1
|
Chompa SS, Zuan ATK, Amin AM, Hun TG, Ghazali AHA, Sadeq BM, Akter A, Rahman ME, Rashid HO. Growth and protein response of rice plant with plant growth-promoting rhizobacteria inoculations under salt stress conditions. Int Microbiol 2024; 27:1151-1168. [PMID: 38172302 DOI: 10.1007/s10123-023-00469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Soil salinity has been one of the significant barriers to improving rice production and quality. According to reports, Bacillus spp. can be utilized to boost plant development in saline soil, although the molecular mechanisms behind the interaction of microbes towards salt stress are not fully known. Variations in rice plant protein expression in response to salt stress and plant growth-promoting rhizobacteria (PGPR) inoculations were investigated using a proteomic method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Findings revealed that 54 salt-responsive proteins were identified by mass spectrometry analysis (LC-MS/MS) with the Bacillus spp. interaction, and the proteins were functionally classified as gene ontology. The initial study showed that all proteins were labeled by mass spectrometry analysis (LC-MS/MS) with Bacillus spp. interaction; the proteins were functionally classified into six groups. Approximately 18 identified proteins (up-regulated, 13; down-regulated, 5) were involved in the photosynthetic process. An increase in the expression of eight up-regulated and two down-regulated proteins in protein synthesis known as chaperones, such as the 60 kDa chaperonin, the 70 kDa heat shock protein BIP, and calreticulin, was involved in rice plant stress tolerance. Several proteins involved in protein metabolism and signaling pathways also experienced significant changes in their expression. The results revealed that phytohormones regulated the manifestation of various chaperones and protein abundance and that protein synthesis played a significant role in regulating salt stress. This study also described how chaperones regulate rice salt stress, their different subcellular localizations, and the activity of chaperones.
Collapse
Affiliation(s)
- Sayma Serine Chompa
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Adibah Mohd Amin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Tan Geok Hun
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | - Buraq Musa Sadeq
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Amaily Akter
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Md Ekhlasur Rahman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka, 1215, Bangladesh
| | - Harun Or Rashid
- Department of Modern Languages & Communications, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Zhang X, Su J, Jia F, He Y, Liao Y, Wang Z, Jiang J, Guan Z, Fang W, Chen F, Zhang F. Genetic architecture and genomic prediction of plant height-related traits in chrysanthemum. HORTICULTURE RESEARCH 2024; 11:uhad236. [PMID: 38222820 PMCID: PMC10782495 DOI: 10.1093/hr/uhad236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/06/2023] [Indexed: 01/16/2024]
Abstract
Plant height (PH) is a crucial trait determining plant architecture in chrysanthemum. To better understand the genetic basis of PH, we investigated the variations of PH, internode number (IN), internode length (IL), and stem diameter (SD) in a panel of 200 cut chrysanthemum accessions. Based on 330 710 high-quality SNPs generated by genotyping by sequencing, a total of 42 associations were identified via a genome-wide association study (GWAS), and 16 genomic regions covering 2.57 Mb of the whole genome were detected through selective sweep analysis. In addition, two SNPs, Chr1_339370594 and Chr18_230810045, respectively associated with PH and SD, overlapped with the selective sweep regions from FST and π ratios. Moreover, candidate genes involved in hormones, growth, transcriptional regulation, and metabolic processes were highlighted based on the annotation of homologous genes in Arabidopsis and transcriptomes in chrysanthemum. Finally, genomic selection for four PH-related traits was performed using a ridge regression best linear unbiased predictor model (rrBLUP) and six marker sets. The marker set constituting the top 1000 most significant SNPs identified via GWAS showed higher predictabilities for the four PH-related traits, ranging from 0.94 to 0.97. These findings improve our knowledge of the genetic basis of PH and provide valuable markers that could be applied in chrysanthemum genomic selection breeding programs.
Collapse
Affiliation(s)
- Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Feifei Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Yuan Liao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Zhenxing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
3
|
Xu X, Xu J, Yuan C, Chen Q, Liu Q, Wang X, Qin C. BBX17 Interacts with CO and Negatively Regulates Flowering Time in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2022; 63:401-409. [PMID: 35016218 DOI: 10.1093/pcp/pcac005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Floral transition, the change from vegetative growth to reproductive development, is dramatic in flowering plants. Here, we show that one subgroup III member of the B-box (BBX) family, BBX17, is a repressor of floral transition under long-day conditions. BBX17 contains a B-box domain and a CCT domain. Although the phenotype of the BBX17 loss-of-function plants was comparable to that of wild-type plants, BBX17-overexpression plants displayed a delayed-flowering phenotype under long-day conditions. The delayed-flowering phenotype was not the result of an altered CONSTANS (CO) expression level but rather the repression of the FLOWERING LOCUS T (FT) expression level. BBX17 physically associated with CO and repressed its ability to control FT expression. Furthermore, the BBX17 protein degraded in the dark, but irradiating seedlings with white, blue, red or far-red light stabilized the BBX17 level. We also proved that the degradation of BBX17 was via 26S proteasome and requires COP1. Thus, BBX17 acts as a key factor in the CO-FT regulatory system to control Arabidopsis thaliana flowering.
Collapse
Affiliation(s)
- Xiaorui Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingya Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chen Yuan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qianqian Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qinggang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agriproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
VDAC1 Negatively Regulates Floral Transition in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms222111603. [PMID: 34769031 PMCID: PMC8584032 DOI: 10.3390/ijms222111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) are the most important proteins in mitochondria. They localize to the outer mitochondrial membrane and contribute to the metabolite transport between the mitochondria and cytoplasm, which aids plant growth regulation. Here, we report that Arabidopsis thaliana VDAC1 is involved in the floral transition, with the loss of AtVDAC1 function, resulting in an early-flowering phenotype. AtVDAC1 is expressed ubiquitously in Arabidopsis. To identify the flowering pathway integrators that may be responsible for AtVDAC1′s function during the floral transition, an RNA-seq analysis was performed. In total, 106 differentially expressed genes (DEGs) were identified between wild-type and atvdac1-5 mutant seedlings. However, none were involved in flowering-related pathways. In contrast, AtVDAC1 physically associated with FLOWERING LOCUS T. Thus, in the floral transition, AtVDAC1 may function partly through the FLOWERING LOCUS T protein.
Collapse
|
5
|
Wang K, Xu F, Yuan W, Zhang D, Liu J, Sun L, Cui L, Zhang J, Xu W. Rice G protein γ subunit qPE9-1 modulates root elongation for phosphorus uptake by involving 14-3-3 protein OsGF14b and plasma membrane H + -ATPase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1603-1615. [PMID: 34216063 DOI: 10.1111/tpj.15402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+ -ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+ -ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+ -ATPase, which is required for rice P use.
Collapse
Affiliation(s)
- Ke Wang
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feiyun Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jianping Liu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Leyun Sun
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liyou Cui
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
6
|
Xu X, Xu J, Yuan C, Hu Y, Liu Q, Chen Q, Zhang P, Shi N, Qin C. Characterization of genes associated with TGA7 during the floral transition. BMC PLANT BIOLOGY 2021; 21:367. [PMID: 34380420 PMCID: PMC8359562 DOI: 10.1186/s12870-021-03144-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 07/14/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND The TGACG-binding (TGA) family has 10 members that play vital roles in Arabidopsis thaliana defense responses and development. However, their involvement in controlling flowering time remains largely unknown and requires further investigation. RESULTS To study the role of TGA7 during floral transition, we first investigated the tga7 mutant, which displayed a delayed-flowering phenotype under both long-day and short-day conditions. We then performed a flowering genetic pathway analysis and found that both autonomous and thermosensory pathways may affect TGA7 expression. Furthermore, to reveal the differential gene expression profiles between wild-type (WT) and tga7, cDNA libraries were generated for WT and tga7 mutant seedlings at 9 days after germination. For each library, deep-sequencing produced approximately 6.67 Gb of high-quality sequences, with the majority (84.55 %) of mRNAs being between 500 and 3,000 nt. In total, 325 differentially expressed genes were identified between WT and tga7 mutant seedlings. Among them, four genes were associated with flowering time control. The differential expression of these four flowering-related genes was further validated by qRT-PCR. CONCLUSIONS Among these four differentially expressed genes associated with flowering time control, FLC and MAF5 may be mainly responsible for the delayed-flowering phenotype in tga7, as TGA7 expression was regulated by autonomous pathway genes. These results provide a framework for further studying the role of TGA7 in promoting flowering.
Collapse
Affiliation(s)
- Xiaorui Xu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Jingya Xu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Chen Yuan
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Yikai Hu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Qinggang Liu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Qianqian Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Pengcheng Zhang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Nongnong Shi
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China.
| | - Cheng Qin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, China.
| |
Collapse
|
7
|
Cheng Q, Wang P, Wu G, Wang Y, Tan J, Li C, Zhang X, Liu S, Huang S, Huang T, Yang M, He H, Bian J. Coordination of m 6A mRNA methylation and gene transcriptome in rice response to cadmium stress. RICE (NEW YORK, N.Y.) 2021; 14:62. [PMID: 34224034 PMCID: PMC8257850 DOI: 10.1186/s12284-021-00502-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/08/2021] [Indexed: 05/19/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification present in the mRNAs of all higher eukaryotes. However, the role of the m6A methylomes in rice is still poorly understood. With the development of the MeRIP-seq technique, the in-depth identification of mRNAs with m6A modification has become feasible. A study suggested that m6A modification is crucial for posttranscriptional regulation related to Cd2+-induced malignant transformation, but the association between m6A modification in plants and Cd tolerance has not been reported. We investigated the m6A methylomes in the roots of a cadmium (Cd)-treated group and compared them with the roots in the control (CK) group by m6A sequencing of cv. 9311 and cv. Nipponbare (NIP) plants. The results indicated that Cd leads to an altered modification profile in 3,406 differential m6A peaks in cv. 9311 and 2,065 differential m6A peaks in cv. NIP. KEGG pathway analysis of the genes with differentially modified m6A peaks indicated that the "phenylalanine", "tyrosine and tryptophan biosynthesis", "glycine", "adherens junctions", "glycerophospholipid metabolism" and "threonine metabolism" signalling pathways may be associated with the abnormal root development of cv. 9311 rice due to exposure to Cd. The "arginine", "proline metabolism", "glycerolipid", and "protein processing in endoplasmic reticulum" metabolism pathways were significantly enriched in genes with differentially modified m6A peaks in cv. NIP. Unlike that in Arabidopsis, the m6A-modified nucleotide position on mRNAs (m6A peak) distribution in rice exhibited a preference towards both the stop codon and 3' untranslated regions (3' UTRs). These findings provide a resource for plant RNA epitranscriptomic studies and further increase our knowledge on the function of m6A modification in RNA in plants.
Collapse
Affiliation(s)
- Qin Cheng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Peng Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Guangliang Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Yanning Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Jingai Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Caijing Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Xiangyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Shilei Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Tao Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Mengmeng Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, 330045 Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, 330045 Nanchang, China
| |
Collapse
|
8
|
Maeda T, Kotani H, Furusawa C. Morphological change of coiled bacterium Spirosoma linguale with acquisition of β-lactam resistance. Sci Rep 2021; 11:13278. [PMID: 34168257 PMCID: PMC8225782 DOI: 10.1038/s41598-021-92787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
Spirosoma linguale is a gram-negative, coiled bacterium belonging to the family Cytophagaceae. Its coiled morphology is unique in contrast to closely related bacteria belonging to the genus Spirosoma, which have a short, rod-shaped morphology. The mechanisms that generate unique cell morphology are still enigmatic. In this study, using the Spirosoma linguale ATCC33905 strain, we isolated β-lactam (cefoperazone and amoxicillin)-resistant clones. These clones showed two different cell morphological changes: relatively loosely curved cells or small, horseshoe-shaped cells. Whole-genome resequencing analysis revealed the genetic determinants of β-lactam resistance and changes in cell morphology. The loose-curved clones commonly had mutations in Slin_5958 genes encoding glutamyl-tRNA amidotransferase B subunit, whereas the small, horseshoe-shaped clones commonly had mutations in either Slin_5165 or Slin_5509 encoding pyruvate dehydrogenase (PDH) components. Two clones, CFP1ESL11 and CFL5ESL4, which carried only one mutation in Slin_5958, showed almost perfectly straight, rod-shaped cells in the presence of amoxicillin. This result suggests that penicillin-binding proteins targeted by amoxicillin play an important role in the formation of a coiled morphology in this bacterium. In contrast, supplementation with acetate did not rescue the growth defect and abnormal cell size of the CFP5ESL9 strain, which carried only one mutation in Slin_5509. These results suggest that PDH is involved in cell-size maintenance in this bacterium.
Collapse
Affiliation(s)
- Tomoya Maeda
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.
| | - Hazuki Kotani
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Chikara Furusawa
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Gluconacetobacter diazotrophicus Changes The Molecular Mechanisms of Root Development in Oryza sativa L. Growing Under Water Stress. Int J Mol Sci 2020; 21:ijms21010333. [PMID: 31947822 PMCID: PMC6981854 DOI: 10.3390/ijms21010333] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/19/2023] Open
Abstract
Background: Inoculation with Gluconacetobacter diazotrophicus has shown to influence root development in red rice plants, and more recently, the induced systemic tolerance (IST) response to drought was also demonstrated. The goal of this study was to evaluate the inoculation effect of G. diazotrophicus strain Pal5 on the amelioration of drought stress and root development in red rice (Oryza sativa L.). Methods: The experimental treatments consist of red rice plants inoculated with and without strain Pal5 in presence and absence of water restriction. Physiological, biochemical, and molecular analyses of plant roots were carried out, along with measurements of growth and biochemical components. Results: The plants showed a positive response to the bacterial inoculation, with root growth promotion and induction of tolerance to drought. An increase in the root area and higher levels of osmoprotectant solutes were observed in roots. Bacterial inoculation increased the drought tolerance and positively regulated certain root development genes against the water deficit in plants. Conclusion: G. diazotrophicus Pal5 strain inoculation favored red rice plants by promoting various root growth and developmental mechanisms against drought stress, enabling root development and improving biochemical composition.
Collapse
|
10
|
Meng F, Xiang D, Zhu J, Li Y, Mao C. Molecular Mechanisms of Root Development in Rice. RICE (NEW YORK, N.Y.) 2019; 12:1. [PMID: 30631971 PMCID: PMC6328431 DOI: 10.1186/s12284-018-0262-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/27/2018] [Indexed: 05/20/2023]
Abstract
Roots are fundamentally important for growth and development, anchoring the plant to its growth substrate, facilitating water and nutrient uptake from the soil, and sensing and responding to environmental signals such as biotic and abiotic stresses. Understanding the molecular mechanisms controlling root architecture is essential for improving nutrient uptake efficiency and crop yields. In this review, we describe the progress being made in the identification of genes and regulatory pathways involved in the development of root systems in rice (Oryza sativa L.), including crown roots, lateral roots, root hairs, and root length. Genes involved in the adaptation of roots to the environmental nutrient status are reviewed, and strategies for further study and agricultural applications are discussed. The growth and development of rice roots are controlled by both genetic factors and environmental cues. Plant hormones, especially auxin and cytokinin, play important roles in root growth and development. Understanding the molecular mechanisms regulating root architecture and response to environmental signals can contribute to the genetic improvement of crop root systems, enhancing their adaptation to stressful environmental conditions.
Collapse
Affiliation(s)
- Funing Meng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dan Xiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianshu Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|