1
|
Grinberg M, Vodeneev V. The role of signaling systems of plant in responding to key astrophysical factors: increased ionizing radiation, near-null magnetic field and microgravity. PLANTA 2025; 261:31. [PMID: 39797920 DOI: 10.1007/s00425-025-04610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored. The review shows that, despite the lack of specialized receptors, plants are able to perceive changes in astrophysical factors. Potential mechanisms for perceiving changes in IR, MF and gravity levels are considered. The main pathway for inducing effects in plants is caused by primary physicochemical reactions and change in the levels of secondary messengers, including ROS and Ca2+. The presence of common components, including secondary messengers, in the chain of responses to astrophysical factors determines the complex nature of the response under their combined action. The analysis performed and the proposed hypothesis will help in planning space missions, as well as identifying the most important areas of research in space biology.
Collapse
Affiliation(s)
- Marina Grinberg
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| | - Vladimir Vodeneev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Hernández-García CI, Martínez-Jerónimo F. Changes in the morphology and cell ultrastructure of a microalgal community exposed to a commercial glyphosate formulation and a toxigenic cyanobacterium. Front Microbiol 2023; 14:1195776. [PMID: 37426024 PMCID: PMC10324582 DOI: 10.3389/fmicb.2023.1195776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Human activities significantly influence the health of aquatic ecosystems because many noxious chemical wastes are discharged into freshwater bodies. Intensive agriculture contributes to the deterioration by providing indirectly fertilizers, pesticides, and other agrochemicals that affect the aquatic biota. Glyphosate is one of the most used herbicides worldwide, and microalgae are particularly sensitive to its formulation, inducing displacement of some green microalgae from the phytoplankton that leads to alterations in the floristic composition, which fosters the abundance of cyanobacteria, some of which can be toxigenic. The combination of chemical stressors such as glyphosate and biological ones, like cyanotoxins and other secondary metabolites of cyanobacteria, could induce a combined effect potentially more noxious to microalgae, affecting not only their growth but also their physiology and morphology. In this study, we evaluated the combined effect of glyphosate (Faena®) and a toxigenic cyanobacterium on the morphology and ultrastructure of microalgae in an experimental phytoplankton community. For this purpose, Microcystis aeruginosa (a cosmopolitan cyanobacterium that forms harmful blooms) and the microalgae Ankistrodesmus falcatus, Chlorella vulgaris, Pseudokirchneriella subcapitata, and Scenedesmus incrassatulus were cultivated, individually and jointly, exposing them to sub-inhibitory concentrations of glyphosate (IC10, IC20, and IC40). Effects were evaluated through scanning electron (SEM) and transmission electron (TEM) microscopy. Exposure to Faena® produced alterations in the external morphology and ultrastructure of microalgae both individually and in combined cultures. SEM evidenced the loss of the typical shape and integrity of the cell wall and an increase in the biovolume. TEM revealed reduction and disorganization of the chloroplast, variation in starch and polyphosphate granules, formation of vesicles and vacuoles, cytoplasm degradation, and cell wall continuity loss. The presence of M. aeruginosa was, for microalgae, an additional stress factor adding to the chemical stress produced by Faena®, increasing the damage in their morphology and ultrastructure. These results alert to the effects that can be caused by glyphosate and the presence of toxigenic bacteria on the algal phytoplankton in contaminated and anthropic and eutrophic freshwater ecosystems.
Collapse
|
3
|
Evolutionary Aspects of TRPMLs and TPCs. Int J Mol Sci 2020; 21:ijms21114181. [PMID: 32545371 PMCID: PMC7312350 DOI: 10.3390/ijms21114181] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023] Open
Abstract
Transient receptor potential (TRP) or transient receptor potential channels are a highly diverse family of mostly non-selective cation channels. In the mammalian genome, 28 members can be identified, most of them being expressed predominantly in the plasma membrane with the exception of the mucolipins or TRPMLs which are expressed in the endo-lysosomal system. In mammalian organisms, TRPMLs have been associated with a number of critical endo-lysosomal functions such as autophagy, endo-lysosomal fusion/fission and trafficking, lysosomal exocytosis, pH regulation, or lysosomal motility and positioning. The related non-selective two-pore cation channels (TPCs), likewise expressed in endosomes and lysosomes, have also been found to be associated with endo-lysosomal trafficking, autophagy, pH regulation, or lysosomal exocytosis, raising the question why these two channel families have evolved independently. We followed TRP/TRPML channels and TPCs through evolution and describe here in which species TRP/TRPMLs and/or TPCs are found, which functions they have in different species, and how this compares to the functions of mammalian orthologs.
Collapse
|
4
|
Moenne A, Gómez M, Laporte D, Espinoza D, Sáez CA, González A. Mechanisms of Copper Tolerance, Accumulation, and Detoxification in the Marine Macroalga Ulva compressa (Chlorophyta): 20 Years of Research. PLANTS (BASEL, SWITZERLAND) 2020; 9:E681. [PMID: 32471287 PMCID: PMC7355463 DOI: 10.3390/plants9060681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 11/19/2022]
Abstract
Copper induces an oxidative stress condition in the marine alga Ulva compressa that is due to the production of superoxide anions and hydrogen peroxide, mainly in organelles. The increase in hydrogen peroxide is accompanied by increases in intracellular calcium and nitric oxide, and there is a crosstalk among these signals. The increase in intracellular calcium activates signaling pathways involving Calmodulin-dependent Protein Kinases (CaMKs) and Calcium-Dependent Protein Kinases (CDPKs), leading to activation of gene expression of antioxidant enzymes and enzymes involved in ascorbate (ASC) and glutathione (GSH) synthesis. It was recently shown that copper also activates Mitogen-Activated Protein Kinases (MAPKs) that participate in the increase in the expression of antioxidant enzymes. The increase in gene expression leads to enhanced activities of antioxidant enzymes and to enhanced levels of ASC and GSH. In addition, copper induces an increase in photosynthesis leading to an increase in the leve of Nicotinamide Adenine Dinucleotide Phosphate (NADPH). Copper also induces an increase in activities of enzymes involved in C, N, and S assimilation, allowing the replacement of proteins damaged by oxidative stress. The accumulation of copper in acute exposure involved increases in GSH, phytochelatins (PCs), and metallothioneins (MTs) whereas the accumulation of copper in chronic exposure involved only MTs. Acute and chronic copper exposure induced the accumulation of copper-containing particles in chloroplasts. On the other hand, copper is extruded from the alga with an equimolar amount of GSH. Thus, the increases in activities of antioxidant enzymes, in ASC, GSH, and NADPH levels, and in C, N, and S assimilation, the accumulation of copper-containing particles in chloroplasts, and the extrusion of copper ions from the alga constitute essential mechanisms that participate in the buffering of copper-induced oxidative stress in U. compressa.
Collapse
Affiliation(s)
- Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 916000, Chile; (M.G.); (D.L.); (D.E.)
| | - Melissa Gómez
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 916000, Chile; (M.G.); (D.L.); (D.E.)
| | - Daniel Laporte
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 916000, Chile; (M.G.); (D.L.); (D.E.)
| | - Daniela Espinoza
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 916000, Chile; (M.G.); (D.L.); (D.E.)
| | - Claudio A. Sáez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile;
- Hub Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 2390302, Chile
| | - Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 916000, Chile; (M.G.); (D.L.); (D.E.)
| |
Collapse
|
5
|
Structure of the thermo-sensitive TRP channel TRP1 from the alga Chlamydomonas reinhardtii. Nat Commun 2019; 10:4180. [PMID: 31519888 PMCID: PMC6744473 DOI: 10.1038/s41467-019-12121-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/22/2019] [Indexed: 01/14/2023] Open
Abstract
Algae produce the largest amount of oxygen on earth and are invaluable for human nutrition and biomedicine, as well as for the chemical industry, energy production and agriculture. The mechanisms by which algae can detect and respond to changes in their environments can rely on membrane receptors, including TRP ion channels. Here we present a 3.5-Å resolution cryo-EM structure of the transient receptor potential (TRP) channel crTRP1 from the alga Chlamydomonas reinhardtii that opens in response to increased temperature and is positively regulated by the membrane lipid PIP2. The structure of crTRP1 significantly deviates from the structures of other TRP channels and has a unique 2-fold symmetrical rose-shape architecture with elbow domains and ankyrin repeat domains submerged and dipping into the membrane, respectively. Our study provides a structure of a TRP channel from a micro-organism and a structural framework for better understanding algae biology and TRP channel evolution.
Collapse
|
6
|
Celis-Plá PSM, Rodríguez-Rojas F, Méndez L, Moenne F, Muñoz PT, Lobos MG, Díaz P, Sánchez-Lizaso JL, Brown MT, Moenne A, Sáez CA. MAPK Pathway under Chronic Copper Excess in Green Macroalgae (Chlorophyta): Influence on Metal Exclusion/Extrusion Mechanisms and Photosynthesis. Int J Mol Sci 2019; 20:E4547. [PMID: 31540294 PMCID: PMC6769437 DOI: 10.3390/ijms20184547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
There is currently no information regarding the role that whole mitogen activated protein kinase (MAPK) pathways play in counteracting environmental stress in photosynthetic organisms. To address this gap, we exposed Ulva compressa to chronic levels of copper (10 µM) specific inhibitors of Extracellular Signal Regulated Kinases (ERK), c-Jun N-terminal Kinases (JNK), and Cytokinin Specific Binding Protein (p38) MAPKs alone or in combination. Intracellular copper accumulation and photosynthetic activity (in vivo chlorophyll a fluorescence) were measured after 6 h, 24 h, 48 h, and 6 days of exposure. By day 6, when one (except JNK) or more of the MAPK pathways were inhibited under copper stress, there was a decrease in copper accumulation compared with algae exposed to copper alone. When at least two MAPKs were blocked, there was a decrease in photosynthetic activity expressed in lower productivity (ETRmax), efficiency (αETR), and saturation of irradiance (EkETR), accompanied by higher non-photochemical quenching (NPQmax), compared to both the control and copper-only treatments. In terms of accumulation, once the MAPK pathways were partially or completely blocked under copper, there was crosstalk between these and other signaling mechanisms to enhance metal extrusion/exclusion from cells. Crosstalk occurred among MAPK pathways to maintain photosynthesis homeostasis, demonstrating the importance of the signaling pathways for physiological performance. This study is complemented by a parallel/complementary article Rodríguez-Rojas et al. on the role of MAPKs in copper-detoxification.
Collapse
Affiliation(s)
- Paula S M Celis-Plá
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Fernanda Rodríguez-Rojas
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Lorena Méndez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Fabiola Moenne
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Pamela T Muñoz
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
- Doctorado Interdisciplinario en Ciencias Ambientales, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2340000, Chile.
- Doctorado en Ciencias del Mar y Biología Aplicada, Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - M Gabriela Lobos
- Laboratory of Environmental and Analytical Chemistry, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 234000, Chile.
| | - Patricia Díaz
- Laboratory of Environmental and Analytical Chemistry, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 234000, Chile.
| | - José Luis Sánchez-Lizaso
- Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - Murray T Brown
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile.
| | - Claudio A Sáez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
- HUB-AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile.
| |
Collapse
|
7
|
Rodríguez FE, Laporte D, González A, Mendez KN, Castro-Nallar E, Meneses C, Huidobro-Toro JP, Moenne A. Copper-induced increased expression of genes involved in photosynthesis, carotenoid synthesis and C assimilation in the marine alga Ulva compressa. BMC Genomics 2018; 19:829. [PMID: 30458726 PMCID: PMC6245705 DOI: 10.1186/s12864-018-5226-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022] Open
Abstract
Background The marine alga Ulva compressa is the dominant species in coastal areas receiving effluents from copper mines. The alga can accumulate high amounts of copper and possesses a strong antioxidant system. Here, we performed short-term transcriptomic analyses using total RNA of the alga cultivated with 10 μM of copper for 0, 3, 6, 12 and 24 h by RNA-seq. Results De novo transcriptomes were assembled using the Trinity software, putative proteins were annotated and classified using Blast2GO. Differentially expressed transcripts were identified using edgeR. Transcript levels were compared by paired times 0 vs 3, 0 vs 6, 0 vs 12 and 0 vs 24 h at an FDR < 0.01 and Log2 Fold Change > 2. Up-regulated transcripts encode proteins belonging to photosystem II (PSII), Light Harvesting II Complex (LHCII), PSI and LHCI, proteins involved in assembly and repair of PSII, and assembly and protection of PSI. In addition, transcripts encoding enzymes leading to β-carotene synthesis and enzymes belonging to the Calvin-Benson cycle were also increased. We further analyzed photosynthesis and carotenoid levels in the alga cultivated with 10 μM of copper for 0 to 24 h. Photosynthesis was increased from 3 to 24 h as well as the level of total carotenoids. The increase in transcripts encoding enzymes of the Calvin-Benson cycle suggests that C assimilation may also be increased. Conclusions Thus, U. compressa displays a short-term response to copper stress enhancing the expression of genes encoding proteins involved in photosynthesis, enzymes involved carotenoids synthesis, as well as those belonging to the Calvin-Benson cycle, which may result in an increase in C assimilation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5226-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Felipe E Rodríguez
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Daniel Laporte
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Meneses
- Center of Plant Biotechnology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Huidobro-Toro
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| |
Collapse
|
8
|
Rodríguez FE, Laporte D, González A, Mendez KN, Castro-Nallar E, Meneses C, Huidobro-Toro JP, Moenne A. Copper-induced increased expression of genes involved in photosynthesis, carotenoid synthesis and C assimilation in the marine alga Ulva compressa. BMC Genomics 2018; 19:829. [PMID: 30458726 DOI: 10.118/2fs12864-018-5226-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The marine alga Ulva compressa is the dominant species in coastal areas receiving effluents from copper mines. The alga can accumulate high amounts of copper and possesses a strong antioxidant system. Here, we performed short-term transcriptomic analyses using total RNA of the alga cultivated with 10 μM of copper for 0, 3, 6, 12 and 24 h by RNA-seq. RESULTS De novo transcriptomes were assembled using the Trinity software, putative proteins were annotated and classified using Blast2GO. Differentially expressed transcripts were identified using edgeR. Transcript levels were compared by paired times 0 vs 3, 0 vs 6, 0 vs 12 and 0 vs 24 h at an FDR < 0.01 and Log2 Fold Change > 2. Up-regulated transcripts encode proteins belonging to photosystem II (PSII), Light Harvesting II Complex (LHCII), PSI and LHCI, proteins involved in assembly and repair of PSII, and assembly and protection of PSI. In addition, transcripts encoding enzymes leading to β-carotene synthesis and enzymes belonging to the Calvin-Benson cycle were also increased. We further analyzed photosynthesis and carotenoid levels in the alga cultivated with 10 μM of copper for 0 to 24 h. Photosynthesis was increased from 3 to 24 h as well as the level of total carotenoids. The increase in transcripts encoding enzymes of the Calvin-Benson cycle suggests that C assimilation may also be increased. CONCLUSIONS Thus, U. compressa displays a short-term response to copper stress enhancing the expression of genes encoding proteins involved in photosynthesis, enzymes involved carotenoids synthesis, as well as those belonging to the Calvin-Benson cycle, which may result in an increase in C assimilation.
Collapse
Affiliation(s)
- Felipe E Rodríguez
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Daniel Laporte
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Meneses
- Center of Plant Biotechnology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Huidobro-Toro
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| |
Collapse
|
9
|
González A, Sáez CA, Moenne A. Copper-induced activation of TRPs and VDCCs triggers a calcium signature response regulating gene expression in Ectocarpus siliculosus. PeerJ 2018; 6:e4556. [PMID: 29682409 PMCID: PMC5907779 DOI: 10.7717/peerj.4556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
In certain multicellular photoautotrophs, such as plants and green macroalgae, it has been demonstrated that calcium signaling importantly mediates tolerance to copper excess. However, there is no information in brown macroalgae, which are phylogenetically distant from green algae and plants. We have previously shown that chronic copper levels (2.5 μM) activate transient receptor potential (TRP) channels in the model brown macroalga Ectocarpus siliculosus, allowing extracellular calcium entry at 13, 29, 39 and 51 min. Here, we showed that intracellular calcium increases also occurred at 3 and 5 h of exposure; these increases were inhibited by antagonists of voltage-dependent calcium channels (VDCCs); a chelating agent of extracellular calcium; an antagonist of endoplasmic reticulum (ER) ATPase; and antagonists of cADPR-, NAADP- and IP3-dependent calcium channels. Thus, copper activates VDCCs allowing extracellular calcium entry and intracellular calcium release from the ER via cADPR-, IP3- and NAADP-dependent channels. Furthermore, the level of transcripts encoding a phytochelatin synthase (PS) and a metallothionein (MT) were analyzed in the alga exposed to 2.5 μM copper from 3 to 24 h. The level of ps and mt transcripts increased until 24 h and these increases were inhibited by antagonists of calmodulins (CaMs), calcineurin B-like proteins (CBLs) and calcium-dependent protein kinases (CDPKs). Finally, activation of VDCC was inhibited by a mixture of TRP antagonists and by inhibitors of protein kinases. Thus, copper-mediated activation of TRPs triggers VDCCs via protein kinases, allowing extracellular calcium entry and intracellular calcium release from ER that, in turn, activate CaMs, CBLs and CDPKs increasing expression of PS and MT encoding genes in E. siliculosus.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| | - Claudio A Sáez
- Laboratory of Costal Environmental Research, Center of Advanced Studies, Universidad de Playa Ancha, Viña del Mar, Valparaíso, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| |
Collapse
|
10
|
Szalai G, Majláth I, Pál M, Gondor OK, Rudnóy S, Oláh C, Vanková R, Kalapos B, Janda T. Janus-Faced Nature of Light in the Cold Acclimation Processes of Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:850. [PMID: 29971088 PMCID: PMC6018404 DOI: 10.3389/fpls.2018.00850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/31/2018] [Indexed: 05/19/2023]
Abstract
Exposure of plants to low temperature in the light may induce photoinhibitory stress symptoms, including oxidative damage. However, it is also known that light is a critical factor for the development of frost hardiness in cold tolerant plants. In the present work the effects of light during the cold acclimation period were studied in chilling-sensitive maize plants. Before exposure to chilling temperature at 5°C, plants were cold acclimated at non-lethal temperature (15°C) under different light conditions. Although exposure to relatively high light intensities during cold acclimation caused various stress symptoms, it also enhanced the effectiveness of acclimation processes to a subsequent severe cold stress. It seems that the photoinhibition induced by low temperature is a necessary evil for cold acclimation processes in plants. Greater accumulations of soluble sugars were also detected during hardening at relatively high light intensity. Certain stress responses were light-dependent not only in the leaves, but also in the roots. The comparison of the gene expression profiles based on a microarray study demonstrated that the light intensity is at least as important a factor as the temperature during the cold acclimation period. Differentially expressed genes were mainly involved in most of assimilation and metabolic pathways, namely photosynthetic light capture via the modification of chlorophyll biosynthesis and the dark reactions, carboxylic acid metabolism, cellular amino acid, porphyrin or glutathione metabolic processes, ribosome biogenesis and translation. Results revealed complex regulation mechanisms and interactions between cold and light signalling processes.
Collapse
Affiliation(s)
- Gabriella Szalai
- Centre for Agricultural Research, Plant Physiology Department, Agricultural Institute, MTA, Martonvásár, Hungary
- *Correspondence: Gabriella Szalai
| | - Imre Majláth
- Centre for Agricultural Research, Plant Physiology Department, Agricultural Institute, MTA, Martonvásár, Hungary
| | - Magda Pál
- Centre for Agricultural Research, Plant Physiology Department, Agricultural Institute, MTA, Martonvásár, Hungary
| | - Orsoly K. Gondor
- Centre for Agricultural Research, Plant Physiology Department, Agricultural Institute, MTA, Martonvásár, Hungary
| | - Szabolcs Rudnóy
- Department of Plant Physiology and Plant Molecular Biology, Eötvös Loránd University, Budapest, Hungary
| | - Csilla Oláh
- Department of Plant Physiology and Plant Molecular Biology, Eötvös Loránd University, Budapest, Hungary
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Balázs Kalapos
- Centre for Agricultural Research, Plant Physiology Department, Agricultural Institute, MTA, Martonvásár, Hungary
| | - Tibor Janda
- Centre for Agricultural Research, Plant Physiology Department, Agricultural Institute, MTA, Martonvásár, Hungary
| |
Collapse
|
11
|
Gómez M, González A, Sáez CA, Moenne A. Copper-Induced Membrane Depolarizations Involve the Induction of Mosaic TRP Channels, Which Activate VDCC Leading to Calcium Increases in Ulva compressa. FRONTIERS IN PLANT SCIENCE 2016; 7:754. [PMID: 27379106 PMCID: PMC4905984 DOI: 10.3389/fpls.2016.00754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/17/2016] [Indexed: 06/01/2023]
Abstract
The marine macroalga Ulva compressa (Chlorophyceae) is a cosmopolitan species, tolerant to heavy metals, in particular to copper. U. compressa was cultivated with 10 μM copper for 12 h and membrane depolarization events were detected. First, seven depolarization events occurred at 4, 8, 12-13, 80, and 86 min, and at 5 and 9 h of copper exposure. Second, bathocuproine sulphonate, a specific copper-chelating compound, was added before incorporating copper to the culture medium. Copper-induced depolarizations were inhibited by bathocuproine at 4, 8, 12-13, 80, and 86 min, but not at 5 and 9 h, indicating that initial events are due to copper ions entry. Third, specific inhibitors of human TRPA1, C4, C5, M8, and V1corresponding to HC030031, ML204, SKF96363, M8B, and capsazepin, respectively, were used to analyze whether copper-induced depolarizations were due to activation of transient receptor potentials (TRPs). Inhibitor effects indicate that the seven depolarizations involved the activation of functional mosaic TRPs that displayed properties similar to human TRPA, C, M, and/or V. Finally, inhibition of copper-induced depolarizations using specific TRP inhibitors suppressed calcium increases at 2, 3, and 12 h due to activation of voltage-dependent calcium channels (VDCCs). Thus, copper induces seven depolarization events that involve activation of mosaic TRPs which, in turn, activates VDCC leading to calcium increases at 2, 3, and 12 h in U. compressa.
Collapse
Affiliation(s)
- Melissa Gómez
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of ChileSantiago, Chile
| | - Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of ChileSantiago, Chile
| | - Claudio A. Sáez
- Laboratory of Coastal Toxicology, Center of Advanced Studies, University of Playa Ancha Viña del Mar, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of ChileSantiago, Chile
| |
Collapse
|