Hernández
- Cátedra de Botánica Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela Esther González
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|