1
|
Peyret H, Shah SN, Meshcheriakova Y, Saunders K, Lomonossoff GP. How do RNA viruses select which RNA to package? The plant virus experience. Virology 2025; 604:110435. [PMID: 39893746 DOI: 10.1016/j.virol.2025.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The process whereby viral RNA is specifically selected for packaging within viral particles has been extensively studied over many years. As a result, two broad hypotheses have emerged to explain this specificity, though these are not mutually exclusive. The first proposes that the viral RNA contains specific sequences or "packaging signals" that enable it to be recognised from a mixture of RNAs within an infected cell. The second suggests that there is a functional coupling between RNA replication and packaging that leads to only replicating, viral RNA being packaged. This review is aimed at analysing the evidence for the two hypotheses from both in vitro and in vivo studies on positive-strand RNA plant viruses. Overall, it seems probable that the selectivity of packaging results from replication of the viral RNAs rather than the presence of any specific RNA sequence. However, it is also likely that the presence of packaging signals with high affinity for the viral coat protein is involved in the efficient incorporation of RNA into particles, thereby favouring the correct assembly of fully formed and infectious particles.
Collapse
Affiliation(s)
- Hadrien Peyret
- University of Nottingham, School of Biosciences, Division of Crop and Plant Sciences. Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Sachin N Shah
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Yulia Meshcheriakova
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Keith Saunders
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
2
|
Thuenemann EC, Byrne MJ, Peyret H, Saunders K, Castells-Graells R, Ferriol I, Santoni M, Steele JFC, Ranson NA, Avesani L, Lopez-Moya JJ, Lomonossoff GP. A Replicating Viral Vector Greatly Enhances Accumulation of Helical Virus-Like Particles in Plants. Viruses 2021; 13:885. [PMID: 34064959 PMCID: PMC8150850 DOI: 10.3390/v13050885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The production of plant helical virus-like particles (VLPs) via plant-based expression has been problematic with previous studies suggesting that an RNA scaffold may be necessary for their efficient production. To examine this, we compared the accumulation of VLPs from two potexviruses, papaya mosaic virus and alternanthera mosaic virus (AltMV), when the coat proteins were expressed from a replicating potato virus X- based vector (pEff) and a non-replicating vector (pEAQ-HT). Significantly greater quantities of VLPs could be purified when pEff was used. The pEff system was also very efficient at producing VLPs of helical viruses from different virus families. Examination of the RNA content of AltMV and tobacco mosaic virus VLPs produced from pEff revealed the presence of vector-derived RNA sequences, suggesting that the replicating RNA acts as a scaffold for VLP assembly. Cryo-EM analysis of the AltMV VLPs showed they had a structure very similar to that of authentic potexvirus particles. Thus, we conclude that vectors generating replicating forms of RNA, such as pEff, are very efficient for producing helical VLPs.
Collapse
Affiliation(s)
- Eva C. Thuenemann
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| | - Matthew J. Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (N.A.R.)
| | - Hadrien Peyret
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| | - Keith Saunders
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| | - Roger Castells-Graells
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Inmaculada Ferriol
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193 Cerdanyola del Vallès, Spain; (I.F.); (J.J.L.-M.)
- Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - Mattia Santoni
- Diamante srl. Strada Le Grazie, 15, 37134 Verona, Italy;
| | - John F. C. Steele
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
- Piramal Healthcare UK Ltd., Piramal Pharma Solutions, Earls Road, Grangemouth, Stirlingshire FK3 8XG, UK
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (N.A.R.)
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134 Verona, Italy;
| | - Juan Jose Lopez-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193 Cerdanyola del Vallès, Spain; (I.F.); (J.J.L.-M.)
- Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - George P. Lomonossoff
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| |
Collapse
|
3
|
Xian Y, Xie Y, Silva SM, Karki CB, Qiu W, Li L. StructureMan: A Structure Manipulation Tool to Study Large Scale Biomolecular Interactions. Front Mol Biosci 2021; 7:627087. [PMID: 33505991 PMCID: PMC7831659 DOI: 10.3389/fmolb.2020.627087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022] Open
Abstract
Studying biomolecular interactions is a crucial but challenging task. Due to their large scales, many biomolecular interactions are difficult to be simulated via all atom models. An effective approach to investigate the biomolecular interactions is highly demanded in many areas. Here we introduce a Structure Manipulation (StructureMan) program to operate the structures when studying the large-scale biomolecular interactions. This novel StructureMan tool provides comprehensive operations which can be utilized to study the interactions in various large biological systems. Combining with electrostatic calculation programs such as DelPhi and DelPhiForce, StructureMan was implemented to reveal the detailed electrostatic features in two large biological examples, the viral capsid and molecular motor-microtubule complexes. Applications on these two examples revealed interesting binding mechanisms in the viral capsid and molecular motor. Such applications demonstrated that the StructureMan can be widely used when studying the biomolecular interactions in large scale biological problems. This novel tool provides an alternative approach to efficiently study the biomolecular interactions, especially for large scale biology systems. The StructureMan tool is available at our website: http://compbio.utep.edu/static/downloads/script-for-munipulation2.zip.
Collapse
Affiliation(s)
- Yuejiao Xian
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, United States
| | - Yixin Xie
- Computational Science Program, University of Texas at El Paso, El Paso, TX, United States
| | - Sebastian Miki Silva
- Department of Physics, University of Texas at El Paso, El Paso, TX, United States
| | - Chitra B Karki
- Computational Science Program, University of Texas at El Paso, El Paso, TX, United States
| | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, OR, United States.,Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, United States
| | - Lin Li
- Computational Science Program, University of Texas at El Paso, El Paso, TX, United States.,Department of Physics, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
4
|
Yazdani R, Shams-Bakhsh M, Hassani-Mehraban A, Arab SS, Thelen N, Thiry M, Crommen J, Fillet M, Jacobs N, Brans A, Servais AC. Production and characterization of virus-like particles of grapevine fanleaf virus presenting L2 epitope of human papillomavirus minor capsid protein. BMC Biotechnol 2019; 19:81. [PMID: 31752839 PMCID: PMC6868843 DOI: 10.1186/s12896-019-0566-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/09/2019] [Indexed: 11/17/2022] Open
Abstract
Background Virus-like particle (VLP) platform represents a promising approach for the generation of efficient and immunogenic subunit vaccines. Here, the feasibility of using grapevine fanleaf virus (GFLV) VLPs as a new carrier for the presentation of human papillomavirus (HPV) L2 epitope was studied. To achieve this goal, a model of the HPV L2 epitope secondary structure was predicted and its insertion within 5 external loops in the GFLV capsid protein (CP) was evaluated. Results The epitope sequence was genetically inserted in the αB-αB” domain C of the GFLV CP, which was then over-expressed in Pichia pastoris and Escherichia coli. The highest expression yield was obtained in E. coli. Using this system, VLP formation requires a denaturation-refolding step, whereas VLPs with lower production yield were directly formed using P. pastoris, as confirmed by electron microscopy and immunostaining electron microscopy. Since the GFLV L2 VLPs were found to interact with the HPV L2 antibody under native conditions in capillary electrophoresis and in ELISA, it can be assumed that the inserted epitope is located at the VLP surface with its proper ternary structure. Conclusions The results demonstrate that GFLV VLPs constitute a potential scaffold for surface display of the epitope of interest.
Collapse
Affiliation(s)
- Razieh Yazdani
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Pajouhesh Blvd., Tehran to Karaj highway, Tehran, Iran.,Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Masoud Shams-Bakhsh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Pajouhesh Blvd., Tehran to Karaj highway, Tehran, Iran.
| | | | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nicolas Thelen
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Nathalie Jacobs
- Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium
| | - Alain Brans
- Center for Protein Engineering, University of Liège, Chemistry Institute B6, 4000, Liège (Sart Tilman), Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium.
| |
Collapse
|
5
|
Kruse I, Peyret H, Saxena P, Lomonossoff GP. Encapsidation of Viral RNA in Picornavirales: Studies on Cowpea Mosaic Virus Demonstrate Dependence on Viral Replication. J Virol 2019; 93:e01520-18. [PMID: 30355698 PMCID: PMC6321914 DOI: 10.1128/jvi.01520-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022] Open
Abstract
To elucidate the linkage between replication and encapsidation in Picornavirales, we have taken advantage of the bipartite nature of a plant-infecting member of this order, cowpea mosaic virus (CPMV), to decouple the two processes. RNA-free virus-like particles (empty virus-like particles [eVLPs]) can be generated by transiently coexpressing the RNA-2-encoded coat protein precursor (VP60) with the RNA-1-encoded 24,000-molecular-weight (24K) protease, in the absence of the replication machinery (K. Saunders, F. Sainsbury, and G. P. Lomonossoff, Virology 393:329-337, 2009, https://doi.org/10.1016/j.virol.2009.08.023). We have made use of the ability to produce assembled capsids of CPMV in the absence of replication to examine the putative linkage between RNA replication and packaging in the Picornavirales We have created a series of mutant RNA-1 and RNA-2 molecules and have assessed the effects of the mutations on both the replication and packaging of the viral RNAs. We demonstrate that mutations that affect replication have a concomitant impact on encapsidation and that RNA-1-mediated replication is required for encapsidation of both RNA-1 and RNA-2. This close coupling between replication and encapsidation provides a means for the specific packaging of viral RNAs. Moreover, we demonstrate that this feature of CPMV can be used to specifically encapsidate custom RNA by placing a sequence of choice between the RNA-2 sequences required for replication.IMPORTANCE The mechanism whereby members of the order Picornavirales specifically package their genomic RNAs is poorly understood. Research with monopartite members of the order, such as poliovirus, indicated that packaging is linked to replication, although the presence of "packaging signals" along the length of the viral RNA has also been suggested. Thanks to the bipartite nature of the CPMV genome, which allows the manipulation of RNA-1 without modifying RNA-2, we show here that this specificity is due to a functional link between the two processes of viral replication and encapsidation. This has important implications for our understanding of the fundamental molecular biology of Picornavirales and opens the door to novel research and therapeutic applications in the field of custom RNA packaging and delivery technologies.
Collapse
Affiliation(s)
- Inga Kruse
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Pooja Saxena
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
6
|
Production of Mosaic Turnip Crinkle Virus-Like Particles Derived by Coinfiltration of Wild-Type and Modified Forms of Virus Coat Protein in Plants. Methods Mol Biol 2018; 1776:3-17. [PMID: 29869231 DOI: 10.1007/978-1-4939-7808-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
When the coat protein reading frame of turnip crinkle virus (TCV) is transiently expressed in leaves, virus-like particles (VLPs) are readily formed. However, after introducing genetic modifications to the full-length coat protein sequence, such as the introduction of an epitope-specific sequence within the coat protein sequence or the in-frame carboxyl terminal fusion of GFP, the formation of such modified VLPs is poor. However, by coexpression of one of these modified forms with wild-type TCV coat protein by the coinfiltration of appropriate Agrobacterium suspensions, VLP generation is enhanced through the formation of "mosaics," that is, individual VLPs consisting of both modified and wild-type subunits (also known as phenotypically mixed VLPs). Here we describe methods for the introduction of genetic modifications into the TCV coat protein sequence, the production of mosaic TCV VLPs and their characterization.
Collapse
|
7
|
Alam SB, Reade R, Theilmann J, Rochon D. Evidence for the role of basic amino acids in the coat protein arm region of Cucumber necrosis virus in particle assembly and selective encapsidation of viral RNA. Virology 2017; 512:83-94. [PMID: 28946005 DOI: 10.1016/j.virol.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 01/21/2023]
Abstract
Cucumber necrosis virus (CNV) is a T = 3 icosahedral virus with a (+)ssRNA genome. The N-terminal CNV coat protein arm contains a conserved, highly basic sequence ("KGRKPR"), which we postulate is involved in RNA encapsidation during virion assembly. Seven mutants were constructed by altering the CNV "KGRKPR" sequence; the four basic residues were mutated to alanine individually, in pairs, or in total. Virion accumulation and vRNA encapsidation were significantly reduced in mutants containing two or four substitutions and virion morphology was also affected, where both T = 1 and intermediate-sized particles were produced. Mutants with two or four substitutions encapsidated significantly greater levels of truncated RNA than that of WT, suggesting that basic residues in the "KGRKPR" sequence are important for encapsidation of full-length CNV RNA. Interestingly, "KGRKPR" mutants also encapsidated relatively higher levels of host RNA, suggesting that the "KGRKPR" sequence also contributes to selective encapsidation of CNV RNA.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C., Canada
| | - Ron Reade
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, B.C., Canada
| | - Jane Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, B.C., Canada
| | - D'Ann Rochon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C., Canada; Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, B.C., Canada.
| |
Collapse
|
8
|
Steele JFC, Peyret H, Saunders K, Castells‐Graells R, Marsian J, Meshcheriakova Y, Lomonossoff GP. Synthetic plant virology for nanobiotechnology and nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:e1447. [PMID: 28078770 PMCID: PMC5484280 DOI: 10.1002/wnan.1447] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Hadrien Peyret
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | - Keith Saunders
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | | | | | | | | |
Collapse
|
9
|
Saunders K, Lomonossoff GP. In Planta Synthesis of Designer-Length Tobacco Mosaic Virus-Based Nano-Rods That Can Be Used to Fabricate Nano-Wires. FRONTIERS IN PLANT SCIENCE 2017; 8:1335. [PMID: 28878782 PMCID: PMC5572394 DOI: 10.3389/fpls.2017.01335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/17/2017] [Indexed: 05/11/2023]
Abstract
We have utilized plant-based transient expression to produce tobacco mosaic virus (TMV)-based nano-rods of predetermined lengths. This is achieved by expressing RNAs containing the TMV origin of assembly sequence (OAS) and the sequence of the TMV coat protein either on the same RNA molecule or on two separate constructs. We show that the length of the resulting nano-rods is dependent upon the length of the RNA that possesses the OAS element. By expressing a version of the TMV coat protein that incorporates a metal-binding peptide at its C-terminus in the presence of RNA containing the OAS we have been able to produce nano-rods of predetermined length that are coated with cobalt-platinum. These nano-rods have the properties of defined-length nano-wires that make them ideal for many developing bionanotechnological processes.
Collapse
|