1
|
Cammareri M, Frary A, Frary A, Grandillo S. Genetic and Biotechnological Approaches to Improve Fruit Bioactive Content: A Focus on Eggplant and Tomato Anthocyanins. Int J Mol Sci 2024; 25:6811. [PMID: 38928516 PMCID: PMC11204163 DOI: 10.3390/ijms25126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.
Collapse
Affiliation(s)
- Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| |
Collapse
|
2
|
Yang Q, Li Y, Cai L, Gan G, Wang P, Li W, Li W, Jiang Y, Li D, Wang M, Xiong C, Chen R, Wang Y. Characteristics, Comparative Analysis, and Phylogenetic Relationships of Chloroplast Genomes of Cultivars and Wild Relatives of Eggplant (Solanum melongena). Curr Issues Mol Biol 2023; 45:2832-2846. [PMID: 37185709 PMCID: PMC10136506 DOI: 10.3390/cimb45040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The eggplant (Solanum melongena) is a popular vegetable around the world. However, the origin and evolution of eggplant has long been considered complex and unclear, which has become the barrier to improvements in eggplant breeding. Sequencing and comparative analyses of 13 complete chloroplast (cp) genomes of seven Solanum species were performed. Genome sizes were between 154,942 and 156,004 bp, the smallest genome was from S. torvum and the largest from S. macrocapon. Thirteen cp genomes showed highly conserved sequences and GC contents, particularly at the subgenus level. All genes in the 13 genomes were annotated. The cp genomes in this study comprised 130 genes (i.e., 80 protein-coding genes, 8 rRNA genes, and 42 tRNA genes), apart from S. sisymbriifolium, which had 129 (79 protein-coding genes, 8 rRNA genes, and 42 tRNA genes.). The rps16 was absent from the cp genome of S. sisymbriifolium, resulting in a nonsense mutation. Twelve hotspot regions of the cp genome were identified, which showed a series of sequence variations and differed significantly in the inverted repeat/single-copy boundary regions. Furthermore, phylogenetic analysis was conducted using 46 cp genomic sequences to determine interspecific genetic and phylogenetic relationships in Solanum species. All species formed two branches, one of which contained all cultivars of the subgenus Leptostemonum. The cp genome data and phylogenetic analysis provides molecular evidence revealing the origin and evolutionary relationships of S. melongena and its wild relatives. Our findings suggest precise intra- and interspecies relatedness within the subgenus Leptostemonum, which has positive implications for work on improvements in eggplant breeding, particularly in producing heterosis, expanding the source of species variation, and breeding new varieties.
Collapse
Affiliation(s)
- Qihong Yang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Ye Li
- Habin Academy of Agricultural Sciences, Harbin 150008, China
| | - Liangyu Cai
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Peng Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Wenjia Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Dandan Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Mila Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Xiong
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Riyuan Chen
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| |
Collapse
|
3
|
Rosa-Martínez E, Bovy A, Plazas M, Tikunov Y, Prohens J, Pereira-Dias L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1135237. [PMID: 37025131 PMCID: PMC10070870 DOI: 10.3389/fpls.2023.1135237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Phenolic acids and flavonoids are large groups of secondary metabolites ubiquitous in the plant kingdom. They are currently in the spotlight due to the numerous health benefits associated with their consumption, as well as for their vital roles in plant biological processes and in plant-environment interaction. Tomato, eggplant and pepper are in the top ten most consumed vegetables in the world, and their fruit accumulation profiles have been extensively characterized, showing substantial differences. A broad array of genetic and genomic tools has helped to identify QTLs and candidate genes associated with the fruit biosynthesis of phenolic acids and flavonoids. The aim of this review was to synthesize the available information making it easily available for researchers and breeders. The phenylpropanoid pathway is tightly regulated by structural genes, which are conserved across species, along with a complex network of regulatory elements like transcription factors, especially of MYB family, and cellular transporters. Moreover, phenolic compounds accumulate in tissue-specific and developmental-dependent ways, as different paths of the metabolic pathway are activated/deactivated along with fruit development. We retrieved 104 annotated putative orthologues encoding for key enzymes of the phenylpropanoid pathway in tomato (37), eggplant (29) and pepper (38) and compiled 267 QTLs (217 for tomato, 16 for eggplant and 34 for pepper) linked to fruit phenolic acids, flavonoids and total phenolics content. Combining molecular tools and genetic variability, through both conventional and genetic engineering strategies, is a feasible approach to improve phenolics content in tomato, eggplant and pepper. Finally, although the phenylpropanoid biosynthetic pathway has been well-studied in the Solanaceae, more research is needed on the identification of the candidate genes behind many QTLs, as well as their interactions with other QTLs and genes.
Collapse
Affiliation(s)
- Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Cui Y, Fan B, Xu X, Sheng S, Xu Y, Wang X. A High-Density Genetic Map Enables Genome Synteny and QTL Mapping of Vegetative Growth and Leaf Traits in Gardenia. Front Genet 2022; 12:802738. [PMID: 35132310 PMCID: PMC8817757 DOI: 10.3389/fgene.2021.802738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The gardenia is a traditional medicinal horticultural plant in China, but its molecular genetic research has been largely hysteretic. Here, we constructed an F1 population with 200 true hybrid individuals. Using the genotyping-by-sequencing method, a high-density sex-average genetic map was generated that contained 4,249 SNPs with a total length of 1956.28 cM and an average genetic distance of 0.46 cM. We developed 17 SNP-based Kompetitive Allele-Specific PCR markers and found that 15 SNPs were successfully genotyped, of which 13 single-nucleotide polymorphism genotypings of 96 F1 individuals showed genotypes consistent with GBS-mined genotypes. A genomic collinearity analysis between gardenia and the Rubiaceae species Coffea arabica, Coffea canephora and Ophiorrhiza pumila showed the relativity strong conservation of LG11 with NC_039,919.1, HG974438.1 and Bliw01000011.1, respectively. Lastly, a quantitative trait loci analysis at three phenotyping time points (2019, 2020, and 2021) yielded 18 QTLs for growth-related traits and 31 QTLs for leaf-related traits, of which qBSBN7-1, qCD8 and qLNP2-1 could be repeatably detected. Five QTL regions (qCD8 and qSBD8, qBSBN7 and qSI7, qCD4-1 and qLLLS4, qLNP10 and qSLWS10-2, qSBD10 and qLLLS10) with potential pleiotropic effects were also observed. This study provides novel insight into molecular genetic research and could be helpful for further gene cloning and marker-assisted selection for early growth and development traits in the gardenia.
Collapse
Affiliation(s)
- Yang Cui
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Baolian Fan
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xu Xu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shasha Sheng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd., Urumchi, China
| | - Xiaoyun Wang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
5
|
Li D, Qian J, Li W, Yu N, Gan G, Jiang Y, Li W, Liang X, Chen R, Mo Y, Lian J, Niu Y, Wang Y. A high-quality genome assembly of the eggplant provides insights into the molecular basis of disease resistance and chlorogenic acid synthesis. Mol Ecol Resour 2021; 21:1274-1286. [PMID: 33445226 DOI: 10.1111/1755-0998.13321] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
Abstract
The eggplant (Solanum melongena L.) is one of the most important Solanaceae crops, ranking third for total production and economic value in its genus. Herein, we report a high-quality, chromosome-scale eggplant reference genome sequence of 1155.8 Mb, with an N50 of 93.9 Mb, which was assembled by combining PacBio long reads and Hi-C sequencing data. Repetitive sequences occupied 70.1% of the assembly length, and 35,018 high-confidence protein-coding genes were annotated based on multiple sources. Comparative analysis revealed 646 species-specific families and 364 positive selection genes, conferring distinguishing traits on the eggplant. We performed genome-wide comparative identification of disease resistance genes and discovered an expanded gene family of bacterial spot resistance in eggplant and pepper, but not in tomato and potato. The genes involved in chlorogenic acid synthesis were comprehensively characterized. Highly similar chromosomal distribution patterns of polyphenol oxidase genes were observed in the eggplant, tomato, and potato genomes. The eggplant reference genome sequence will not only facilitate evolutionary studies of the Solanaceae but also facilitate their breeding and improvement.
Collapse
Affiliation(s)
- Dandan Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Qian
- Biozeron Shenzhen, Inc, Shenzhen, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ning Yu
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjia Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuyu Liang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Riyuan Chen
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yongcheng Mo
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | | | | | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
6
|
Miyatake K, Saito T, Nunome T, Yamaguchi H, Negoro S, Ohyama A, Wu J, Katayose Y, Fukuoka H. Fine mapping of a major locus representing the lack of prickles in eggplant revealed the availability of a 0.5-kb insertion/deletion for marker-assisted selection. BREEDING SCIENCE 2020; 70:438-448. [PMID: 32968346 PMCID: PMC7495204 DOI: 10.1270/jsbbs.20004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 05/29/2023]
Abstract
As prickles cause labour inefficiency during cultivation and scratches on the skin of fruits during transportation, they are considered undesirable traits of eggplant (Solanum melongena L.). Because the molecular basis of prickle emergence has not been entirely revealed in plants, we mapped an eggplant semi-dominant Prickle (Pl) gene locus, which causes the absence of prickles, on chromosome 6 of a linkage map of the F2 population derived from crossing the no-prickly cultivar 'Togenashi-senryo-nigo' and the prickly line LS1934. By performing synteny mapping with tomato, the genomic region corresponding to the eggplant Pl locus was identified. Through bacterial artificial chromosome (BAC) screening, positive BAC clones and the contig sequence that harbour the Pl locus in the prickly eggplant genome were revealed. The BAC contig length was 133 kb, and it contained 16 predicted genes. Among them, a characteristic 0.5-kb insertion/deletion was detected. As the 0.5-kb insertion was commonly identified with the prickly phenotype worldwide, a primer pair that amplifies the insertion/deletion could be used for marker-assisted selection of the no-prickly phenotype. Such findings contribute to map-based-cloning of the Pl gene and the understanding of gene function, ultimately providing new insights into the regulatory molecular mechanisms underlying prickle emergence in plants.
Collapse
Affiliation(s)
- Koji Miyatake
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Takeo Saito
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Tsukasa Nunome
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Hirotaka Yamaguchi
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Satomi Negoro
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Akio Ohyama
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Jianzhong Wu
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yuichi Katayose
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hiroyuki Fukuoka
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| |
Collapse
|
7
|
Genome-Wide Correlation of 36 Agronomic Traits in the 287 Pepper ( Capsicum) Accessions Obtained from the SLAF-seq-Based GWAS. Int J Mol Sci 2019; 20:ijms20225675. [PMID: 31766117 PMCID: PMC6888518 DOI: 10.3390/ijms20225675] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022] Open
Abstract
There are many agronomic traits of pepper (Capsicum L.) with abundant phenotypes that can benefit pepper growth. Using specific-locus amplified fragment sequencing (SLAF-seq), a genome-wide association study (GWAS) of 36 agronomic traits was carried out for 287 representative pepper accessions. To ensure the accuracy and reliability of the GWAS results, we analyzed the genetic diversity, distribution of labels (SLAF tags and single nucleotide polymorphisms (SNPs)) and population differentiation and determined the optimal statistical model. In our study, 1487 SNPs were highly significantly associated with 26 agronomic traits, and 2126 candidate genes were detected in the 100-kb region up- and down-stream near these SNPs. Furthermore, 13 major association peaks were identified for 11 key agronomic traits. Then we examined the correlations among the 36 agronomic traits and analyzed SNP distribution and found 37 SNP polymerization regions (total size: 264.69 Mbp) that could be selected areas in pepper breeding. We found that the stronger the correlation between the two traits, the greater the possibility of them being in more than one polymerization region, suggesting that they may be linked or that one pleiotropic gene controls them. These results provide a theoretical foundation for future multi-trait pyramid breeding of pepper. Finally, we found that the GWAS signals were highly consistent with those from the nuclear restorer-of-fertility (Rf) gene for cytoplasmic male sterility (CMS), verifying their reliability. We further identified Capana06g002967 and Capana06g002969 as Rf candidate genes by functional annotation and expression analysis, which provided a reference for the study of cytoplasmic male sterility in Capsicum.
Collapse
|
8
|
Barchi L, Pietrella M, Venturini L, Minio A, Toppino L, Acquadro A, Andolfo G, Aprea G, Avanzato C, Bassolino L, Comino C, Molin AD, Ferrarini A, Maor LC, Portis E, Reyes-Chin-Wo S, Rinaldi R, Sala T, Scaglione D, Sonawane P, Tononi P, Almekias-Siegl E, Zago E, Ercolano MR, Aharoni A, Delledonne M, Giuliano G, Lanteri S, Rotino GL. A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Sci Rep 2019; 9:11769. [PMID: 31409808 PMCID: PMC6692341 DOI: 10.1038/s41598-019-47985-w] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/05/2019] [Indexed: 11/30/2022] Open
Abstract
With approximately 450 species, spiny Solanum species constitute the largest monophyletic group in the Solanaceae family, but a high-quality genome assembly from this group is presently missing. We obtained a chromosome-anchored genome assembly of eggplant (Solanum melongena), containing 34,916 genes, confirming that the diploid gene number in the Solanaceae is around 35,000. Comparative genomic studies with tomato (S. lycopersicum), potato (S. tuberosum) and pepper (Capsicum annuum) highlighted the rapid evolution of miRNA:mRNA regulatory pairs and R-type defense genes in the Solanaceae, and provided a genomic basis for the lack of steroidal glycoalkaloid compounds in the Capsicum genus. Using parsimony methods, we reconstructed the putative chromosomal complements of the key founders of the main Solanaceae clades and the rearrangements that led to the karyotypes of extant species and their ancestors. From 10% to 15% of the genes present in the four genomes were syntenic paralogs (ohnologs) generated by the pre-γ, γ and T paleopolyploidy events, and were enriched in transcription factors. Our data suggest that the basic gene network controlling fruit ripening is conserved in different Solanaceae clades, and that climacteric fruit ripening involves a differential regulation of relatively few components of this network, including CNR and ethylene biosynthetic genes.
Collapse
Affiliation(s)
- Lorenzo Barchi
- University of Torino - DISAFA - Plant Genetics and Breeding, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Marco Pietrella
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123, Roma, Italy.,Council for Agricultural Research and Economics (CREA), Research Centre for Olive, Citrus and Tree Fruit, 47121, Forlì, Italy
| | - Luca Venturini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.,Department of Life Sciences, Natural History Museum, Cromwell Rd, Kensington, London, United Kingdom
| | - Andrea Minio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Laura Toppino
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, 26836, Montanaso Lombardo, LO, Italy
| | - Alberto Acquadro
- University of Torino - DISAFA - Plant Genetics and Breeding, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Giuseppe Andolfo
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Giuseppe Aprea
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123, Roma, Italy
| | - Carla Avanzato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Laura Bassolino
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, 26836, Montanaso Lombardo, LO, Italy
| | - Cinzia Comino
- University of Torino - DISAFA - Plant Genetics and Breeding, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Alessandra Dal Molin
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Alberto Ferrarini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Louise Chappell Maor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ezio Portis
- University of Torino - DISAFA - Plant Genetics and Breeding, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Sebastian Reyes-Chin-Wo
- UC Davis Genome Center-GBSF, 451 Health Sciences Drive, University of California, Davis, CA, 95616, USA
| | - Riccardo Rinaldi
- University of Torino - DISAFA - Plant Genetics and Breeding, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Tea Sala
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, 26836, Montanaso Lombardo, LO, Italy
| | - Davide Scaglione
- IGA Technology Services, Via J. Linussio, 51, 33100, Udine, Italy
| | - Prashant Sonawane
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Paola Tononi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Efrat Almekias-Siegl
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Elisa Zago
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | | | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123, Roma, Italy.
| | - Sergio Lanteri
- University of Torino - DISAFA - Plant Genetics and Breeding, Largo Braccini 2, 10095, Grugliasco, Torino, Italy.
| | - Giuseppe Leonardo Rotino
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, 26836, Montanaso Lombardo, LO, Italy
| |
Collapse
|
9
|
Zhao J, Xu Y, Li H, Yin Y, An W, Li Y, Wang Y, Fan Y, Wan R, Guo X, Cao Y. A SNP-Based High-Density Genetic Map of Leaf and Fruit Related Quantitative Trait Loci in Wolfberry ( Lycium Linn.). FRONTIERS IN PLANT SCIENCE 2019; 10:977. [PMID: 31440266 PMCID: PMC6693522 DOI: 10.3389/fpls.2019.00977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/11/2019] [Indexed: 05/26/2023]
Abstract
Wolfberry (Lycium Linn. 2n = 24) fruit, Gouqizi, is a perennial shrub, traditional food and medicinal plant resource in China. Leaf and fruit related characteristics are economically important traits that are the focus for genetic improvement, but few studies into the molecular genetics of this crop have been reported to date. Here, an F1 population (302 individuals) derived from a cross between "NO.1 Ningqi" (Lycium barbarum L.) and "Chinese gouqi" (Lycium chinese Mill.) was constructed. We recorded fruit weight, longitude, diameter and index along with leaf length, width and index for three consecutive years from 2015 to 2017. Based on this population and these phenotypic data, we constructed the first high-density genetic map of Lycium using specific length amplified fragment sequencing (SLAF-seq) and analyzed quantitative trait loci (QTLs). The map contains 6733 single nucleotide polymorphisms and 12 linkage groups (LG) with a total map distance of 1702.45 cM and an average map distance of 0.253 cM. A total of 55 QTLs were mapped for more than 2 years, of which 18 stable QTLs for fruit index on LG 11, spanning an interval of 73.492-90.945 cM, were detected. qFI11-15 for fruit index was an impressive QTL with logarithm of odds (LOD) and proportion of variance explained (PEV) values reaching 11.07 and 19.7%, respectively. The QTLs on LG 11 were gathered tightly, having an average interval of less than 1 cM per QTL, suggesting that there might be a cluster region controlling fruit index. Remarkably, qLI10-2 and qLI11-2 for leaf index were detectable for 3 years. These results give novel insight into the genetic control of leaf and fruit related traits in Lycium and provide robust support for undertaking further positional cloning studies and implementing marker-assisted selection in seedlings.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yuhui Xu
- Biomarker Technology Corporation, Beijing, China
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wei An
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yanlong Li
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yajun Wang
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yunfang Fan
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Ru Wan
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xin Guo
- Biomarker Technology Corporation, Beijing, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| |
Collapse
|
10
|
Lee J. Development and Evolution of Molecular Markers and Genetic Maps in Capsicum Species. COMPENDIUM OF PLANT GENOMES 2019. [DOI: 10.1007/978-3-319-97217-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Chunthawodtiporn J, Hill T, Stoffel K, Van Deynze A. Quantitative Trait Loci Controlling Fruit Size and Other Horticultural Traits in Bell Pepper ( Capsicum annuum). THE PLANT GENOME 2018; 11. [PMID: 29505638 DOI: 10.3835/plantgenome2016.12.0125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bell pepper ( L.) is a group of fruit vegetables that has large variation in fruit shape, fruit size, and horticultural traits. Using unadapted sources of germplasm to bring in novel alleles while maintaining favorable quality and horticultural traits is challenging for breeding in pepper. A genetic map with 318 loci from genotype-by-sequencing (GBS) and single nucleotide polymorphism assays was generated from a recombinant inbred line population derived from a cultivated bell-type 'Maor' and a landrace highly resistant to , 'Criollo de Morelos-334'. Forty-nine quantitative trait loci (QTLs) were detected for fruit, leaf, and horticultural traits with the scantwo permutation and stepwiseqtl methods from R/qtl. With the availability of a pepper reference genome and GBS data, candidate genes for pepper organ size and other horticultural traits were predicted. , , and genes were candidate genes for controlling organ sizes on chromosome 1, 2, and 3, respectively. Two candidate genes controlling trichome formation in pepper are located at chromosome 10: and . The locus on chromosome 10, which encodes a member of the R2R3 MYB-domain family of proteins, has a function in anthocyanin accumulation. These QTL results and the candidate genes for each trait emphasize the genetic basis of the important traits for breeding with unadapted parents in bell pepper.
Collapse
|
12
|
Hulse-Kemp AM, Maheshwari S, Stoffel K, Hill TA, Jaffe D, Williams SR, Weisenfeld N, Ramakrishnan S, Kumar V, Shah P, Schatz MC, Church DM, Van Deynze A. Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library. HORTICULTURE RESEARCH 2018; 5:4. [PMID: 29423234 PMCID: PMC5798813 DOI: 10.1038/s41438-017-0011-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 05/19/2023]
Abstract
Linked-Read sequencing technology has recently been employed successfully for de novo assembly of human genomes, however, the utility of this technology for complex plant genomes is unproven. We evaluated the technology for this purpose by sequencing the 3.5-gigabase (Gb) diploid pepper (Capsicum annuum) genome with a single Linked-Read library. Plant genomes, including pepper, are characterized by long, highly similar repetitive sequences. Accordingly, significant effort is used to ensure that the sequenced plant is highly homozygous and the resulting assembly is a haploid consensus. With a phased assembly approach, we targeted a heterozygous F1 derived from a wide cross to assess the ability to derive both haplotypes and characterize a pungency gene with a large insertion/deletion. The Supernova software generated a highly ordered, more contiguous sequence assembly than all currently available C. annuum reference genomes. Over 83% of the final assembly was anchored and oriented using four publicly available de novo linkage maps. A comparison of the annotation of conserved eukaryotic genes indicated the completeness of assembly. The validity of the phased assembly is further demonstrated with the complete recovery of both 2.5-Kb insertion/deletion haplotypes of the PUN1 locus in the F1 sample that represents pungent and nonpungent peppers, as well as nearly full recovery of the BUSCO2 gene set within each of the two haplotypes. The most contiguous pepper genome assembly to date has been generated which demonstrates that Linked-Read library technology provides a tool to de novo assemble complex highly repetitive heterozygous plant genomes. This technology can provide an opportunity to cost-effectively develop high-quality genome assemblies for other complex plants and compare structural and gene differences through accurate haplotype reconstruction.
Collapse
Affiliation(s)
- Amanda M. Hulse-Kemp
- Department of Plant Sciences, University of California, Davis, CA USA
- USDA-ARS Genomics and Bioinformatics Research Unit, Raleigh, NC USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC USA
| | | | - Kevin Stoffel
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Theresa A. Hill
- Department of Plant Sciences, University of California, Davis, CA USA
| | - David Jaffe
- 10x Genomics, Inc, 7068 Koll Center Parkway, Suite 401, Pleasanton, CA USA
| | | | - Neil Weisenfeld
- 10x Genomics, Inc, 7068 Koll Center Parkway, Suite 401, Pleasanton, CA USA
| | | | - Vijay Kumar
- 10x Genomics, Inc, 7068 Koll Center Parkway, Suite 401, Pleasanton, CA USA
| | - Preyas Shah
- 10x Genomics, Inc, 7068 Koll Center Parkway, Suite 401, Pleasanton, CA USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD USA
| | - Deanna M. Church
- 10x Genomics, Inc, 7068 Koll Center Parkway, Suite 401, Pleasanton, CA USA
| | - Allen Van Deynze
- Department of Plant Sciences, University of California, Davis, CA USA
| |
Collapse
|
13
|
Gramazio P, Prohens J, Plazas M, Mangino G, Herraiz FJ, Vilanova S. Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. FRONTIERS IN PLANT SCIENCE 2017; 8:1477. [PMID: 28912788 PMCID: PMC5582342 DOI: 10.3389/fpls.2017.01477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/09/2017] [Indexed: 05/29/2023]
Abstract
Advanced backcrosses (ABs) and introgression lines (ILs) of eggplant (Solanum melongena) can speed up genetics and genomics studies and breeding in this crop. We have developed the first full set of ABs and ILs in eggplant using Solanum incanum, a wild eggplant that has a relatively high tolerance to drought, as a donor parent. The development of these ABs and IL eggplant populations had a low efficiency in the early stages, because of the lack of molecular markers and genomic tools. However, this dramatically improved after performing genotyping-by-sequencing in the first round of selfing, followed by high-resolution-melting single nucleotide polymorphism genotyping in subsequent selection steps. A set of 73 selected ABs covered 99% of the S. incanum genome, while 25 fixed immortal ILs, each carrying a single introgressed fragment in homozygosis, altogether spanned 61.7% of the S. incanum genome. The introgressed size fragment in the ILs contained between 0.1 and 10.9% of the S. incanum genome, with a mean value of 4.3%. Sixty-eight candidate genes involved in drought tolerance were identified in the set of ILs. This first set of ABs and ILs of eggplant will be extremely useful for the genetic dissection of traits of interest for eggplant, and represents an elite material for introduction into the breeding pipelines for developing new eggplant cultivars adapted to the challenges posed by the climate-change scenario.
Collapse
Affiliation(s)
- Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Mariola Plazas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de ValènciaValencia, Spain
| | - Giulio Mangino
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Francisco J. Herraiz
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| |
Collapse
|
14
|
Mahato NK, Gupta V, Singh P, Kumari R, Verma H, Tripathi C, Rani P, Sharma A, Singhvi N, Sood U, Hira P, Kohli P, Nayyar N, Puri A, Bajaj A, Kumar R, Negi V, Talwar C, Khurana H, Nagar S, Sharma M, Mishra H, Singh AK, Dhingra G, Negi RK, Shakarad M, Singh Y, Lal R. Microbial taxonomy in the era of OMICS: application of DNA sequences, computational tools and techniques. Antonie van Leeuwenhoek 2017; 110:1357-1371. [PMID: 28831610 DOI: 10.1007/s10482-017-0928-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023]
Abstract
The current prokaryotic taxonomy classifies phenotypically and genotypically diverse microorganisms using a polyphasic approach. With advances in the next-generation sequencing technologies and computational tools for analysis of genomes, the traditional polyphasic method is complemented with genomic data to delineate and classify bacterial genera and species as an alternative to cumbersome and error-prone laboratory tests. This review discusses the applications of sequence-based tools and techniques for bacterial classification and provides a scheme for more robust and reproducible bacterial classification based on genomic data. The present review highlights promising tools and techniques such as ortho-Average Nucleotide Identity, Genome to Genome Distance Calculator and Multi Locus Sequence Analysis, which can be validly employed for characterizing novel microorganisms and assessing phylogenetic relationships. In addition, the review discusses the possibility of employing metagenomic data to assess the phylogenetic associations of uncultured microorganisms. Through this article, we present a review of genomic approaches that can be included in the scheme of taxonomy of bacteria and archaea based on computational and in silico advances to boost the credibility of taxonomic classification in this genomic era.
Collapse
Affiliation(s)
| | - Vipin Gupta
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Priya Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Rashmi Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Charu Tripathi
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Pooja Rani
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anukriti Sharma
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Nirjara Singhvi
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Utkarsh Sood
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Princy Hira
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Puneet Kohli
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Namita Nayyar
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Akshita Puri
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Abhay Bajaj
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Roshan Kumar
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Vivek Negi
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Chandni Talwar
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Himani Khurana
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shekhar Nagar
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Monika Sharma
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Harshita Mishra
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Amit Kumar Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Gauri Dhingra
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Ram Krishan Negi
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
15
|
Matsunaga S, Nakaya A. Computational Synteny Analysis Promotes a Better Understanding of Chromosome Evolution. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Akihiro Nakaya
- Department of Genome Informatics, Graduate School of Medicine, Osaka University
| |
Collapse
|