1
|
Mascarenhas MS, Nascimento FDS, Schittino LMP, Galinari LB, Lino LSM, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, Santos-Serejo JAD, Amorim EP. Construction and Validation of CRISPR/Cas Vectors for Editing the PDS Gene in Banana ( Musa spp.). Curr Issues Mol Biol 2024; 46:14422-14437. [PMID: 39727993 DOI: 10.3390/cimb46120865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/28/2024] Open
Abstract
Bananas and plantains are important staple food crops affected by biotic and abiotic stresses. The gene editing technique via Clustered Regularly Interspaced Short Palindromic Repeats associated with the Cas protein (CRISPR/Cas) has been used as an important tool for development of cultivars with high tolerance to stresses. This study sought to develop a protocol for the construction of vectors for gene knockout. Here we use the phytoene desaturase (PDS) gene as a case study in Prata-Anã banana by the nonhomologous end junction (NHEJ) method. PDS is a key gene in the carotenoid production pathway in plants and its knockout leads to easily visualized phenotypes such as dwarfism and albinism in plants. Agrobacterium-mediated transformation delivered CRISPR/Cas9 constructs containing gRNAs were inserted into embryogenic cell suspension cultures. This is the first study to provide an effective method/protocol for constructing gene knockout vectors, demonstrating gene editing potential in a Brazilian banana variety. The constitutive (CaMV 35S) and root-specific vectors were successfully assembled and confirmed in transformed Agrobacterium by DNA extraction and PCR. The specificity of transformation protocols makes it possible to use the CRISPR-Cas9 technique to develop Prata-Anã banana plants with enhanced tolerance/resistance to major biotic and abiotic factors.
Collapse
Affiliation(s)
| | | | | | - Livia Batista Galinari
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa 36507-900, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Devanna BN, Sucharita S, Sunitha NC, Anilkumar C, Singh PK, Pramesh D, Samantaray S, Behera L, Katara JL, Parameswaran C, Rout P, Sabarinathan S, Rajashekara H, Sharma TR. Refinement of rice blast disease resistance QTLs and gene networks through meta-QTL analysis. Sci Rep 2024; 14:16458. [PMID: 39013915 PMCID: PMC11252161 DOI: 10.1038/s41598-024-64142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
Rice blast disease is the most devastating disease constraining crop productivity. Vertical resistance to blast disease is widely studied despite its instability. Clusters of genes or QTLs conferring blast resistance that offer durable horizontal resistance are important in resistance breeding. In this study, we aimed to refine the reported QTLs and identify stable meta-QTLs (MQTLs) associated with rice blast resistance. A total of 435 QTLs were used to project 71 MQTLs across all the rice chromosomes. As many as 199 putative rice blast resistance genes were identified within 53 MQTL regions. The genes included 48 characterized resistance gene analogs and related proteins, such as NBS-LRR type, LRR receptor-like kinase, NB-ARC domain, pathogenesis-related TF/ERF domain, elicitor-induced defense and proteins involved in defense signaling. MQTL regions with clusters of RGA were also identified. Fifteen highly significant MQTLs included 29 candidate genes and genes characterized for blast resistance, such as Piz, Nbs-Pi9, pi55-1, pi55-2, Pi3/Pi5-1, Pi3/Pi5-2, Pikh, Pi54, Pik/Pikm/Pikp, Pb1 and Pb2. Furthermore, the candidate genes (42) were associated with differential expression (in silico) in compatible and incompatible reactions upon disease infection. Moreover, nearly half of the genes within the MQTL regions were orthologous to those in O. sativa indica, Z. mays and A. thaliana, which confirmed their significance. The peak markers within three significant MQTLs differentiated blast-resistant and susceptible lines and serve as potential surrogates for the selection of blast-resistant lines. These MQTLs are potential candidates for durable and broad-spectrum rice blast resistance and could be utilized in blast resistance breeding.
Collapse
Affiliation(s)
| | - Sumali Sucharita
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Pankaj K Singh
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - D Pramesh
- University of Agricultural Sciences, Raichur, Karnataka, India
| | | | - Lambodar Behera
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - C Parameswaran
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Prachitara Rout
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | | | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India.
| |
Collapse
|
3
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
4
|
|
5
|
Singh J, Gupta SK, Devanna BN, Singh S, Upadhyay A, Sharma TR. Blast resistance gene Pi54 over-expressed in rice to understand its cellular and sub-cellular localization and response to different pathogens. Sci Rep 2020; 10:5243. [PMID: 32251298 PMCID: PMC7090074 DOI: 10.1038/s41598-020-59027-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/31/2019] [Indexed: 11/26/2022] Open
Abstract
Rice blast resistance gene, Pi54 provides broad-spectrum resistance against different strains of Magnaporthe oryzae. Understanding the cellular localization of Pi54 protein is an essential step towards deciphering its place of interaction with the cognate Avr-gene. In this study, we investigated the sub-cellular localization of Pi54 with Green Fluorescent Protein (GFP) as a molecular tag through transient and stable expression in onion epidermal cells (Allium cepa) and susceptible japonica cultivar rice Taipei 309 (TP309), respectively. Confocal microscopy based observations of the onion epidermal cells revealed nucleus and cytoplasm specific GFP signals. In the stable transformed rice plants, GFP signal was recorded in the stomata, upper epidermal cells, mesophyll cells, vascular bundle, and walls of bundle sheath and bulliform cells of leaf tissues. These observations were further confirmed by Immunocytochemical studies. Using GFP specific antibodies, it was found that there was sufficient aggregation of GFP::Pi54protein in the cytoplasm of the leaf mesophyll cells and periphery of the epidermal cells. Interestingly, the transgenic lines developed in this study could show a moderate level of resistance to Xanthomonas oryzae and Rhizoctonia solani, the causal agents of the rice bacterial blight and sheath blight diseases, respectively. This study is a first detailed report, which emphasizes the cellular and subcellular distribution of the broad spectrum blast resistance gene Pi54 in rice and the impact of its constitutive expression towards resistance against other fungal and bacterial pathogens of rice.
Collapse
Affiliation(s)
- Jyoti Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Hislop College, R.T.M Nagpur University, Nagpur, India
| | | | - B N Devanna
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Sunil Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Tilak R Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India.
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India.
| |
Collapse
|
6
|
LEA Gene Expression Assessment in Advanced Mutant Rice Genotypes under Drought Stress. Int J Genomics 2020; 2019:8406036. [PMID: 32083115 PMCID: PMC7012254 DOI: 10.1155/2019/8406036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are primarily found in plants stem, roots, and other organs and play significant roles in tolerance to several abiotic stresses. Plants synthesize a discrete set of LEA proteins in response to drought stress. In this study, the expression patterns of LEA genes were investigated in two advanced mutant rice genotypes subjected to the drought stress condition and different physiological traits including photosynthetic rate, leaf chlorophyll content, and photosystem II (PSII) photochemical efficiency (Fv/Fm) which were analyzed to confirm their drought tolerance. Five LEA genes (OsLEA1, OsLEA2, OsLEA3, OsLEA4, and OsLEA5) were used in the evaluation of rice genotypes and were significantly upregulated by more than 4-fold for MR219-4 and MR219-9. The upregulated genes by these two varieties showed high similarity with the drought-tolerant check variety, Aeron1. This indicates that these advanced mutant genotypes have better tolerance to drought stress. The changes in the expression level of LEA genes among the selected rice genotypes under drought stress were further confirmed. Hence, LEA genes could be served as a potential tool for drought tolerance determination in rice. MR219-4 and MR219-9 were found to be promising in breeding for drought tolerance as they offer better physiological adaptation to drought stress.
Collapse
|
7
|
Liu H, Zhu K, Tan C, Zhang J, Zhou J, Jin L, Ma G, Zou Q. Identification and characterization of PsDREB2 promoter involved in tissue-specific expression and abiotic stress response from Paeonia suffruticosa. PeerJ 2019; 7:e7052. [PMID: 31223528 PMCID: PMC6571008 DOI: 10.7717/peerj.7052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Dehydration-responsive element-binding factor 2 (DREB2) belongs to the C-repeat-binding factor (CBF)/DREB subfamily of proteins. In this study, a 2,245 bp PsDREB2 promoter fragment was isolated from the genome of Paeonia suffruticosa. The fragment was rich in A/T bases and contained TATA box sequences, abscisic acid (ABA)-response elements, and other cis-elements, such as MYB and CAAT box. The promoter was fused with the β-glucuronidase (GUS) reporter gene to generate an expression vector. Arabidopsis thaliana was transformed with a flower dipping method. Gus activity in different tissues and organs of transgenic plants was determined via histochemical staining and quantified via GUS fluorescence. The activity of promoter regulatory elements in transgenic plants under drought, low-temperature, high-salt, and ABA stresses was analyzed. The results showed that the PsDREB2 gene promoter was expressed in the roots, stems, leaves, flowers, and silique pods but not in the seeds of transgenic Arabidopsis. Furthermore, the promoter was induced by drought, low temperature, high salt, and ABA. Hence, the PsDREB2 promoter is tissue- and stress-specific and can be used in the genetic engineering of novel peony cultivars in the future.
Collapse
Affiliation(s)
- Huichun Liu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyuan Zhu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chen Tan
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaqiang Zhang
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianghua Zhou
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liang Jin
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guangying Ma
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingcheng Zou
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
8
|
Kamarudin ZS, Yusop MR, Ismail MR, Tengku Muda Mohamed M, Harun AR, Yusuff O, Magaji U, Fatai A. LEA Gene Expression Assessment in Advanced Mutant Rice Genotypes under Drought Stress. Int J Genomics 2019. [PMID: 32083115 DOI: 10.3390/agronomy8120279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Late embryogenesis abundant (LEA) proteins are primarily found in plants stem, roots, and other organs and play significant roles in tolerance to several abiotic stresses. Plants synthesize a discrete set of LEA proteins in response to drought stress. In this study, the expression patterns of LEA genes were investigated in two advanced mutant rice genotypes subjected to the drought stress condition and different physiological traits including photosynthetic rate, leaf chlorophyll content, and photosystem II (PSII) photochemical efficiency (Fv/Fm) which were analyzed to confirm their drought tolerance. Five LEA genes (OsLEA1, OsLEA2, OsLEA3, OsLEA4, and OsLEA5) were used in the evaluation of rice genotypes and were significantly upregulated by more than 4-fold for MR219-4 and MR219-9. The upregulated genes by these two varieties showed high similarity with the drought-tolerant check variety, Aeron1. This indicates that these advanced mutant genotypes have better tolerance to drought stress. The changes in the expression level of LEA genes among the selected rice genotypes under drought stress were further confirmed. Hence, LEA genes could be served as a potential tool for drought tolerance determination in rice. MR219-4 and MR219-9 were found to be promising in breeding for drought tolerance as they offer better physiological adaptation to drought stress.
Collapse
Affiliation(s)
- Zarifth Shafika Kamarudin
- Department of Crop Sciences, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Rafii Yusop
- Department of Crop Sciences, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Razi Ismail
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mahmud Tengku Muda Mohamed
- Department of Crop Sciences, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Rahim Harun
- Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, 43600 Kajang, Selangor, Malaysia
| | - Oladosu Yusuff
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Magaji
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Arolu Fatai
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Kumari M, Rai AK, Devanna BN, Singh PK, Kapoor R, Rajashekara H, Prakash G, Sharma V, Sharma TR. Co-transformation mediated stacking of blast resistance genes Pi54 and Pi54rh in rice provides broad spectrum resistance against Magnaporthe oryzae. PLANT CELL REPORTS 2017; 36:1747-1755. [PMID: 28905253 DOI: 10.1007/s00299-017-2189-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/27/2017] [Indexed: 05/25/2023]
Abstract
This is the first report of stacking two major blast resistance genes in blast susceptible rice variety using co-transformation method to widen the resistance spectrum against different isolates of Magnaporthe oryzae. Single resistance (R-) gene mediated approach for the management of rice blast disease has met with frequent breakdown in resistance response. Besides providing the durable resistance, gene pyramiding or stacking also imparts broad spectrum resistance against plant pathogens, including rice blast. In the present study, we stacked two R-genes; Pi54 and Pi54rh having broad spectrum resistance against multiple isolates of Magnaporthe oryzae (M. oryzae). Both Pi54 and Pi54rh expressed under independent promoters were transferred into the blast susceptible japonica rice Taipei 309 (TP309) using particle gun bombardment method. Functional complementation analysis of stacked transgenic rice lines showed higher level of resistance to a set of highly virulent M. oryzae isolates collected from different rice growing regions. qRT-PCR analysis has shown M. oryzae induced expression of both the R-genes in stacked transgenic lines. The present study also demonstrated the effectiveness of the strategy for rapid single step gene stacking using co-transformation approach to engineer durable resistance against rice blast disease and also this is the first report in which two blast R-genes are stacked together using co-transformation approach. The two-gene-stacked transgenic line developed in this study can be used further to understand the molecular aspects of defense-related pathways vis-a-vis single R-gene containing transgenic lines.
Collapse
Affiliation(s)
- Mandeep Kumari
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Amit Kumar Rai
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - B N Devanna
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Pankaj Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Ritu Kapoor
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - H Rajashekara
- Crop Protection Section, Vivekananda Institute of Hill Agriculture, Almora, 263 601, Uttarakhand, India
| | - G Prakash
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Vinay Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.
| |
Collapse
|
10
|
Azizi P, Rafii MY, Mahmood M, Abdullah SNA, Hanafi MM, Latif MA, Sahebi M, Ashkani S. Evaluation of RNA extraction methods in rice and their application in expression analysis of resistance genes against Magnaporthe oryzae. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1259015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Parisa Azizi
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Y. Rafii
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maziah Mahmood
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Nor Akmar Abdullah
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohamed Musa Hanafi
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Abdul Latif
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mahbod Sahebi
- Laboratory of Plantation Crop, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sadegh Ashkani
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Agronomy and Plant Breeding, Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|