1
|
Hathwaik LT, Horstman J, Thomson JG, Thilmony R. Efficient Gene Stacking in Rice Using the GAANTRY System. RICE (NEW YORK, N.Y.) 2021; 14:17. [PMID: 33547973 PMCID: PMC7867672 DOI: 10.1186/s12284-021-00460-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 05/29/2023]
Abstract
Genetic engineering of rice provides a means for improving rice grain quality and yield, and the introduction and expression of multiple genes can produce new traits that would otherwise be difficult to obtain through conventional breeding. GAANTRY (Gene Assembly in Agrobacterium by Nucleic acid Transfer using Recombinase technologY) was previously shown to be a precise and robust system to stably stack ten genes (28 kilobases (kb)) within an Agrobacterium virulence plasmid Transfer-DNA (T-DNA) and obtain high-quality Arabidopsis and potato transgenic events. To determine whether the GAANTRY system can be used to engineer a monocotyledonous crop, two new T-DNA constructs, carrying five (16.9 kb) or eleven (37.4 kb) cargo sequences were assembled and transformed into rice. Characterization of 53 independent transgenic events demonstrated that more than 50% of the plants carried all of the desired cargo sequences and exhibited the introduced traits. Additionally, more than 18% of the lines were high-quality events containing a single copy of the introduced transgenes and were free of sequences from outside of the T-DNA. Therefore, GAANTRY provides a simple, precise and versatile tool for transgene stacking in rice and potentially other cereal grain crops.
Collapse
Affiliation(s)
- Leyla T Hathwaik
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - James Horstman
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - James G Thomson
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - Roger Thilmony
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA.
| |
Collapse
|
2
|
Abstract
Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of "engineering the engineer," leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.
Collapse
|
3
|
Cappai F, Garcia A, Cullen R, Davis M, Munoz PR. Advancements in Low-Chill Blueberry Vaccinium corymbosum L. Tissue Culture Practices. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1624. [PMID: 33238447 PMCID: PMC7700190 DOI: 10.3390/plants9111624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/22/2023]
Abstract
The demand for blueberry Vaccinium corymbosum L. (and hybrids) plants has significantly increased in the last 30 years due to its market expansion. In vitro propagation of sterile plants are required for commercial purposes but also for research applications such as plant transformation. Thus far, tissue culture characteristics of the tropical-adapted blueberry have been scarcely studied. In this study we present the following findings: (i) zeatin, a hormone used to promote plant growth, should be used in the 1-2 mg/L range to promote plant architecture optimal for transformation experiments; (ii) red-blue LED lights induce more production of meristems and biomass than white LED or fluorescent lights; (iii) levels as high as 1000 mg/L of decontamination agents (the antibiotics timentin and cefotaxime) can be used to eliminate Agrobacterium overgrowth without inhibiting plant growth during plant transformation experiments; (iv) kanamycin, paromomycin, and geneticin, which are widely used antibiotics to select transgene-carrying transformants, cannot be efficiently used in this system; (v) glufosinate, a widely used herbicide, shows potential to be used as an effective selectable marker for transformed plants.
Collapse
Affiliation(s)
| | | | | | | | - Patricio R. Munoz
- Blueberry Breeding and Genomics Laboratory, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA; (F.C.); (A.G.); (R.C.); (M.D.)
| |
Collapse
|
4
|
Betekhtin A, Hus K, Rojek-Jelonek M, Kurczynska E, Nibau C, Doonan JH, Hasterok R. In Vitro Tissue Culture in Brachypodium: Applications and Challenges. Int J Mol Sci 2020; 21:E1037. [PMID: 32033195 PMCID: PMC7037373 DOI: 10.3390/ijms21031037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/29/2023] Open
Abstract
Brachypodium distachyon has become an excellent model for plant breeding and bioenergy grasses that permits many fundamental questions in grass biology to be addressed. One of the constraints to performing research in many grasses has been the difficulty with which they can be genetically transformed and the generally low frequency of such transformations. In this review, we discuss the contribution that transformation techniques have made in Brachypodium biology as well as how Brachypodium could be used to determine the factors that might contribute to transformation efficiency. In particular, we highlight the latest research on the mechanisms that govern the gradual loss of embryogenic potential in a tissue culture and propose using B. distachyon as a model for other recalcitrant monocots.
Collapse
Affiliation(s)
- Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Karolina Hus
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Magdalena Rojek-Jelonek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Ewa Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Candida Nibau
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth SY23 3EE, UK; (C.N.); (J.H.D.)
| | - John H. Doonan
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth SY23 3EE, UK; (C.N.); (J.H.D.)
| | - Robert Hasterok
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| |
Collapse
|
5
|
Yu G, Wang J, Miao L, Xi M, Wang Q, Wang K. Optimization of Mature Embryo-Based Tissue Culture and Agrobacterium-Mediated Transformation in Model Grass Brachypodium distachyon. Int J Mol Sci 2019; 20:E5448. [PMID: 31683725 PMCID: PMC6862288 DOI: 10.3390/ijms20215448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023] Open
Abstract
Agrobacterium-mediated genetic transformation is well established in the model grass Brachypodium distachyon. However, most protocols employ immature embryos because of their better regenerative capacity. A major problem associated with the immature embryo system is that they are available only during a limited time window of growing plants. In this study, we have developed an optimized Agrobacterium-mediated genetic transformation protocol that utilizes mature embryos. We have adopted seed shearing and photoautotrophic rooting (PR) in callus induction and root regeneration, respectively, with evident significant improvement in these aspects. We have also revealed that the newly developed chemical inducer Fipexide (FPX) had the ability to induce callus, shoots, and roots. By comparison, we have demonstrated that FPX shows higher efficiency in shoot generation than other frequently used chemicals in our mature embryo-based system. In addition, we demonstrated that the age of embryogenetic callus severely affects the transformation efficiency (TE), with the seven-week-old embryogenetic callus having the highest TE reaching 52.6%, which is comparable with that in immature embryo transformation. The new methodologies reported here will advance the development and utilization of Brachypodium as a new model system for grass genomics.
Collapse
Affiliation(s)
- Guangrun Yu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Jianyong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China/Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Li Miao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Mengli Xi
- Co-Innovation Center for Sustainable Forestry in Southern China/Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Qiongli Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
6
|
Bahramnejad B, Naji M, Bose R, Jha S. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnol Adv 2019; 37:107405. [PMID: 31185263 DOI: 10.1016/j.biotechadv.2019.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
Abstract
Agrobacterium rhizogenes, along with A. tumefaciens, has been used to affect genetic transformation in plants for many years. Detailed studies conducted in the past have uncovered the basic mechanism of foreign gene transfer and the implication of Ri/Ti plasmids in this process. A number of reviews exist describing the usage of binary vectors with A. tumefaciens, but no comprehensive account of the numerous binary vectors employed with A. rhizogenes and their successful applications has been published till date. In this review, we recollect a brief history of development of Ri-plasmid/Ri-T-DNA based binary vectors systems and their successful implementation with A. rhizogenes for different applications. The modification of native Ri plasmid to introduce foreign genes followed by development of binary vector using Ri plasmid and how it facilitated rapid and feasible genetic manipulation, earlier impossible with native Ri plasmid, have been discussed. An important milestone was the development of inducible plant expressing promoter systems which made expression of toxic genes in plant systems possible. The successful application of binary vectors in conjunction with A. rhizogenes in gene silencing and genome editing studies which are relatively newer developments, demonstrating the amenability and adaptability of hairy roots systems to make possible studying previously intractable research areas have been summarized in the present review.
Collapse
Affiliation(s)
- Bahman Bahramnejad
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Kurdistan 66177-15175, Iran.
| | - Mohammad Naji
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Kurdistan 66177-15175, Iran
| | - Rahul Bose
- Department of Genetics, University of Calcutta, Kolkata 700019, India
| | - Sumita Jha
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| |
Collapse
|
7
|
Chen F, Liu Q, P Vogel J, Wu J. Agrobacterium-Mediated Transformation of Brachypodium distachyon. ACTA ACUST UNITED AC 2019; 4:e20088. [PMID: 30861331 DOI: 10.1002/cppb.20088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brachypodium distachyon is an excellent model system for the grasses and has been adopted as a research organism by many laboratories around the world. It has all of the biological traits required for a model system, including small stature, short life cycle, small genome, simple growth requirements, and a close relationship to major crop plants (cereals). In addition, numerous resources have been developed for working with this species, including genome sequences for many lines, sequenced mutant collections, and a large, freely available germplasm collection. Fortunately, among grasses B. distachyon is one of the most easily transformed species, an absolute necessity for a model system. Agrobacterium-mediated transformation is the preferred method to transform plants because it usually results in simple insertions of target DNA. In this article, we describe a method for Agrobacterium-mediated transformation of the inbred B. distachyon lines Bd21 and Bd21-3. Embryogenic callus induced from immature embryos is co-cultivated with Agrobacterium tumefaciens strain AGL1 or Agrobacterium rhizogenes strain 18r12v. Hygromycin and paromomycin are used as selective agents, with comparable transformation efficiencies (defined as the percentage of co-cultivated callus that produce transgenic plants) of 40% to 70%. It takes 20 to 30 weeks to obtain T1 seeds starting from the initial step of dissecting out immature embryos. This protocol has been shown to be efficient and facile in several studies that resulted in the creation of over 22,000 T-DNA mutants. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Fengjuan Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China.,College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qi Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China.,College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - John P Vogel
- DOE Joint Genome Institute, Walnut Creek, California.,University of California Berkeley, Berkeley, California
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China.,College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
8
|
Scholthof KBG, Irigoyen S, Catalan P, Mandadi KK. Brachypodium: A Monocot Grass Model Genus for Plant Biology. THE PLANT CELL 2018; 30:1673-1694. [PMID: 29997238 PMCID: PMC6139682 DOI: 10.1105/tpc.18.00083] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 07/11/2018] [Indexed: 05/21/2023]
Abstract
The genus Brachypodium represents a model system that is advancing our knowledge of the biology of grasses, including small grains, in the postgenomics era. The most widely used species, Brachypodium distachyon, is a C3 plant that is distributed worldwide. B. distachyon has a small genome, short life cycle, and small stature and is amenable to genetic transformation. Due to the intensive and thoughtful development of this grass as a model organism, it is well-suited for laboratory and field experimentation. The intent of this review is to introduce this model system genus and describe some key outcomes of nearly a decade of research since the first draft genome sequence of the flagship species, B. distachyon, was completed. We discuss characteristics and features of B. distachyon and its congeners that make the genus a valuable model system for studies in ecology, evolution, genetics, and genomics in the grasses, review current hot topics in Brachypodium research, and highlight the potential for future analysis using this system in the coming years.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 78596
| | - Pilar Catalan
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071 Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza E-50059, Spain
- Institute of Biology, Tomsk State University, Tomsk 634050, Russia
| | - Kranthi K Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 78596
| |
Collapse
|
9
|
Collier R, Thomson JG, Thilmony R. A versatile and robust Agrobacterium-based gene stacking system generates high-quality transgenic Arabidopsis plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:573-583. [PMID: 29901840 DOI: 10.1111/tpj.13992] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 05/20/2023]
Abstract
Biotechnology provides a means for the rapid genetic improvement of plants. Although single genes have been important in engineering herbicide and pest tolerance traits in crops, future improvements of complex traits like yield and nutritional quality will likely require the introduction of multiple genes. This research reports a system (GAANTRY; Gene Assembly in Agrobacterium by Nucleic acid Transfer using Recombinase technologY) for the flexible, in vivo stacking of multiple genes within an Agrobacterium virulence plasmid Transfer-DNA (T-DNA). The GAANTRY system utilizes in vivo transient expression of unidirectional site-specific recombinases and an alternating selection scheme to sequentially assemble multiple genes into a single transformation construct. To demonstrate GAANTRY's capabilities, 10 cargo sequences were sequentially stacked together to produce a 28.5-kbp T-DNA, which was used to generate hundreds of transgenic events. Approximately 90% of the events identified using a dual antibiotic selection screen exhibited all of the introduced traits. A total of 68% of the tested lines carried a single copy of the selection marker transgene located near the T-DNA left border, and only 8% contained sequence from outside the T-DNA. The GAANTRY system can be modified to easily accommodate any method of DNA assembly and generate high-quality transgenic plants, making it a powerful, yet simple to use tool for plant genetic engineering.
Collapse
Affiliation(s)
- Ray Collier
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - James G Thomson
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - Roger Thilmony
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| |
Collapse
|
10
|
Agrobacterium rhizogenes-mediated transformation of a dioecious plant model Silene latifolia. N Biotechnol 2018; 48:20-28. [PMID: 29656128 DOI: 10.1016/j.nbt.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/06/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022]
Abstract
Silene latifolia serves as a model species to study dioecy, the evolution of sex chromosomes, dosage compensation and sex-determination systems in plants. Currently, no protocol for genetic transformation is available for this species, mainly because S. latifolia is considered recalcitrant to in vitro regeneration and infection with Agrobacterium tumefaciens. Using cytokinins and their synthetic derivatives, we markedly improved the efficiency of regeneration. Several agrobacterial strains were tested for their ability to deliver DNA into S. latifolia tissues leading to transient and stable expression of the GUS reporter. The use of Agrobacterium rhizogenes strains resulted in the highest transformation efficiency (up to 4.7% of stable transformants) in hairy root cultures. Phenotypic and genotypic analyses of the T1 generation suggested that the majority of transformation events contain a small number of independent T-DNA insertions and the transgenes are transmitted to the progeny in a Mendelian pattern of inheritance. In short, we report an efficient and reproducible protocol for leaf disc transformation and subsequent plant regeneration in S. latifolia, based on the unique combination of infection with A. rhizogenes and plant regeneration from hairy root cultures using synthetic cytokinins. A protocol for the transient transformation of S.latifolia protoplasts was also developed and applied to demonstrate the possibility of targeted mutagenesis of the sex linked gene SlAP3 by TALENs and CRISPR/Cas9.
Collapse
|
11
|
Collier R, Dasgupta K, Xing YP, Hernandez BT, Shao M, Rohozinski D, Kovak E, Lin J, de Oliveira MLP, Stover E, McCue KF, Harmon FG, Blechl A, Thomson JG, Thilmony R. Accurate measurement of transgene copy number in crop plants using droplet digital PCR. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1014-1025. [PMID: 28231382 DOI: 10.1111/tpj.13517] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 05/22/2023]
Abstract
Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species.
Collapse
Affiliation(s)
- Ray Collier
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, USDA-ARS, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Kasturi Dasgupta
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Yan-Ping Xing
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, USDA-ARS, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Bryan Tarape Hernandez
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Min Shao
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Dominica Rohozinski
- Plant Gene Expression Center, USDA-ARS, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Emma Kovak
- Plant Gene Expression Center, USDA-ARS, 800 Buchanan Street, Albany, CA, 94710, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Jeanie Lin
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, USDA-ARS, 800 Buchanan Street, Albany, CA, 94710, USA
| | | | - Ed Stover
- USDA-ARS Subtropical Insects and Horticulture Research Unit, Fort Pierce, FL, 34945, USA
| | - Kent F McCue
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, USDA-ARS, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Frank G Harmon
- Plant Gene Expression Center, USDA-ARS, 800 Buchanan Street, Albany, CA, 94710, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Ann Blechl
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, USDA-ARS, 800 Buchanan Street, Albany, CA, 94710, USA
| | - James G Thomson
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, USDA-ARS, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Roger Thilmony
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, USDA-ARS, 800 Buchanan Street, Albany, CA, 94710, USA
| |
Collapse
|
12
|
Abstract
This work reports the draft genome sequence of Agrobacterium rhizogenes strain NCPPB2659 (also known as strain K599). The assembled genome contains 5,277,347 bp, composed of one circular chromosome, the pRi2659 virulence plasmid, and 17 scaffolds pertaining to the linear chromosome. The wild-type strain causes hairy root disease in dicots and has been used to make transgenic hairy root cultures and composite plants (nontransgenic shoots with transgenic roots). Disarmed variants of the strain have been used to produce stable transgenic monocot and dicot plants.
Collapse
|