1
|
Gong A, Dong Y, Xu S, Mu Y, Li X, Li C, Liang Q, Liu JN, Wang C, Yang KQ, Fang H. Multi-omics analysis reveals the allelic variation in JrWDRC2A9 and JrGPIAP conferring resistance against anthracnose (Colletotrichum gloeosporioides) in walnut (Juglans regia). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17254. [PMID: 39911012 DOI: 10.1111/tpj.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/24/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Walnut anthracnose induced by Colletotrichum gloeosporioides is a devastating disease that seriously threatens walnut cultivation. Screening novel resistance genes and exploring the molecular mechanisms are essential for disease-resistant genetic improvement of walnut. We conducted a genome-wide association studies of disease resistance traits based on the relative resistance index and single nucleotide polymorphisms (SNPs) obtained from 182 resequenced walnut accessions and 10 loci and corresponding candidate genes associated with resistance against C. gloeosporioides were identified. Then, through combined transcriptome analysis during C. gloeosporioides infection and qRT-PCR, we identified JrWDRC2A9 in SNP Chr13_36265784 loci and JrGPIAP in SNP Chr07_10106470 loci as two walnut anthracnose resistance genes. The validation of the disease resistance function of transgenic strains indicated that both JrWDRC2A9 and JrGPIAP promote walnut resistance to anthracnose. SNP Chr13_36265784 (A>G) is located in the coding region of JrWDRC2A9 causing a glutamine (JrWDRC2A9HapI) to arginine (JrWDRC2A9HapII). Allelic variation in the WD domain attenuates JrWDRC2A9-mediated resistance against C. gloeosporioides and the binding affinity of JrWDRC2A9 for JrTLP1. On the contrary, the allelic variation caused by SNP Chr07_10106470 (T>G) increased the walnut accessions resistance to C. gloeosporioides by promoting the expression level of JrGPIAP. Functional genomics revealed that JrGPIAP binds to the promoter of JrPR1L and activates its transcription, which is strengthened by the interaction between JrGPIAP and JrEMP24. These findings reveal the allelic variation in JrWDRC2A9 and JrGPIAP conferring resistance against C. gloeosporioides, providing a genetic basis for walnut disease resistance breeding in the future.
Collapse
Affiliation(s)
- Andi Gong
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| | - Shengyi Xu
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yutian Mu
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xichen Li
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chunyu Li
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| | - Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| |
Collapse
|
2
|
Robinson KM, Schiffthaler B, Liu H, Rydman SM, Rendón-Anaya M, Kalman TA, Kumar V, Canovi C, Bernhardsson C, Delhomme N, Jenkins J, Wang J, Mähler N, Richau KH, Stokes V, A'Hara S, Cottrell J, Coeck K, Diels T, Vandepoele K, Mannapperuma C, Park EJ, Plaisance S, Jansson S, Ingvarsson PK, Street NR. An Improved Chromosome-scale Genome Assembly and Population Genetics resource for Populus tremula. PHYSIOLOGIA PLANTARUM 2024; 176:e14511. [PMID: 39279509 DOI: 10.1111/ppl.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Aspen (Populus tremula L.) is a keystone species and a model system for forest tree genomics. We present an updated resource comprising a chromosome-scale assembly, population genetics and genomics data. Using the resource, we explore the genetic basis of natural variation in leaf size and shape, traits with complex genetic architecture. We generated the genome assembly using long-read sequencing, optical and high-density genetic maps. We conducted whole-genome resequencing of the Umeå Aspen (UmAsp) collection. Using the assembly and re-sequencing data from the UmAsp, Swedish Aspen (SwAsp) and Scottish Aspen (ScotAsp) collections we performed genome-wide association analyses (GWAS) using Single Nucleotide Polymorphisms (SNPs) for 26 leaf physiognomy phenotypes. We conducted Assay of Transposase Accessible Chromatin sequencing (ATAC-Seq), identified genomic regions of accessible chromatin, and subset SNPs to these regions, improving the GWAS detection rate. We identified candidate long non-coding RNAs in leaf samples, quantified their expression in an updated co-expression network, and used this to explore the functions of candidate genes identified from the GWAS. A GWAS found SNP associations for seven traits. The associated SNPs were in or near genes annotated with developmental functions, which represent candidates for further study. Of particular interest was a ~177-kbp region harbouring associations with several leaf phenotypes in ScotAsp. We have incorporated the assembly, population genetics, genomics, and GWAS data into the PlantGenIE.org web resource, including updating existing genomics data to the new genome version, to enable easy exploration and visualisation. We provide all raw and processed data to facilitate reuse in future studies.
Collapse
Affiliation(s)
- Kathryn M Robinson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Bastian Schiffthaler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Hui Liu
- National Engineering Laboratory for Tree Breeding; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, China
| | - Sara M Rydman
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Martha Rendón-Anaya
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Teitur Ahlgren Kalman
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Vikash Kumar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Camilla Canovi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Carolina Bernhardsson
- Evolutionary Biology Centre, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
| | - Jerry Jenkins
- Hudson-Alpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Niklas Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Kerstin H Richau
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | - Stuart A'Hara
- Forest Research, Northern Research Station, Roslin, UK
| | - Joan Cottrell
- Forest Research, Northern Research Station, Roslin, UK
| | - Kizi Coeck
- Vlaams Instituut voor Biotechnologie Nucleomics Core, Leuven, Belgium
| | - Tim Diels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Eung-Jun Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Suwon, Korea
| | | | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Science for Life Laboratory, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Gao X, Li J, Yin J, Zhao Y, Wu Z, Ma L, Zhang B, Zhang H, Huang J. The protein phosphatase qGL3/OsPPKL1 self-regulates its degradation to orchestrate brassinosteroid signaling in rice. PLANT COMMUNICATIONS 2024; 5:100849. [PMID: 38384133 PMCID: PMC11211515 DOI: 10.1016/j.xplc.2024.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Brassinosteroids (BRs) are a class of phytohormones that regulate plant growth and development. In previous studies, we cloned and identified PROTEIN PHOSPHATASE WITH KELCH-LIKE1 (OsPPKL1) as the causal gene for the quantitative trait locus GRAIN LENGTH3 (qGL3) in rice (Oryza sativa). We also showed that qGL3/OsPPKL1 is mainly located in the cytoplasm and nucleus and negatively regulates BR signaling and grain length. Because qGL3 is a negative regulator of BR signaling, its turnover is critical for rapid response to changes in BRs. Here, we demonstrate that qGL3 interacts with the WD40-domain-containing protein WD40-REPEAT PROTEIN48 (OsWDR48), which contains a nuclear export signal (NES). The NES signal is crucial for the cytosolic localization of OsWDR48 and also functions in the self-turnover of qGL3. We show that OsWDR48 physically interacts with and genetically acts through qGL3 to modulate BR signaling. Moreover, qGL3 may indirectly promote the phosphorylation of OsWDR48 at the Ser-379 and Ser-386 sites. Substitutions of both phosphorylation sites in OsWDR48 to non-phosphorylatable alanine enhanced the strength of the OsWDR48-qGL3 interaction. Furthermore, we found that brassinolide can promote the accumulation of non-phosphorylated OsWDR48, leading to strong interaction intensity between qGL3 and OsWDR48. Taken together, our results show that OsWDR48 facilitates qGL3 retention and induces degradation of qGL3 in the cytoplasm. These findings suggest that qGL3 self-modulates its turnover by binding to OsWDR48 to regulate its cytoplasmic localization and stability, leading to efficient orchestration of BR signal transduction in rice.
Collapse
Affiliation(s)
- Xiuying Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Jianbo Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Jing Yin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Yiheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Zhongsheng Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Lijuan Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Baoyi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China.
| |
Collapse
|
4
|
Ke S, Jiang Y, Zhou M, Li Y. Genome-Wide Identification, Evolution, and Expression Analysis of the WD40 Subfamily in Oryza Genus. Int J Mol Sci 2023; 24:15776. [PMID: 37958759 PMCID: PMC10648978 DOI: 10.3390/ijms242115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The WD40 superfamily is widely found in eukaryotes and has essential subunits that serve as scaffolds for protein complexes. WD40 proteins play important regulatory roles in plant development and physiological processes, such as transcription regulation and signal transduction; it is also involved in anthocyanin biosynthesis. In rice, only OsTTG1 was found to be associated with anthocyanin biosynthesis, and evolutionary analysis of the WD40 gene family in multiple species is less studied. Here, a genome-wide analysis of the subfamily belonging to WD40-TTG1 was performed in nine AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, Oryza glumaepatula, Oryza nivara, and Oryza longistaminata. In this study, 383 WD40 genes in the Oryza genus were identified, and they were classified into four groups by phylogenetic analysis, with most members in group C and group D. They were found to be unevenly distributed across 12 chromosomes. A total of 39 collinear gene pairs were identified in the Oryza genus, and all were segmental duplications. WD40s had similar expansion patterns in the Oryza genus. Ka/Ks analyses indicated that they had undergone mainly purifying selection during evolution. Furthermore, WD40s in the Oryza genus have similar evolutionary patterns, so Oryza sativa ssp. indica was used as a model species for further analysis. The cis-acting elements analysis showed that many genes were related to jasmonic acid and light response. Among them, OsiWD40-26/37/42 contained elements of flavonoid synthesis, and OsiWD40-15 had MYB binding sites, indicating that they might be related to anthocyanin synthesis. The expression profile analysis at different stages revealed that most OsiWD40s were expressed in leaves, roots, and panicles. The expression of OsiWD40s was further analyzed by qRT-PCR in 9311 (indica) under various hormone treatments and abiotic stresses. OsiWD40-24 was found to be responsive to both phytohormones and abiotic stresses, suggesting that it might play an important role in plant stress resistance. And many OsiWD40s might be more involved in cold stress tolerance. These findings contribute to a better understanding of the evolution of the WD40 subfamily. The analyzed candidate genes can be used for the exploration of practical applications in rice, such as cultivar culture for colored rice, stress tolerance varieties, and morphological marker development.
Collapse
Affiliation(s)
| | | | | | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.K.); (Y.J.); (M.Z.)
| |
Collapse
|
5
|
Lukanda MM, Dramadri IO, Adjei EA, Badji A, Arusei P, Gitonga HW, Wasswa P, Edema R, Ochwo-Ssemakula M, Tukamuhabwa P, Muthuri HM, Tusiime G. Genome-Wide Association Analysis for Resistance to Coniothyrium glycines Causing Red Leaf Blotch Disease in Soybean. Genes (Basel) 2023; 14:1271. [PMID: 37372451 PMCID: PMC10298659 DOI: 10.3390/genes14061271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Soybean is a high oil and protein-rich legume with several production constraints. Globally, several fungi, viruses, nematodes, and bacteria cause significant yield losses in soybean. Coniothyrium glycines (CG), the causal pathogen for red leaf blotch disease, is the least researched and causes severe damage to soybean. The identification of resistant soybean genotypes and mapping of genomic regions associated with resistance to CG is critical for developing improved cultivars for sustainable soybean production. This study used single nucleotide polymorphism (SNP) markers generated from a Diversity Arrays Technology (DArT) platform to conduct a genome-wide association (GWAS) analysis of resistance to CG using 279 soybean genotypes grown in three environments. A total of 6395 SNPs was used to perform the GWAS applying a multilocus model Fixed and random model Circulating Probability Unification (FarmCPU) with correction of the population structure and a statistical test p-value threshold of 5%. A total of 19 significant marker-trait associations for resistance to CG were identified on chromosomes 1, 5, 6, 9, 10, 12, 13, 15, 16, 17, 19, and 20. Approximately 113 putative genes associated with significant markers for resistance to red leaf blotch disease were identified across soybean genome. Positional candidate genes associated with significant SNP loci-encoding proteins involved in plant defense responses and that could be associated with soybean defenses against CG infection were identified. The results of this study provide valuable insight for further dissection of the genetic architecture of resistance to CG in soybean. They also highlight SNP variants and genes useful for genomics-informed selection decisions in the breeding process for improving resistance traits in soybean.
Collapse
Affiliation(s)
- Musondolya Mathe Lukanda
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Faculté des Sciences Agronomiques, Université Catholique du Graben, Butembo P.O. Box 29, Democratic Republic of the Congo
| | - Isaac Onziga Dramadri
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Emmanuel Amponsah Adjei
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Council for Scientific and Industrial Research-Savanna Agricultural Research Institute, Tamale P.O. Box TL 52, Ghana
| | - Arfang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Perpetua Arusei
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Department of Biological Sciences, Moi University, Eldoret P.O. Box 3900-30100, Kenya
| | - Hellen Wairimu Gitonga
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Peter Wasswa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Richard Edema
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Mildred Ochwo-Ssemakula
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Phinehas Tukamuhabwa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Harun Murithi Muthuri
- Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA;
- International Institute of Tropical Agriculture (IITA), ILRI, Nairobi P.O. Box 30709-00100, Kenya
| | - Geoffrey Tusiime
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| |
Collapse
|
6
|
Devate NB, Krishna H, Mishra CN, Manjunath KK, Sunilkumar VP, Chauhan D, Singh S, Sinha N, Jain N, Singh GP, Singh PK. Genetic dissection of marker trait associations for grain micro-nutrients and thousand grain weight under heat and drought stress conditions in wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1082513. [PMID: 36726675 PMCID: PMC9885108 DOI: 10.3389/fpls.2022.1082513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Introduction Wheat is grown and consumed worldwide, making it an important staple food crop for both its calorific and nutritional content. In places where wheat is used as a staple food, suboptimal micronutrient content levels, especially of grain iron (Fe) and zinc (Zn), can lead to malnutrition. Grain nutrient content is influenced by abiotic stresses, such as drought and heat stress. The best method for addressing micronutrient deficiencies is the biofortification of food crops. The prerequisites for marker-assisted varietal development are the identification of the genomic region responsible for high grain iron and zinc contents and an understanding of their genetics. Methods A total of 193 diverse wheat genotypes were evaluated under drought and heat stress conditions across the years at the Indian Agricultural Research Institute (IARI), New Delhi, under timely sown irrigated (IR), restricted irrigated (RI) and late sown (LS) conditions. Grain iron content (GFeC) and grain zinc content (GZnC) were estimated from both the control and treatment groups. Genotyping of all the lines under study was carried out with the single nucleotide polymorphisms (SNPs) from Breeder's 35K Axiom Array. Result and Discussion Three subgroups were observed in the association panel based on both principal component analysis (PCA) and dendrogram analysis. A large whole-genome linkage disequilibrium (LD) block size of 3.49 Mb was observed. A genome-wide association study identified 16 unique stringent marker trait associations for GFeC, GZnC, and 1000-grain weight (TGW). In silico analysis demonstrated the presence of 28 potential candidate genes in the flanking region of 16 linked SNPs, such as synaptotagmin-like mitochondrial-lipid-binding domain, HAUS augmin-like complex, di-copper center-containing domain, protein kinase, chaperonin Cpn60, zinc finger, NUDIX hydrolase, etc. Expression levels of these genes in vegetative tissues and grain were also found. Utilization of identified markers in marker-assisted breeding may lead to the rapid development of biofortified wheat genotypes to combat malnutrition.
Collapse
Affiliation(s)
- Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | | | | | - V. P. Sunilkumar
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Divya Chauhan
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Shweta Singh
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Nivedita Sinha
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | | | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| |
Collapse
|
7
|
Mapuranga J, Chang J, Yang W. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1102908. [PMID: 36589137 PMCID: PMC9800938 DOI: 10.3389/fpls.2022.1102908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Wheat powdery mildew caused by a biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a widespread airborne disease which continues to threaten global wheat production. One of the most chemical-free and cost-effective approaches for the management of wheat powdery mildew is the exploitation of resistant cultivars. Accumulating evidence has reported that more than 100 powdery mildew resistance genes or alleles mapping to 63 different loci (Pm1-Pm68) have been identified from common wheat and its wild relatives, and only a few of them have been cloned so far. However, continuous emergence of new pathogen races with novel degrees of virulence renders wheat resistance genes ineffective. An essential breeding strategy for achieving more durable resistance is the pyramiding of resistance genes into a single genotype. The genetics of host-pathogen interactions integrated with temperature conditions and the interaction between resistance genes and their corresponding pathogen a virulence genes or other resistance genes within the wheat genome determine the expression of resistance genes. Considerable progress has been made in revealing Bgt pathogenesis mechanisms, identification of resistance genes and breeding of wheat powdery mildew resistant cultivars. A detailed understanding of the molecular interactions between wheat and Bgt will facilitate the development of novel and effective approaches for controlling powdery mildew. This review gives a succinct overview of the molecular basis of interactions between wheat and Bgt, and wheat defense mechanisms against Bgt infection. It will also unleash the unsung roles of epigenetic processes, autophagy and silicon in wheat resistance to Bgt.
Collapse
|
8
|
Devate NB, Krishna H, Sunilkumar VP, Manjunath KK, Mishra CN, Jain N, Singh GP, Singh PK. Identification of genomic regions of wheat associated with grain Fe and Zn content under drought and heat stress using genome-wide association study. Front Genet 2022; 13:1034947. [PMID: 36338980 PMCID: PMC9634069 DOI: 10.3389/fgene.2022.1034947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 09/10/2023] Open
Abstract
Wheat is the staple food crop of global importance for its grain nutrient quality. Grain iron and zinc content of the wheat grain is an important quantitatively inherited trait that is influenced by the environmental factors such as drought and heat stress. Phenotypic evaluation of 295 advanced breeding lines from the wheat stress breeding program of IARI was carried out under timely sown irrigated (IR), restricted irrigated, and late-sown conditions at New Delhi during the cropping season of 2020-21, and grain iron (GFeC) and zinc (GZnC) contents were estimated from both control and treatments. A statistically significant increase in GFeC and GZnC was observed under stress conditions compared to that of the control. Genotyping was carried out with the SNPs from the 35K Axiom Breeder's array, and marker-trait association was identified by GWAS analysis. Of the 23 MTAs identified, seven were linked with GFeC and sixteen were linked with GZnC. In silico analysis revealed a few important transcripts involved in various plant metabolism, growth, and development activities such as auxin response factor, root UVB sensitive proteins, potassium transporter, glycosyl transferase, COBRA, and F-box-like domain. The identified MTAs can be used for molecular breeding after validation and also for rapid development of micronutrient-rich varieties of wheat to mitigate hidden hunger.
Collapse
Affiliation(s)
- Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - V. P. Sunilkumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - C. N. Mishra
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - G. P. Singh
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - P. K. Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Xu P, Wu T, Ali A, Wang J, Fang Y, Qiang R, Liu Y, Tian Y, Liu S, Zhang H, Liao Y, Chen X, Shoaib F, Sun C, Xu Z, Xia D, Zhou H, Wu X. Rice β-Glucosidase 4 (Os1βGlu4) Regulates the Hull Pigmentation via Accumulation of Salicylic Acid. Int J Mol Sci 2022; 23:10646. [PMID: 36142555 PMCID: PMC9504040 DOI: 10.3390/ijms231810646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Salicylic acid (SA) is a stress hormone synthesized in phenylalanine ammonia-lyase (PAL) and the branching acid pathway. SA has two interconvertible forms in plants: SAG (SA O-β-glucoside) and SA (free form). The molecular mechanism of conversion of SA to SAG had been reported previously. However, which genes regulate SAG to SA remained unknown. Here, we report a cytoplasmic β-glucosidase (β-Glu) which participates in the SA pathway and is involved in the brown hull pigmentation in rice grain. In the current study, an EMS-generated mutant brown hull 1 (bh1) displayed decreased contents of SA in hulls, a lower photosynthesis rate, and high-temperature sensitivity compared to the wild type (WT). A plaque-like phenotype (brown pigmentation) was present on the hulls of bh1, which causes a significant decrease in the seed setting rate. Genetic analysis revealed a mutation in LOC_Os01g67220, which encodes a cytoplasmic Os1βGlu4. The knock-out lines displayed the phenotype of brown pigmentation on hulls and decreased seed setting rate comparable with bh1. Overexpression and complementation lines of Os1βGlu4 restored the phenotype of hulls and normal seed setting rate comparable with WT. Subcellular localization revealed that the protein of Os1βGlu4 was localized in the cytoplasm. In contrast to WT, bh1 could not hydrolyze SAG into SA in vivo. Together, our results revealed the novel role of Os1βGlu4 in the accumulation of flavonoids in hulls by regulating the level of free SA in the cellular pool.
Collapse
Affiliation(s)
- Peizhou Xu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingkai Wu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Asif Ali
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinhao Wang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongqiong Fang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Runrun Qiang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Yutong Liu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunfeng Tian
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Su Liu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongyu Zhang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongxiang Liao
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqiong Chen
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Farwa Shoaib
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Changhui Sun
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Duo Xia
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Zhou
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianjun Wu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Allen JR, Wilkinson EG, Strader LC. Creativity comes from interactions: modules of protein interactions in plants. FEBS J 2022; 289:1492-1514. [PMID: 33774929 PMCID: PMC8476656 DOI: 10.1111/febs.15847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Protein interactions are the foundation of cell biology. For robust signal transduction to occur, proteins interact selectively and modulate their behavior to direct specific biological outcomes. Frequently, modular protein interaction domains are central to these processes. Some of these domains bind proteins bearing post-translational modifications, such as phosphorylation, whereas other domains recognize and bind to specific amino acid motifs. Other modules act as diverse protein interaction scaffolds or can be multifunctional, forming head-to-head homodimers and binding specific peptide sequences or membrane phospholipids. Additionally, the so-called head-to-tail oligomerization domains (SAM, DIX, and PB1) can form extended polymers to regulate diverse aspects of biology. Although the mechanism and structures of these domains are diverse, they are united by their modularity. Together, these domains are versatile and facilitate the evolution of complex protein interaction networks. In this review, we will highlight the role of select modular protein interaction domains in various aspects of plant biology.
Collapse
Affiliation(s)
- Jeffrey R. Allen
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Edward G. Wilkinson
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Kale RR, Durga Rani CV, Anila M, Mahadeva Swamy HK, Bhadana VP, Senguttuvel P, Subrahmanyam D, Ayyappa Dass M, Swapnil K, Anantha MS, Punniakotti E, Prasanna BL, Rekha G, Sinha P, Kousik MBVN, Dilip T, Hajira SK, Brajendra P, Mangrauthia SK, Gireesh C, Tuti M, Mahendrakumar R, Giri J, Singh P, Sundaram RM. Novel major QTLs associated with low soil phosphorus tolerance identified from the Indian rice landrace, Wazuhophek. PLoS One 2021; 16:e0254526. [PMID: 34264991 PMCID: PMC8282084 DOI: 10.1371/journal.pone.0254526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
With an objective of mapping novel low soil P (Phosphorus) tolerance loci in the non-Pup1 type donor rice line, Wazuhophek, we screened a recombinant inbred line (RIL) mapping population consisting of 330 lines derived from the cross Wazuhophek x Improved Samba Mahsuri (which is highly sensitive to low soil P) in a plot with low soil P for tolerance associated traits. Molecular mapping with SSR markers revealed a total of 16 QTLs (seven major and nine minor QTLs), which are associated with low soil P tolerance related traits. Interestingly, a QTL hotspot, harbouring 10 out of 16 QTLs were identified on the short arm of chromosome 8 (flanked by the makers RM22554 and RM80005). Five major QTLs explaining phenotypic variance to an extent of 15.28%, 17.25%, 21.84%, 20.23%, and 18.50%, associated with the traits, plant height, shoot length, the number of productive tillers, panicle length and yield, respectively, were located in the hotspot. Two major QTLs located on chromosome 1, associated with the traits, total biomass and root to shoot ratio, explaining 15.44% and 15.44% phenotypic variance, respectively were also identified. Complex epistatic interactions were observed among the traits, grain yield per plant, days to 50% flowering, dry shoot weight, and P content of the seed. In-silico analysis of genomic regions flanking the major QTLs revealed the presence of key putative candidate genes, possibly associated with tolerance.
Collapse
Affiliation(s)
- Ravindra Ramrao Kale
- Institute of Biotechnology, The Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, India
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Ch. V. Durga Rani
- Institute of Biotechnology, The Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, India
| | - M. Anila
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - H. K. Mahadeva Swamy
- Indian Council of Agricultural Research—Sugarcane Breeding Institute, Coimbatore, India
| | - V. P. Bhadana
- Indian Council of Agricultural Research -Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - P. Senguttuvel
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - D. Subrahmanyam
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - M. Ayyappa Dass
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - K. Swapnil
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - M. S. Anantha
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - E. Punniakotti
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - B. Laxmi Prasanna
- Institute of Biotechnology, The Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, India
| | - G. Rekha
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - P. Sinha
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - M. B. V. N. Kousik
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - T. Dilip
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - S. K. Hajira
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - P. Brajendra
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - S. K. Mangrauthia
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - C. Gireesh
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Mangaldeep Tuti
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - R. Mahendrakumar
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Jitendra Giri
- Department of Biotechnology - National Institute of Plant Genome Research, New Delhi, India
| | - Pawandeep Singh
- Department of Biotechnology - National Institute of Plant Genome Research, New Delhi, India
| | - R. M. Sundaram
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| |
Collapse
|
12
|
Louriki S, Rehman S, El Hanafi S, Bouhouch Y, Al-Jaboobi M, Amri A, Douira A, Tadesse W. Identification of Resistance Sources and Genome-Wide Association Mapping of Septoria Tritici Blotch Resistance in Spring Bread Wheat Germplasm of ICARDA. FRONTIERS IN PLANT SCIENCE 2021; 12:600176. [PMID: 34113358 PMCID: PMC8185176 DOI: 10.3389/fpls.2021.600176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Septoria tritici blotch (STB) of wheat, caused by the ascomycete Zymoseptoria tritici (formerly Mycosphaerella graminicola), is one of the most important foliar diseases of wheat. In Morocco, STB is a devastating disease in temperate wheat-growing regions, and the yield losses can exceed up to 50% under favorable conditions. The aims of this study were to identify sources of resistance to STB in Septoria Association Mapping Panel (SAMP), which is composed of 377 advanced breeding lines (ABLs) from spring bread wheat breeding program of ICARDA, and to identify loci associated with resistance to STB at seedling (SRT) as well as at the adult plant (APS) stages using genome-wide association mapping (GWAM). Seedling resistance was evaluated under controlled conditions with two virulent isolates of STB (SAT-2 and 71-R3) from Morocco, whereas adult plant resistance was assessed at two hot spot locations in Morocco (Sidi Allal Tazi, Marchouch) under artificial inoculation with a mixture of STB isolates. At seedling stage, 45 and 32 ABLs were found to be resistant to 71-R3 and SAT-2 isolates of STB, respectively. At adult plant stage, 50 ABLs were found to be resistant at hot spot locations in Morocco. Furthermore, 10 genotypes showed resistance in both locations during two cropping seasons. GWAM was conducted with 9,988 SNP markers using phenotypic data for seedling and the adult plant stage. MLM model was employed in TASSEL 5 (v 5.2.53) using principal component analysis and Kinship Matrix as covariates. The GWAM analysis indicated 14 quantitative trait loci (QTL) at the seedling stage (8 for isolate SAT-2 and 6 for isolate 71-R3), while 23 QTL were detected at the adult plant stage resistance (4 at MCH-17, 16 at SAT-17, and 3 at SAT-18). SRT QTL explained together 33.3% of the phenotypic variance for seedling resistance to STB isolate SAT-2 and 28.3% for 71-R3, respectively. QTL for adult plant stage resistance explained together 13.1, 68.6, and 11.9% of the phenotypic variance for MCH-17, SAT-17, and SAT-18, respectively. Identification of STB-resistant spring bread wheat germplasm in combination with QTL detected both at SRT and APS stage will serve as an important resource in STB resistance breeding efforts.
Collapse
Affiliation(s)
- Sara Louriki
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Laboratoire de Productions Végétales, Animales et Agro-industrie, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Kenitra, Morocco
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Samira El Hanafi
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Physiology Plant Biotechnology Unit, Bio-bio Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Yassine Bouhouch
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Muamar Al-Jaboobi
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Ahmed Amri
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Allal Douira
- Laboratoire de Productions Végétales, Animales et Agro-industrie, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Kenitra, Morocco
| | - Wuletaw Tadesse
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| |
Collapse
|
13
|
Genome wide association study and genomic prediction for stover quality traits in tropical maize (Zea mays L.). Sci Rep 2021; 11:686. [PMID: 33436870 PMCID: PMC7804097 DOI: 10.1038/s41598-020-80118-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/15/2020] [Indexed: 11/09/2022] Open
Abstract
Maize is rapidly replacing traditionally cultivated dual purpose crops of South Asia, primarily due to the better economic remuneration. This has created an impetus for improving maize for both grain productivity and stover traits. Molecular techniques can largely assist breeders in determining approaches for effectively integrating stover trait improvement in their existing breeding pipeline. In the current study we identified a suite of potential genomic regions associated to the two major stover quality traits-in-vitro organic matter digestibility (IVOMD) and metabolizable energy (ME) through genome wide association study. However, considering the fact that the loci identified for these complex traits all had smaller effects and accounted only a small portion of phenotypic variation, the effectiveness of following a genomic selection approach for these traits was evaluated. The testing set consists of breeding lines recently developed within the program and the training set consists of a panel of lines from the working germplasm comprising the founder lines of the newly developed breeding lines and also an unrelated diversity set. The prediction accuracy as determined by the Pearson's correlation coefficient between observed and predicted values of these breeding lines were high even at lower marker density (200 random SNPs), when the training and testing set were related. However, the accuracies were dismal, when there was no relationship between the training and the testing set.
Collapse
|
14
|
Dhanapal AP, York LM, Hames KA, Fritschi FB. Genome-Wide Association Study of Topsoil Root System Architecture in Field-Grown Soybean [ Glycine max (L.) Merr.]. FRONTIERS IN PLANT SCIENCE 2020; 11:590179. [PMID: 33643326 PMCID: PMC7902768 DOI: 10.3389/fpls.2020.590179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/14/2020] [Indexed: 05/09/2023]
Abstract
Water and nutrient acquisition is a critical function of plant root systems. Root system architecture (RSA) traits are often complex and controlled by many genes. This is the first genome-wide association study reporting genetic loci for RSA traits for field-grown soybean (Glycine max). A collection of 289 soybean genotypes was grown in three environments, root crowns were excavated, and 12 RSA traits assessed. The first two components of a principal component analysis of these 12 traits were used as additional aggregate traits for a total of 14 traits. Marker-trait association for RSA traits were identified using 31,807 single-nucleotide polymorphisms (SNPs) by a genome-wide association analysis. In total, 283 (non-unique) SNPs were significantly associated with one or more of the 14 root traits. Of these, 246 were unique SNPs and 215 SNPs were associated with a single root trait, while 26, four, and one SNPs were associated with two, three, and four root traits, respectively. The 246 SNPs marked 67 loci associated with at least one of the 14 root traits. Seventeen loci on 13 chromosomes were identified by SNPs associated with more than one root trait. Several genes with annotation related to processes that could affect root architecture were identified near these 67 loci. Additional follow-up studies will be needed to confirm the markers and candidate genes identified for RSA traits and to examine the importance of the different root characteristics for soybean productivity under a range of soil and environmental conditions.
Collapse
Affiliation(s)
| | - Larry M. York
- Noble Research Institute, LLC, Ardmore, OK, United States
| | - Kasey A. Hames
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Felix B. Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- *Correspondence: Felix B. Fritschi
| |
Collapse
|
15
|
Xu X, Wan W, Jiang G, Xi Y, Huang H, Cai J, Chang Y, Duan CG, Mangrauthia SK, Peng X, Zhu JK, Zhu G. Nucleocytoplasmic Trafficking of the Arabidopsis WD40 Repeat Protein XIW1 Regulates ABI5 Stability and Abscisic Acid Responses. MOLECULAR PLANT 2019; 12:1598-1611. [PMID: 31295628 DOI: 10.1016/j.molp.2019.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 05/24/2023]
Abstract
WD40 repeat-containing proteins (WD40 proteins) serve as versatile scaffolds for protein-protein interactions, modulating a variety of cellular processes such as plant stress and hormone responses. Here we report the identification of a WD40 protein, XIW1 (for XPO1-interacting WD40 protein 1), which positively regulates the abscisic acid (ABA) response in Arabidopsis. XIW1 is located in the cytoplasm and nucleus. We found that it interacts with the nuclear transport receptor XPO1 and is exported by XPO1 from the nucleus. Mutation of XIW1 reduces the induction of ABA-responsive genes and the accumulation of ABA Insensitive 5 (ABI5), causing mutant plants with ABA-insensitive phenotypes during seed germination and seedling growth, and decreased drought stress resistance. ABA treatment upregulates the expression of XIW1, and both ABA and abiotic stresses promote XIW1 accumulation in the nucleus, where it interacts with ABI5. Loss of XIW1 function results in rapid proteasomal degradation of ABI5. Taken together, these findings suggest that XIW1 is a nucleocytoplasmic shuttling protein and plays a positive role in ABA responses by interacting with and maintaining the stability of ABI5 in the nucleus.
Collapse
Affiliation(s)
- Xuezhong Xu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wang Wan
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guobin Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yue Xi
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haijian Huang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiajia Cai
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Chang
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | | | - Xinxiang Peng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| | - Guohui Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Ahn E, Hu Z, Perumal R, Prom LK, Odvody G, Upadhyaya HD, Magill C. Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut. PLoS One 2019; 14:e0216671. [PMID: 31086384 PMCID: PMC6516728 DOI: 10.1371/journal.pone.0216671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/26/2019] [Indexed: 02/04/2023] Open
Abstract
In previous studies, a sorghum mini core collection was scored over several years for response to Colletotrichum sublineola, Peronosclerospora sorghi, and Sporisorium reilianum, the causal agents of the disease anthracnose, downy mildew, and head smut, respectively. The screening results were combined with over 290,000 Single nucleotide polymorphic (SNP) loci from an updated version of a publicly available genotype by sequencing (GBS) dataset available for the mini core collection. GAPIT (Genome Association and Prediction Integrated Tool) R package was used to identify chromosomal locations that differ in disease response. When the top scoring SNPs were mapped to the most recent version of the published sorghum genome, in each case, a nearby and most often the closest annotated gene has precedence for a role in host defense.
Collapse
Affiliation(s)
- Ezekiel Ahn
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Ramasamy Perumal
- Kansas State University, Agricultural Research Center, Hays, Kansas, United States of America
| | - Louis K. Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, Texas, United States of America
| | - Gary Odvody
- Texas A&M AgriLife Research, Corpus Christi, Texas, United States of America
| | - Hari D. Upadhyaya
- ICRISAT, Patancheru, Telangana, India
- King Abdulaziz University, Jeddah, Saudi Arabia
| | - Clint Magill
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
17
|
Gorshkov O, Chernova T, Mokshina N, Gogoleva N, Suslov D, Tkachenko A, Gorshkova T. Intrusive Growth of Phloem Fibers in Flax Stem: Integrated Analysis of miRNA and mRNA Expression Profiles. PLANTS (BASEL, SWITZERLAND) 2019; 8:E47. [PMID: 30791461 PMCID: PMC6409982 DOI: 10.3390/plants8020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
Phloem fibers are important elements of plant architecture and the target product of many fiber crops. A key stage in fiber development is intrusive elongation, the mechanisms of which are largely unknown. Integrated analysis of miRNA and mRNA expression profiles in intrusivelygrowing fibers obtained by laser microdissection from flax (Linum usitatissimum L.) stem revealed all 124 known flax miRNA from 23 gene families and the potential targets of differentially expressed miRNAs. A comparison of the expression between phloem fibers at different developmental stages, and parenchyma and xylem tissues demonstrated that members of miR159, miR166, miR167, miR319, miR396 families were down-regulated in intrusively growing fibers. Some putative target genes of these miRNA families, such as those putatively encoding growth-regulating factors, an argonaute family protein, and a homeobox-leucine zipper family protein were up-regulated in elongating fibers. miR160, miR169, miR390, and miR394 showed increased expression. Changes in the expression levels of miRNAs and their target genes did not match expectations for the majority of predicted target genes. Taken together, poorly understood intrusive fiber elongation, the key process of phloem fiber development, was characterized from a miRNA-target point of view, giving new insights into its regulation.
Collapse
Affiliation(s)
- Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Tatyana Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya Str., 18, 420021 Kazan, Russia.
| | - Dmitry Suslov
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universiteskaya emb., 7/9, 199034 Saint Petersburg, Russia.
| | - Alexander Tkachenko
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universiteskaya emb., 7/9, 199034 Saint Petersburg, Russia.
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| |
Collapse
|
18
|
Arshad M, Gruber MY, Hannoufa A. Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. Sci Rep 2018; 8:9363. [PMID: 29921939 PMCID: PMC6008443 DOI: 10.1038/s41598-018-27088-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/24/2018] [Indexed: 11/09/2022] Open
Abstract
Drought is one of the major abiotic stresses that negatively impact alfalfa growth and productivity. The role of microRNA156 (miR156) in drought has been demonstrated in plants. To date, there are no published studies investigating the role of miR156 in regulating global gene expression in alfalfa under drought. In our study, alfalfa genotypes overexpressing miR156 (miR156OE) exhibited reduced water loss, and enhanced root growth under drought. Our RNA-seq data showed that in response to drought, a total of 415 genes were upregulated and 169 genes were downregulated specifically in miR156OE genotypes. Genotypic comparison revealed that 285 genes were upregulated and 253 genes were downregulated in miR156OE genotypes relative to corresponding WT under drought. Gene Ontology enrichment analysis revealed that the number of differentially expressed genes belonging to biological process, molecular function and cell component functional groups was decreased in miR156OE genotypes under drought. Furthermore, RNA-Seq data showed downregulation of a gene encoding WD40 repeat in a miR156-specific manner. 5' RACE experiments verified cleavage of WD40-2 transcript under drought. Moreover, alfalfa plants overexpressing WD40-2 showed drought sensitive, whereas those with silenced WD40-2 exhibited drought tolerant phenotypes. These findings suggest that miR156 improves drought tolerance in alfalfa by targeting WD40-2.
Collapse
Affiliation(s)
- Muhammad Arshad
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Margaret Y Gruber
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada.
| |
Collapse
|
19
|
Genome-wide comparative and evolutionary analysis of Calmodulin-binding Transcription Activator (CAMTA) family in Gossypium species. Sci Rep 2018; 8:5573. [PMID: 29615731 PMCID: PMC5882909 DOI: 10.1038/s41598-018-23846-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/19/2018] [Indexed: 11/08/2022] Open
Abstract
The CAMTA gene family is crucial in managing both biotic and abiotic stresses in plants. Our comprehensive analysis of this gene family in cotton resulted in the identification of 6, 7 and 9 CAMTAs in three sequenced cotton species, i.e., Gossypium arboreum, Gossypium raimondii, and Gossypium hirsutum, respectively. All cotton CAMTAs were localized in the nucleus and possessed calmodulin-binding domain (CaMBD) as identified computationally. Phylogenetically four significant groups of cotton CAMTAs were identified out of which, Group II CAMTAs experienced higher evolutionary pressure, leading to a faster evolution in diploid cotton. The expansion of cotton CAMTAs in the genome was mainly due to segmental duplication. Purifying selection played a significant role in the evolution of cotton CAMTAs. Expression profiles of GhCAMTAs revealed that GhCAMTA2A.2 and GhCAMTA7A express profoundly in different stages of cotton fiber development. Positive correlation between expression of these two CAMTAs and fiber strength confirmed their functional relevance in fiber development. The promoter region of co-expressing genes network of GhCAMTA2A.2 and GhCAMTA7A showed a higher frequency of occurrence of CAMTA binding motifs. Our present study thus contributes to broad probing into the structure and probable function of CAMTA genes in Gossypium species.
Collapse
|
20
|
Exogenous Auxin Elicits Changes in the Arabidopsis thaliana Root Proteome in a Time-Dependent Manner. Proteomes 2017; 5:proteomes5030016. [PMID: 28698516 PMCID: PMC5620533 DOI: 10.3390/proteomes5030016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022] Open
Abstract
Auxin is involved in many aspects of root development and physiology, including the formation of lateral roots. Improving our understanding of how the auxin response is mediated at the protein level over time can aid in developing a more complete molecular framework of the process. This study evaluates the effects of exogenous auxin treatment on the Arabidopsis root proteome after exposure of young seedlings to auxin for 8, 12, and 24 h, a timeframe permitting the initiation and full maturation of individual lateral roots. Root protein extracts were processed to peptides, fractionated using off-line strong-cation exchange, and analyzed using ultra-performance liquid chromatography and data independent acquisition-based mass spectrometry. Protein abundances were then tabulated using label-free techniques and evaluated for significant changes. Approximately 2000 proteins were identified during the time course experiment, with the number of differences between the treated and control roots increasing over the 24 h time period, with more proteins found at higher abundance with exposure to auxin than at reduced abundance. Although the proteins identified and changing in levels at each time point represented similar biological processes, each time point represented a distinct snapshot of the response. Auxin coordinately regulates many physiological events in roots and does so by influencing the accumulation and loss of distinct proteins in a time-dependent manner. Data are available via ProteomeXchange with the identifier PXD001400.
Collapse
|
21
|
Chen J, Chopra R, Hayes C, Morris G, Marla S, Burke J, Xin Z, Burow G. Genome-Wide Association Study of Developing Leaves' Heat Tolerance during Vegetative Growth Stages in a Sorghum Association Panel. THE PLANT GENOME 2017; 10. [PMID: 28724078 DOI: 10.3835/plantgenome2016.09.0091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heat stress reduces grain yield and quality worldwide. Enhancing heat tolerance of crops at all developmental stages is one of the essential strategies required for sustaining agricultural production especially as frequency of temperature extremes escalates in response to climate change. Although heat tolerance mechanisms have been studied extensively in model plant species, little is known about the genetic control underlying heat stress responses of crop plants at the vegetative stage under field conditions. To dissect the genetic basis of heat tolerance in sorghum [ (L.) Moench], we performed a genome-wide association study (GWAS) for traits responsive to heat stress at the vegetative stage in an association panel. Natural variation in leaf firing (LF) and leaf blotching (LB) were evaluated separately for 3 yr in experimental fields at three locations where sporadic heat waves occurred throughout the sorghum growing season. We identified nine single-nucleotide polymorphisms (SNPs) that were significantly associated with LF and five SNPs that were associated with LB. Candidate genes near the SNPs were investigated and 14 were directly linked to biological pathways involved in plant stress responses including heat stress response. The findings of this study provide new knowledge on the genetic control of leaf traits responsive to heat stress in sorghum, which could aid in elucidating the genetic and molecular mechanisms of vegetative stage heat tolerance in crops. The results also provide candidate markers for molecular breeding of enhanced heat tolerance in cereal and bioenergy crops.
Collapse
|
22
|
A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in Aspergillus nidulans. Int J Mol Sci 2016; 17:ijms17071031. [PMID: 27367684 PMCID: PMC4964407 DOI: 10.3390/ijms17071031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/30/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022] Open
Abstract
WD40 repeat (WDR) proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD). FPWD is within a cell wall metabolism gene cluster in the Ascomycetes (Pezizomycotina) comprising chsD, a Chs activator and a GH17 glucanase. The FPWD, AN1556.2 locus was deleted in Aspergillus nidulans strain SAA.111 by gene replacement and only heterokaryon transformants were obtained. The re-annotation of Aspergilli genomes shows that AN1556.2 consists of two tightly linked separate genes, i.e., the WDR gene and a putative beta-flanking gene of unknown function. The WDR and the beta-flanking genes are conserved genomic neighbors localized within a recently identified metabolic cell wall gene cluster in genomes of Aspergilli. The heterokaryons displayed increased susceptibility to drugs affecting the cell wall, and their phenotypes, observed by optical, confocal, scanning electron and atomic force microscopy, suggest cell wall alterations. Quantitative real-time PCR shows altered expression of some cell wall-related genes. The possible implications on cell wall biosynthesis are discussed.
Collapse
|