1
|
Choudhary A, Senthil-Kumar M. Drought: A context-dependent damper and aggravator of plant diseases. PLANT, CELL & ENVIRONMENT 2024; 47:2109-2126. [PMID: 38409868 DOI: 10.1111/pce.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Drought dynamically influences the interactions between plants and pathogens, thereby affecting disease outbreaks. Understanding the intricate mechanistic aspects of the multiscale interactions among plants, pathogens, and the environment-known as the disease triangle-is paramount for enhancing the climate resilience of crop plants. In this review, we systematically compile and comprehensively analyse current knowledge on the influence of drought on the severity of plant diseases. We emphasise that studying these stresses in isolation is not sufficient to predict how plants respond to combined stress from both drought and pathogens. The impact of drought and pathogens on plants is complex and multifaceted, encompassing the activation of antagonistic signalling cascades in response to stress factors. The nature, intensity, and temporality of drought and pathogen stress occurrence significantly influence the outcome of diseases. We delineate the drought-sensitive nodes of plant immunity and highlight the emerging points of crosstalk between drought and defence signalling under combined stress. The limited mechanistic understanding of these interactions is acknowledged as a key research gap in this area. The information synthesised herein will be crucial for crafting strategies for the accurate prediction and mitigation of future crop disease risks, particularly in the context of a changing climate.
Collapse
|
2
|
Hoheneder F, Steidele CE, Messerer M, Mayer KFX, Köhler N, Wurmser C, Heß M, Gigl M, Dawid C, Stam R, Hückelhoven R. Barley shows reduced Fusarium head blight under drought and modular expression of differentially expressed genes under combined stress. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6820-6835. [PMID: 37668551 DOI: 10.1093/jxb/erad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Plants often face simultaneous abiotic and biotic stress conditions; however, physiological and transcriptional responses under such combined stress conditions are still not fully understood. Spring barley (Hordeum vulgare) is susceptible to Fusarium head blight (FHB), which is strongly affected by weather conditions. We therefore studied the potential influence of drought on FHB severity and plant responses in three varieties of different susceptibility. We found strongly reduced FHB severity in susceptible varieties under drought. The number of differentially expressed genes (DEGs) and strength of transcriptomic regulation reflected the concentrations of physiological stress markers such as abscisic acid or fungal DNA contents. Infection-related gene expression was associated with susceptibility rather than resistance. Weighted gene co-expression network analysis revealed 18 modules of co-expressed genes that reflected the pathogen- or drought-response in the three varieties. A generally infection-related module contained co-expressed genes for defence, programmed cell death, and mycotoxin detoxification, indicating that the diverse genotypes used a similar defence strategy towards FHB, albeit with different degrees of success. Further, DEGs showed co-expression in drought- or genotype-associated modules that correlated with measured phytohormones or the osmolyte proline. The combination of drought stress with infection led to the highest numbers of DEGs and resulted in a modular composition of the single-stress responses rather than a specific transcriptional output.
Collapse
Affiliation(s)
- Felix Hoheneder
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Christina E Steidele
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Nikolai Köhler
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising-Weihenstephan, Germany
| | - Christine Wurmser
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3/I, 85354 Freising-Weihenstephan, Germany
| | - Michael Heß
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Michael Gigl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising-Weihenstephan, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising-Weihenstephan, Germany
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
- Institute of Phytopathology, Christian Albrecht University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, HEF World Agricultural Systems Center, Technical University of Munich, Emil-Ramann Str. 2, 85354 Freising-Weihenstephan, Germany
| |
Collapse
|
3
|
Priya P, Patil M, Pandey P, Singh A, Babu VS, Senthil-Kumar M. Stress combinations and their interactions in plants database: a one-stop resource on combined stress responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1097-1117. [PMID: 37824297 DOI: 10.1111/tpj.16497] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
We have developed a compendium and interactive platform, named Stress Combinations and their Interactions in Plants Database (SCIPDb; http://www.nipgr.ac.in/scipdb.php), which offers information on morpho-physio-biochemical (phenome) and molecular (transcriptome and metabolome) responses of plants to different stress combinations. SCIPDb is a plant stress informatics hub for data mining on phenome, transcriptome, trait-gene ontology, and data-driven research for advancing mechanistic understanding of combined stress biology. We analyzed global phenome data from 939 studies to delineate the effects of various stress combinations on yield in major crops and found that yield was substantially affected under abiotic-abiotic stresses. Transcriptome datasets from 36 studies hosted in SCIPDb identified novel genes, whose roles have not been earlier established in combined stress. Integretome analysis under combined drought-heat stress pinpointed carbohydrate, amino acid, and energy metabolism pathways as the crucial metabolic, proteomic, and transcriptional components in plant tolerance to combined stress. These examples illustrate the application of SCIPDb in identifying novel genes and pathways involved in combined stress tolerance. Further, we showed the application of this database in identifying novel candidate genes and pathways for combined drought and pathogen stress tolerance. To our knowledge, SCIPDb is the only publicly available platform offering combined stress-specific omics big data visualization tools, such as an interactive scrollbar, stress matrix, radial tree, global distribution map, meta-phenome analysis, search, BLAST, transcript expression pattern table, Manhattan plot, and co-expression network. These tools facilitate a better understanding of the mechanisms underlying plant responses to combined stresses.
Collapse
Affiliation(s)
- Piyush Priya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Mahesh Patil
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Anupriya Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Vishnu Sudha Babu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
4
|
Kamruzzaman M, Beyene MA, Siddiqui MN, Ballvora A, Léon J, Naz AA. Pinpointing genomic loci for drought-induced proline and hydrogen peroxide accumulation in bread wheat under field conditions. BMC PLANT BIOLOGY 2022; 22:584. [PMID: 36513990 PMCID: PMC9746221 DOI: 10.1186/s12870-022-03943-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Proline (Pro) and hydrogen peroxide (H2O2) play a critical role in plants during drought adaptation. Genetic mapping for drought-induced Pro and H2O2 production under field conditions is very limited in crop plants since their phenotyping with large populations is labor-intensive. A genome-wide association study (GWAS) of a diversity panel comprised of 184 bread wheat cultivars grown in natural field (control) and rain-out shelter (drought) environments was performed to identify candidate loci and genes regulating Pro and H2O2 accumulation induced by drought. RESULTS The GWAS identified top significant marker-trait associations (MTAs) on 1A and 2A chromosomes, respectively for Pro and H2O2 in response to drought. Similarly, MTAs for stress tolerance index (STI) of Pro and H2O2 were identified on 5B and 1B chromosomes, respectively. Total 143 significant MTAs were identified including 36 and 71 were linked to drought and 2 and 34 were linked to STI for Pro and H2O2, respectively. Next, linkage disequilibrium analysis revealed minor alleles of significant single-markers and haplotypes were associated with higher Pro and H2O2 accumulation under drought. Several putative candidate genes for Pro and H2O2 content encode proteins with kinase, transporter or protein-binding activities. CONCLUSIONS The identified genetic factors associated with Pro and H2O2 biosynthesis underlying drought adaptation lay a fundamental basis for functional studies and future marker-assisted breeding programs.
Collapse
Affiliation(s)
- Mohammad Kamruzzaman
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202, Bangladesh
| | - Mekides Abebe Beyene
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Bonn, Germany
| | - Ali Ahmad Naz
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany.
- Department of Plant Breeding, University of Applied Sciences, Osnabrueck, Osnabrueck, Germany.
| |
Collapse
|
5
|
Khandagale K, Roylawar P, Kulkarni O, Khambalkar P, Ade A, Kulkarni A, Singh M, Gawande S. Comparative Transcriptome Analysis of Onion in Response to Infection by Alternaria porri (Ellis) Cifferi. FRONTIERS IN PLANT SCIENCE 2022; 13:857306. [PMID: 35481153 PMCID: PMC9036366 DOI: 10.3389/fpls.2022.857306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Purple blotch (PB) is one of the most destructive foliar diseases of onion and other alliums, caused by a necrotrophic fungal pathogen Alternaria porri. There are no reports on the molecular response of onion to PB infection. To elucidate the response of onion to A. porri infection, we consequently carried out an RNAseq analysis of the resistant (Arka Kalyan; AK) and susceptible (Agrifound rose; AFR) genotype after an artificial infection. Through differential expression analyses between control and pathogen-treated plants, we identified 8,064 upregulated and 248 downregulated genes in AFR, while 832 upregulated and 564 downregulated genes were identified in AK. A further significant reprogramming in the gene expression profile was also demonstrated by a functional annotation analysis. Gene ontology (GO) terms, which are particularly involved in defense responses and signaling, are overrepresented in current analyses such as "oxidoreductase activity," "chitin catabolic processes," and "defense response." Several key plant defense genes were differentially expressed on A. porri infection, which includes pathogenesis-related (PR) proteins, receptor-like kinases, phytohormone signaling, cell-wall integrity, cytochrome P450 monooxygenases, and transcription factors. Some of the genes were exclusively overexpressed in resistant genotype, namely, GABA transporter1, ankyrin repeat domain-containing protein, xyloglucan endotransglucosylase/hydrolase, and PR-5 (thaumatin-like). Antioxidant enzyme activities were observed to be increased after infection in both genotypes but higher activity was found in the resistant genotype, AK. This is the first report of transcriptome profiling in onion in response to PB infection and will serve as a resource for future studies to elucidate the molecular mechanism of onion-A. porri interaction and to improve PB resistance in onions.
Collapse
Affiliation(s)
- Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Praveen Roylawar
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce, B. N. Sarda Science College, Sangamner, India
| | - Onkar Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | | | - Avinash Ade
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research (DOGR), Pune, India
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research (DOGR), Pune, India
| |
Collapse
|
6
|
Mancini E, Garcia-Molina A. Analysis of Alternative Splicing During the Combinatorial Response to Simultaneous Copper and Iron Deficiency in Arabidopsis Reveals Differential Events in Genes Involved in Amino Acid Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:827828. [PMID: 35173758 PMCID: PMC8841432 DOI: 10.3389/fpls.2022.827828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu) and iron (Fe) constitute fundamental nutrients for plant biology but are often limited due to low bioavailability. Unlike responses to single Cu or Fe deprivation, the consequences of simultaneous Cu and Fe deficiency have not yet been fully deciphered. Previously, it was demonstrated that Cu and Fe deficiency applied in combination imposes transcriptome, proteome, and metabolome changes different from those triggered under each deficiency individually. Here, we evaluated the effect of alternative splicing (AS) on the transcriptome of rosette leaves under single and simultaneous Cu and Fe deficiency. Differentially spliced genes (DSGs) and differentially expressed genes (DEGs) coincided in number (2,600 approx.) although the overlapping fraction was minimal (15%). Functional annotation of changes exclusively detected under simultaneous Cu and Fe deficiency revealed that DEGs participated in general stress responses and translation, while DSGs were involved in metabolic reactions, especially amino acid biosynthesis. Interestingly, transcripts encoding central features for tryptophan (Trp) and asparagine (Asn) synthesis - two significantly altered metabolites under simultaneous Cu and Fe deficiency - underwent exclusive intron retention events under the double deficiency. However, transcript and protein amounts for these enzymes did not correlate with Trp and Asn concentration. In consequence, we propose that AS might act as a regulatory mechanism to modify the stability and/or functionality of the enzymes and therefore fine-tune amino acid production during the combinatorial response to simultaneous Cu and Fe deficiency.
Collapse
Affiliation(s)
| | - Antoni Garcia-Molina
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
7
|
Paulino JFDC, de Almeida CP, Bueno CJ, Song Q, Fritsche-Neto R, Carbonell SAM, Chiorato AF, Benchimol-Reis LL. Genome-Wide Association Study Reveals Genomic Regions Associated with Fusarium Wilt Resistance in Common Bean. Genes (Basel) 2021; 12:765. [PMID: 34069884 PMCID: PMC8157364 DOI: 10.3390/genes12050765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/31/2022] Open
Abstract
Fusarium wilt (Fusarium oxysporum f. sp. phaseoli, Fop) is one of the main fungal soil diseases in common bean. The aim of the present study was to identify genomic regions associated with Fop resistance through genome-wide association studies (GWAS) in a Mesoamerican Diversity Panel (MDP) and to identify potential common bean sources of Fop's resistance. The MDP was genotyped with BARCBean6K_3BeadChip and evaluated for Fop resistance with two different monosporic strains using the root-dip method. Disease severity rating (DSR) and the area under the disease progress curve (AUDPC), at 21 days after inoculation (DAI), were used for GWAS performed with FarmCPU model. The p-value of each SNP was determined by resampling method and Bonferroni test. For UFV01 strain, two significant single nucleotide polymorphisms (SNPs) were mapped on the Pv05 and Pv11 for AUDPC, and the same SNP (ss715648096) on Pv11 was associated with AUDPC and DSR. Another SNP, mapped on Pv03, showed significance for DSR. Regarding IAC18001 strain, significant SNPs on Pv03, Pv04, Pv05, Pv07 and on Pv01, Pv05, and Pv10 were observed. Putative candidate genes related to nucleotide-binding sites and carboxy-terminal leucine-rich repeats were identified. The markers may be important future tools for genomic selection to Fop disease resistance in beans.
Collapse
Affiliation(s)
| | - Caléo Panhoca de Almeida
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico, Campinas 13075-630, SP, Brazil; (J.F.d.C.P.); (C.P.d.A.)
| | - César Júnior Bueno
- Centro Avançado de Pesquisa em Proteção de Plantas e Saúde Animal, Instituto Biológico, Campinas 13101-680, SP, Brazil;
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture, Agricultural Research Service (USDA-ARS), Beltsville, MD 20705, USA;
| | - Roberto Fritsche-Neto
- Department of Genetics, ‘Luiz de Queiroz’ Agriculture College, University of Sao Paulo, Piracicaba 13418-900, SP, Brazil;
| | | | - Alisson Fernando Chiorato
- Centro de Grãos e Fibras, Instituto Agronômico, Campinas 13075-630, SP, Brazil; (S.A.M.C.); (A.F.C.)
| | - Luciana Lasry Benchimol-Reis
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico, Campinas 13075-630, SP, Brazil; (J.F.d.C.P.); (C.P.d.A.)
| |
Collapse
|
8
|
Garcia-Molina A, Lehmann M, Schneider K, Klingl A, Leister D. Inactivation of cytosolic FUMARASE2 enhances growth and photosynthesis under simultaneous copper and iron deprivation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:766-784. [PMID: 33583065 DOI: 10.1111/tpj.15199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 05/29/2023]
Abstract
Copper (Cu) and iron (Fe) are essential for plant growth and are often in short supply under natural conditions. Molecular responses to simultaneous lack of both metals (-Cu-Fe) differ from those seen in the absence of either alone. Metabolome profiling of plant leaves previously revealed that fumarate levels fall under -Cu-Fe conditions. We employed lines lacking cytosolic FUMARASE2 (FUM2) activity to study the impact of constitutive suppression of cytosolic fumarate synthesis on plant growth under Cu and/or Fe deficiency. In fum2 mutants, photosynthesis and growth were less impaired under -Cu-Fe conditions than in wild-type (WT) seedlings. In particular, levels of photosynthetic proteins, chloroplast ultrastructure, amino acid profiles and redox state were less perturbed by simultaneous Cu-Fe deficiency in lines that cannot produce fumarate in the cytosol. Although cytosolic fumarate has been reported to promote acclimation of photosynthesis to low temperatures when metal supplies are adequate, the photosynthetic efficiency of fum2 lines grown under Cu-Fe deficiency in the cold was higher than in WT. Uptake and contents of Cu and Fe are similar in WT and fum2 plants under control and -Cu-Fe conditions, and lack of FUM2 does not alter the ability to sense metal deficiency, as indicated by marker gene expression. Collectively, we propose that reduced levels of cytosolic fumarate synthesis ultimately increase the availability of Fe for incorporation into metalloproteins.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Faculty of Biology, Plant Molecular Biology, Ludwig-Maximilians-University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Martin Lehmann
- Faculty of Biology, Plant Molecular Biology, Ludwig-Maximilians-University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Katja Schneider
- Faculty of Biology, Plant Molecular Biology, Ludwig-Maximilians-University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Andreas Klingl
- Faculty of Biology, Plant Molecular Biology, Ludwig-Maximilians-University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Dario Leister
- Faculty of Biology, Plant Molecular Biology, Ludwig-Maximilians-University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| |
Collapse
|
9
|
Mattioli R, Palombi N, Funck D, Trovato M. Proline Accumulation in Pollen Grains as Potential Target for Improved Yield Stability Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:582877. [PMID: 33193531 PMCID: PMC7655902 DOI: 10.3389/fpls.2020.582877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/12/2020] [Indexed: 06/04/2023]
Abstract
Seed yield, a major determinant for the commercial success of grain crops, critically depends on pollen viability, which is dramatically reduced by environmental stresses, such as drought, salinity, and extreme temperatures. Salinity, in particular, is a major problem for crop yield known to affect about 20% of all arable land and cause huge economic losses worldwide. Flowering plants are particularly sensitive to environmental stress during sexual reproduction, and even a short exposure to stressing conditions can severely hamper reproductive success, and thus reduce crop yield. Since proline is required for pollen fertility and accumulates in plant tissues in response to different abiotic stresses, a role of proline in pollen protection under salt stress conditions can be envisaged. In this perspective, we analyze old and new data to evaluate the importance of pollen development under saline conditions, and discuss the possibility of raising proline levels in pollen grains as a biotechnological strategy to stabilize seed yield in the presence of salt stress. The overall data confirm that proline is necessary to preserve pollen fertility and limit seed loss under stressful conditions. However, at present, we have not enough data to conclude whether or not raising proline over wildtype levels in pollen grains can effectively ameliorate seed yield under saline conditions, and further work is still required.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| | - Noemi Palombi
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Dietmar Funck
- Department of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Liu Y, Wang K, Cheng Q, Kong D, Zhang X, Wang Z, Wang Q, Xie Q, Yan J, Chu J, Ling HQ, Li Q, Miao J, Zhao B. Cysteine protease RD21A regulated by E3 ligase SINAT4 is required for drought-induced resistance to Pseudomonas syringae in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5562-5576. [PMID: 32453812 DOI: 10.1093/jxb/eraa255] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Plants can be simultaneously exposed to multiple stresses. The interplay of abiotic and biotic stresses may result in synergistic or antagonistic effects on plant development and health. Temporary drought stress can stimulate plant immunity; however, the molecular mechanism of drought-induced immunity is largely unknown. In this study, we demonstrate that cysteine protease RD21A is required for drought-induced immunity. Temporarily drought-treated wild-type Arabidopsis plants became more sensitive to the bacterial pathogen-associated molecular pattern flg22, triggering stomatal closure, which resulted in increased resistance to Pseudomonas syringae pv. tomato DC3000 (Pst-DC3000). Knocking out rd21a inhibited flg22-triggered stomatal closure and compromised the drought-induced immunity. Ubiquitin E3 ligase SINAT4 interacted with RD21A and promoted its degradation in vivo. The overexpression of SINAT4 also consistently compromised the drought-induced immunity to Pst-DC3000. A bacterial type III effector, AvrRxo1, interacted with both SINAT4 and RD21A, enhancing SINAT4 activity and promoting the degradation of RD21A in vivo. Therefore, RD21A could be a positive regulator of drought-induced immunity, which could be targeted by pathogen virulence effectors during pathogenesis.
Collapse
Affiliation(s)
- Yi Liu
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
- Lushan Botanical Garden Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kunru Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Qiang Cheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Danyu Kong
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Xunzhong Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Qian Wang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jijun Yan
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jiamin Miao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
- College of Grassland, Gansu Agricultural University, Lanzhou, China
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
11
|
Garcia-Molina A, Marino G, Lehmann M, Leister D. Systems biology of responses to simultaneous copper and iron deficiency in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2119-2138. [PMID: 32578228 DOI: 10.1111/tpj.14887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/09/2020] [Indexed: 05/29/2023]
Abstract
Plant responses to coincident nutrient deficiencies cannot be predicted from the responses to individual deficiencies. Although copper (Cu) and iron (Fe) are essential micronutrients for plant growth that are often and concurrently limited in soils, the combinatorial response to Cu-Fe deficiency remains elusive. In the present study, we characterised the responses of Arabidopsis thaliana plants deprived of Cu, Fe or both (-Cu-Fe) at the level of plant development, mineral composition, and reconfiguration of transcriptomes, proteomes and metabolomes. Compared to single deficiencies, simultaneous -Cu-Fe leads to a distinct pattern in leaf physiology and microelement concentration characterised by lowered protein content and enhanced manganese and zinc levels. Conditional networking analysis of molecular changes indicates that biological processes also display different co-expression patterns among single and double deficiencies. Indeed, the interaction between Cu and Fe deficiencies causes distinct expression profiles for 15% of all biomolecules, leading to specific enhancement of general stress responses and protein homeostasis mechanisms, at the same time as severely arresting photosynthesis. Accordingly, central carbon metabolites, in particular photosynthates, decrease especially under -Cu-Fe conditions, whereas the pool of free amino acids increases. Further meta-analysis of transcriptomes and proteomes corroborated that protein biosynthesis and folding capacity were readjusted during the combinatorial response and unveiled important rearrangements in the metabolism of organic acids. Consequently, our results demonstrate that the response to -Cu-Fe imposes a distinct reconfiguration of large sets of molecules, not triggered by single deficiencies, resulting into a switch from autotrophy to heterotrophy and involving organic acids such as fumaric acid as central mediators of the response.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Giada Marino
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Martin Lehmann
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Dario Leister
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| |
Collapse
|
12
|
Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LSP. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit Rev Biotechnol 2020; 40:320-340. [DOI: 10.1080/07388551.2019.1710459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aarti Gupta
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Lam-Son Phan Tran
- Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Teshome DT, Zharare GE, Naidoo S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. FRONTIERS IN PLANT SCIENCE 2020; 11:601009. [PMID: 33329666 PMCID: PMC7733969 DOI: 10.3389/fpls.2020.601009] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 05/11/2023]
Abstract
Plants encounter several biotic and abiotic stresses, usually in combination. This results in major economic losses in agriculture and forestry every year. Climate change aggravates the adverse effects of combined stresses and increases such losses. Trees suffer even more from the recurrence of biotic and abiotic stress combinations owing to their long lifecycle. Despite the effort to study the damage from individual stress factors, less attention has been given to the effect of the complex interactions between multiple biotic and abiotic stresses. In this review, we assess the importance, impact, and mitigation strategies of climate change driven interactions between biotic and abiotic stresses in forestry. The ecological and economic importance of biotic and abiotic stresses under different combinations is highlighted by their contribution to the decline of the global forest area through their direct and indirect roles in forest loss and to the decline of biodiversity resulting from local extinction of endangered species of trees, emission of biogenic volatile organic compounds, and reduction in the productivity and quality of forest products and services. The abiotic stress factors such as high temperature and drought increase forest disease and insect pest outbreaks, decrease the growth of trees, and cause tree mortality. Reports of massive tree mortality events caused by "hotter droughts" are increasing all over the world, affecting several genera of trees including some of the most important genera in plantation forests, such as Pine, Poplar, and Eucalyptus. While the biotic stress factors such as insect pests, pathogens, and parasitic plants have been reported to be associated with many of these mortality events, a considerable number of the reports have not taken into account the contribution of such biotic factors. The available mitigation strategies also tend to undermine the interactive effect under combined stresses. Thus, this discussion centers on mitigation strategies based on research and innovation, which build on models previously used to curb individual stresses.
Collapse
Affiliation(s)
- Demissew Tesfaye Teshome
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- *Correspondence: Sanushka Naidoo,
| |
Collapse
|
14
|
Molecular Effects of Xylella fastidiosa and Drought Combined Stress in Olive Trees. PLANTS 2019; 8:plants8110437. [PMID: 31652681 PMCID: PMC6918294 DOI: 10.3390/plants8110437] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/01/2019] [Accepted: 10/20/2019] [Indexed: 12/29/2022]
Abstract
Due to global climate change, complex combinations of stresses are expected to occur, among which the interaction between pathogens and drought stress may have a significant effect on growth and yield. In this study, the Xylella fastidiosa (Xf)-resistant cultivar Leccino and the susceptible one Cellina di Nardò were subjected to (a) individual drought stress, (b) Xf infection and (c) combination of both stress conditions. Here we report the physiological response to stresses in water content in leaves and the modulation in the expression level of seven genes responsive to plant water status and pathogen infection. In Xf-resistant plants, higher expression levels are reported for genes belonging to ROS-scavenging systems and for genes involved in pathogen stress (pathogenesis-related, PR, and leucine-rich repeat genes, LRR-RLK). However, PR and LRR-RLK were not further induced by water deficit. Interestingly, the genes related to drought response (aquaporin, PIP2.1, dehydration responsive element binding, DREB, and dehydrin, DHN), which induction was higher in Cellina di Nardò compared to Leccino during drought stress, was poorly induced in Xf-susceptible plants when Xf occur. Conversely, DHN was induced by Xf presence in Leccino. These results were consistent with observations on water content. Indeed, response was similar in Leccino regardless kind of stress or combination, whereas a strong reduction was observed in Xf-susceptible plants infected by Xf or in presence of combined stresses. Thus, the reported findings indicate that resistance of Leccino to Xf could be linked to its lower resistance to water stress, probably leading to the activation of alternative defense pathways that support the plant in Xf response.
Collapse
|
15
|
Galarneau ERA, Lawrence DP, Travadon R, Baumgartner K. Drought Exacerbates Botryosphaeria Dieback Symptoms in Grapevines and Confounds Host-based Molecular Markers of Infection by Neofusicoccum parvum. PLANT DISEASE 2019; 103:1738-1745. [PMID: 31082329 DOI: 10.1094/pdis-09-18-1549-re] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neofusicoccum parvum, causal fungus of the grapevine trunk disease Botryosphaeria dieback, attacks the wood of Vitis vinifera. Because lesions are internal, using putative host-based markers of infection from leaves for diagnosis is a nondestructive option. However, their specificity under drought stress is unknown. Potted 'Cabernet-Sauvignon' were inoculated with N. parvum in the greenhouse after wounding (IW), and with wounded and nonwounded noninoculated controls. At 2 weeks postinoculation (WPI), half of the plants were severely stressed (SS), receiving 30% water volume of the well-watered (WW) plants. Larger lesions at 12 WPI among IW-SS plants, compared with all other treatments, revealed an interactive effect of inoculation and drought on lesion length. Expression of eight putative marker genes was analyzed in leaves by qPCR at the onset of drought stress, and at 8 and 12 WPI. One marker showed consistent over-expression at 8 WPI in IW plants, regardless of water treatment, suggesting specificity to infection. By 12 WPI, higher expression of seven genes in all SS plants (across inoculation treatments) revealed specificity to drought. Cross-reactivity of markers to drought, therefore, limits their utility for disease diagnosis in the field, where drought induced by climate and deficit irrigation is common.
Collapse
Affiliation(s)
- Erin R A Galarneau
- 1 Department of Plant Pathology, University of California, Davis, CA 95616
| | - Daniel P Lawrence
- 1 Department of Plant Pathology, University of California, Davis, CA 95616
| | - Renaud Travadon
- 1 Department of Plant Pathology, University of California, Davis, CA 95616
| | - Kendra Baumgartner
- 2 United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA 95616
| |
Collapse
|
16
|
David L, Harmon AC, Chen S. Plant immune responses - from guard cells and local responses to systemic defense against bacterial pathogens. PLANT SIGNALING & BEHAVIOR 2019; 14:e1588667. [PMID: 30907231 PMCID: PMC6512940 DOI: 10.1080/15592324.2019.1588667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
When plants are infected by pathogens two distinct responses can occur, the early being a local response in the infected area, and later a systemic response in non-infected tissues. Closure of stomata has recently been found to be a local response to bacterial pathogens. Stomata closure is linked to both salicylic acid (SA), an essential hormone in local responses and systemic acquired resistance (SAR), and absisic acid (ABA) a key regulator of drought and other abiotic stresses. SAR reduces the effects of later infections. In this review we discuss recent research elucidating the role of guard cells in local and systemic immune responses, guard cell interactions with abiotic and hormone signals, as well as putative functions and interactions between long-distance SAR signals.
Collapse
Affiliation(s)
- Lisa David
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
| | - Alice C. Harmon
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
- CONTACT Sixue Chen Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Velasco-Arroyo B, Diaz-Mendoza M, Gomez-Sanchez A, Moreno-Garcia B, Santamaria ME, Torija-Bonilla M, Hensel G, Kumlehn J, Martinez M, Diaz I. Silencing barley cystatins HvCPI-2 and HvCPI-4 specifically modifies leaf responses to drought stress. PLANT, CELL & ENVIRONMENT 2018; 41:1776-1790. [PMID: 29486055 DOI: 10.1111/pce.13178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Protein breakdown and mobilization are some of the major metabolic features associated with abiotic stresses, essential for nutrient recycling and plant survival. Genetic manipulation of protease and/or protease inhibitors may contribute to modulate proteolytic processes and plant responses. The expression analysis of the whole cystatin family, inhibitors of C1A cysteine proteases, after water deprivation in barley leaves highlighted the involvement of Icy-2 and Icy-4 cystatin genes. Artificial microRNA lines independently silencing the two drought-induced cystatins were generated to assess their function in planta. Phenotype alterations at the final stages of the plant life cycle are represented by the stay-green phenotype of silenced cystatin 2 lines. Besides, the enhanced tolerance to drought and differential responses to water deprivation at the initial growing stages are observed. The mutual compensating expression of Icy-2 and Icy-4 genes in the silencing lines pointed to their cooperative role. Proteolytic patterns by silencing these cystatins were concomitant with modifications in the expression of potential target proteases, in particular, HvPap-1, HvPap-12, and HvPap-16 C1A proteases. Metabolomics analysis lines also revealed specific modifications in the accumulation of several metabolites. These findings support the use of plants with altered proteolytic regulation in crop improvement in the face of climate change.
Collapse
Affiliation(s)
- Blanca Velasco-Arroyo
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Mercedes Diaz-Mendoza
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Andrea Gomez-Sanchez
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Beatriz Moreno-Garcia
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Maria Estrella Santamaria
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Miguel Torija-Bonilla
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Goetz Hensel
- Leibniz Institut fur Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Jochen Kumlehn
- Leibniz Institut fur Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, 28223, Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
18
|
Pan X, Fang Y, Yang X, Zheng D, Chen L, Wang L, Xiao J, Wang XE, Wang K, Cheng Z, Yu H, Zhang W. Chromatin states responsible for the regulation of differentially expressed genes under 60Co~γ ray radiation in rice. BMC Genomics 2017; 18:778. [PMID: 29025389 PMCID: PMC5639768 DOI: 10.1186/s12864-017-4172-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/05/2017] [Indexed: 11/24/2022] Open
Abstract
Background The role of histone modifications in the DNA damage response has been extensively studied in non-plant systems, including mammals and yeast. However, there is a lack of detailed evidence showing how chromatin dynamics, either an individual mark or combined chromatin states, participate in regulating differentially expressed genes in the plant DNA damage response. Results In this study, we used RNA-seq and ChIP-seq to show that differentially expressed genes (DEGs), in response to ionizing radiation (IR), might be involved in different pathways responsible for the DNA damage response. Moreover, chromatin structures associated with promoters, exons and intergenic regions are significantly affected by IR. Most importantly, either an individual mark or a certain chromatin state was found to be highly correlated with the expression of up-regulated genes. In contrast, only the chromatin states, as opposed to any individual marks tested, are related to the expression of the down-regulated genes. Conclusions Our findings demonstrate that IR-related DEGs are modulated by distinct epigenetic mechanisms. Either chromatin states or distinct histone dynamics may act sequentially or in combination in regulating up-regulated genes, but the complex chromatin structure is mainly responsible for the expression of down-regulated genes. Thus, this study provides new insights into how up- and down-regulated genes are epigenetically regulated at the chromatin levels, thereby helping us to understand distinct epigenetic mechanisms that function in the plant DNA damage response. Electronic supplementary material The online version of this article (10.1186/s12864-017-4172-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiucai Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Yuan Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Xueming Yang
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Dongyang Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Lifen Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Lei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Jin Xiao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Xiu-E Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Kai Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou, Fujian, 35002, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hengxiu Yu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China. .,JiangSu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
19
|
Gupta A, Senthil-Kumar M. Transcriptome changes in Arabidopsis thaliana infected with Pseudomonas syringae during drought recovery. Sci Rep 2017; 7:9124. [PMID: 28831155 PMCID: PMC5567376 DOI: 10.1038/s41598-017-09135-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/24/2017] [Indexed: 11/24/2022] Open
Abstract
Field-grown plants experience cycles of drought stress and recovery due to variation in soil moisture status. Physiological, biochemical and transcriptome responses instigated by recovery are expected to be different from drought stress and non-stressed state. Such responses can further aid or antagonize the plant's interaction with the pathogen. However, at molecular level, not much is known about plant-pathogen interaction during drought recovery. In the present study, we performed a microarray-based global transcriptome profiling and demonstrated the existence of unique transcriptional changes in Arabidopsis thaliana inoculated with Pseudomonas syringae pv. tomato DC3000 at the time of drought recovery (drought recovery pathogen, DRP) when compared to the individual drought (D) or pathogen (P) or drought recovery (DR). Furthermore, the comparison of DRP with D or DR and P transcriptome revealed the presence of a few common genes among three treatments. Notably, a gene encoding proline dehydrogenase (AtProDH1) was found to be commonly up-regulated under drought recovery (DR), DRP and P stresses. We also report an up-regulation of pyrroline-5-carboxylate biosynthesis pathway during recovery. We propose that AtProDH1 influences the defense pathways during DRP. Altogether, this study provides insight into the understanding of defense responses that operate in pathogen-infected plants during drought recovery.
Collapse
Affiliation(s)
- Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
20
|
Gupta A, Hisano H, Hojo Y, Matsuura T, Ikeda Y, Mori IC, Senthil-Kumar M. Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci Rep 2017; 7:4017. [PMID: 28638069 PMCID: PMC5479852 DOI: 10.1038/s41598-017-03907-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Global transcriptome studies demonstrated the existence of unique plant responses under combined stress which are otherwise not seen during individual stresses. In order to combat combined stress plants use signaling pathways and 'cross talk' mediated by hormones involved in stress and growth related processes. However, interactions among hormones' pathways in combined stressed plants are not yet known. Here we studied dynamics of different hormones under individual and combined drought and pathogen infection in Arabidopsis thaliana by liquid chromatography-mass spectrometry (LC-MS) based profiling. Our results revealed abscisic acid (ABA) and salicylic acid (SA) as key regulators under individual drought and pathogen stress respectively. Under combined drought and host pathogen stress (DH) we observed non-induced levels of ABA with an upsurge in SA and jasmonic acid (JA) concentrations, underscoring their role in basal tolerance against host pathogen. Under a non-host pathogen interaction with drought (DNH) stressed plants, ABA, SA and JA profiles were similar to those under DH or non-host pathogen alone. We propose that plants use SA/JA dependent signaling during DH stress which antagonize ABA biosynthesis and signaling pathways during early stage of stress. The study provides insights into hormone modulation at different time points during combined stress.
Collapse
Affiliation(s)
- Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, JNU campus, New Delhi, 110067, India
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, JNU campus, New Delhi, 110067, India.
| |
Collapse
|
21
|
Sinha R, Gupta A, Senthil-Kumar M. Concurrent Drought Stress and Vascular Pathogen Infection Induce Common and Distinct Transcriptomic Responses in Chickpea. FRONTIERS IN PLANT SCIENCE 2017; 8:333. [PMID: 28382041 PMCID: PMC5361651 DOI: 10.3389/fpls.2017.00333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 05/20/2023]
Abstract
Chickpea (Cicer arietinum); the second largest legume grown worldwide is prone to drought and various pathogen infections. These drought and pathogen stresses often occur concurrently in the field conditions. However, the molecular events in response to that are largely unknown. The present study examines the transcriptome dynamics in chickpea plants exposed to a combination of water-deficit stress and Ralstonia solanacearum infection. R. solanacearum is a potential wilt disease causing pathogen in chickpea. Drought stressed chickpea plants were infected with this pathogen and the plants were allowed to experience progressive drought with 2 and 4 days of R. solanacearum infection called short duration stress (SD stresses) and long duration stress (LD stresses), respectively. Our study showed that R. solanacearum multiplication decreased under SD-combined stress compared to SD-pathogen but there was no significant change in LD-combined stress compared to LD-pathogen. The microarray analysis during these conditions showed that 821 and 1039 differentially expressed genes (DEGs) were unique to SD- and LD-combined stresses, respectively, when compared with individual stress conditions. Three and fifteen genes were common among all the SD-stress treatments and LD-stress treatments, respectively. Genes involved in secondary cell wall biosynthesis, alkaloid biosynthesis, defense related proteins, and osmo-protectants were up-regulated during combined stress. The expression of genes involved in lignin and cellulose biosynthesis were specifically up-regulated in SD-combined, LD-combined, and LD-pathogen stress. A close transcriptomic association of LD-pathogen stress with SD-combined stress was observed in this study which indicates that R. solanacearum infection also exerts drought stress along with pathogen stress thus mimics combined stress effect. Furthermore the expression profiling of candidate genes using real-time quantitative PCR validated the microarray data. The study showed that down-regulation of defense-related genes during LD-combined stress resulted in an increased bacterial multiplication as compared to SD-combined stress. Overall, our study highlights a sub-set of DEGs uniquely expressed in response to combined stress, which serve as potential candidates for further functional characterization to delineate the molecular response of the plant to concurrent drought-pathogen stress.
Collapse
|
22
|
Zheng C, Wang Y, Ding Z, Zhao L. Global Transcriptional Analysis Reveals the Complex Relationship between Tea Quality, Leaf Senescence and the Responses to Cold-Drought Combined Stress in Camellia sinensis. FRONTIERS IN PLANT SCIENCE 2016; 7:1858. [PMID: 28018394 PMCID: PMC5145883 DOI: 10.3389/fpls.2016.01858] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/25/2016] [Indexed: 05/18/2023]
Abstract
In field conditions, especially in arid and semi-arid areas, tea plants are often simultaneously exposed to various abiotic stresses such as cold and drought, which have profound effects on leaf senescence process and tea quality. However, most studies of gene expression in stress responses focus on a single inciting agent, and the confounding effect of multiple stresses on crop quality and leaf senescence remain unearthed. Here, global transcriptome profiles of tea leaves under separately cold and drought stress were compared with their combination using RNA-Seq technology. This revealed that tea plants shared a large overlap in unigenes displayed "similar" (26%) expression pattern and avoid antagonistic responses (lowest level of "prioritized" mode: 0%) to exhibit very congruent responses to co-occurring cold and drought stress; 31.5% differential expressed genes and 38% of the transcriptome changes in response to combined stresses were unpredictable from cold or drought single-case studies. We also identified 319 candidate genes for enhancing plant resistance to combined stress. We then investigated the combined effect of cold and drought on tea quality and leaf senescence. Our results showed that drought-induced leaf senescence were severely delayed by (i) modulation of a number of senescence-associated genes and cold responsive genes, (ii) enhancement of antioxidant capacity, (iii) attenuation of lipid degradation, (iv) maintenance of cell wall and photosynthetic system, (v) alteration of senescence-induced sugar effect/sensitivity, as well as (vi) regulation of secondary metabolism pathways that significantly influence the quality of tea during combined stress. Therefore, care should be taken when utilizing a set of stresses to try and maximize leaf longevity and tea quality.
Collapse
Affiliation(s)
| | | | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural UniversityQingdao, China
| | | |
Collapse
|
23
|
Abstract
As sessile organisms, plants are continuously exposed to various environmental stresses. In contrast to the controlled conditions employed in many researches, more than one or more abiotic and/or biotic stresses simultaneously occur and highly impact growth of plants and crops in the field environments. Therefore, an urgent need to generate crops with enhanced tolerance to stress combinations exists. Researchers, however, focused on the mechanisms underlying acclimation of plants to combined stresses only in recent studies. Plant hormones might be a key regulator of the tailored responses of plants to different stress combinations. Co-ordination between different hormone signaling, or hormone signaling and other pathways such as ROS regulatory mechanisms could be flexible, being altered by timing and types of stresses, and could be different depending on plant species under the stress combinations. In this review, update on recent studies focusing on complex-mode of hormone signaling under stress combinations will be provided.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo, Japan
- CONTACT Nobuhiro Suzuki .
| |
Collapse
|
24
|
Sinha R, Gupta A, Senthil-Kumar M. Understanding the Impact of Drought on Foliar and Xylem Invading Bacterial Pathogen Stress in Chickpea. FRONTIERS IN PLANT SCIENCE 2016; 7:902. [PMID: 27446132 PMCID: PMC4914590 DOI: 10.3389/fpls.2016.00902] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/08/2016] [Indexed: 05/22/2023]
Abstract
In field conditions, plants are concurrently exposed to multiple stresses, where one stressor impacts the plant's response to another stressor, and the resultant net effect of these stresses differs from individual stress response. The present study investigated the effect of drought stress on interaction of chickpea with Pseudomonas syringae pv. phaseolicola (Psp; foliar pathogen) and Ralstonia solanacearum (Rs; xylem inhabiting wilt causing pathogen), respectively, and the net-effect of combined stress on chlorophyll content and cell death. Two type of stress treatments were used to study the influence of each stress factor during combined stress, viz., imposition of drought stress followed by pathogen challenge (DP), and pathogen inoculated plants imposed with drought in course of pathogen infection (PD). Drought stress was imposed at different levels with pathogen inoculum to understand the influence of different stress intensities on stress interaction and their net impact. Drought stressed chickpea plants challenged with Psp infection (DPsp) showed reduced in planta bacterial number compared to Psp infection alone. Similarly, Rs infection of chickpea plants showed reduced in planta bacterial number under severe drought stress. Combined drought and Psp (DPsp) infected plants showed decreased cell death compared to plants infected only with Psp but the extent of cell death was similar to drought stressed plants. Similarly, chlorophyll content in plants under combined stress was similar to the individual drought stressed plants; however, the chlorophyll content was more compared to pathogen only infected plants. Under combined drought and Rs infection (DRs), cell death was similar to individual drought stress but significantly less compared to only Rs infected plants. Altogether, the study proposes that both stress interaction and net effect of combined stress could be majorly influenced by first occurring stress, for example, drought stress in DP treatment. In addition, our results indicate that the outcome of the two stress interaction in plant depends on timing of stress occurrence and nature of infecting pathogen.
Collapse
|
25
|
Gupta A, Dixit SK, Senthil-Kumar M. Drought Stress Predominantly Endures Arabidopsis thaliana to Pseudomonas syringae Infection. FRONTIERS IN PLANT SCIENCE 2016; 7:808. [PMID: 27375661 PMCID: PMC4894909 DOI: 10.3389/fpls.2016.00808] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/24/2016] [Indexed: 05/20/2023]
Abstract
Plant responses to a combination of drought and bacterial pathogen infection, an agronomically important and altogether a new stress, are not well-studied. While occurring concurrently, these two stresses can lead to synergistic or antagonistic effects on plants due to stress-interaction. It is reported that plant responses to the stress combinations consist of both strategies, unique to combined stress and those shared between combined and individual stresses. However, the combined stress response mechanisms governing stress interaction and net impact are largely unknown. In order to study these adaptive strategies, an accurate and convenient methodology is lacking even in model plants like Arabidopsis thaliana. The gradual nature of drought stress imposition protocol poses a hindrance in simultaneously applying pathogen infection under laboratory conditions to achieve combined stress. In present study we aimed to establish systematic combined stress protocol and to study physiological responses of the plants to various degrees of combined stress. Here, we have comprehensively studied the impact of combined drought and Pseudomonas syringae pv. tomato DC3000 infection on A. thaliana. Further, by employing different permutations of drought and pathogen stress intensities, an attempt was made to dissect the contribution of each individual stress effects during their concurrence. We hereby present two main aspects of combined stress viz., stress interaction and net impact of the stress on plants. Mainly, this study established a systematic protocol to assess the impact of combined drought and bacterial pathogen stress. It was observed that as a result of net impact, some physiological responses under combined stress are tailored when compared to the plants exposed to individual stresses. We also infer that plant responses under combined stress in this study are predominantly influenced by the drought stress. Our results show that pathogen multiplication was reduced by drought stress in combined stressed plants. Combined stressed plants also displayed reduced ROS generation and declined cell death which could be attributed to activation of effective basal defense responses. We hypothesize a model on ABA mediated gene regulation to partly explain the possible mechanistic basis for reduced in planta bacterial numbers under combined stress over individual pathogen stress.
Collapse
|