1
|
Cui Q, Liu Q, Fan Y, Wang C, Li Y, Li S, Zhang J, Rao G. Functional differentiation of olive PLP_deC genes: insights into metabolite biosynthesis and genetic improvement at the whole-genome level. PLANT CELL REPORTS 2024; 43:127. [PMID: 38652203 DOI: 10.1007/s00299-024-03212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
KEY MESSAGE This study identified 16 pyridoxal phosphate-dependent decarboxylases in olive at the whole-genome level, conducted analyses on their physicochemical properties, evolutionary relationships and characterized their activity. Group II pyridoxal phosphate-dependent decarboxylases (PLP_deC II) mediate the biosynthesis of characteristic olive metabolites, such as oleuropein and hydroxytyrosol. However, there have been no report on the functional differentiation of this gene family at the whole-genome level. This study conducted an exploration of the family members of PLP_deC II at the whole-genome level, identified 16 PLP_deC II genes, and analyzed their gene structure, physicochemical properties, cis-acting elements, phylogenetic evolution, and gene expression patterns. Prokaryotic expression and enzyme activity assays revealed that OeAAD2 and OeAAD4 could catalyze the decarboxylation reaction of tyrosine and dopa, resulting in the formation of their respective amine compounds, but it did not catalyze phenylalanine and tryptophan. Which is an important step in the synthetic pathway of hydroxytyrosol and oleuropein. This finding established the foundational data at the molecular level for studying the functional aspects of the olive PLP_deC II gene family and provided essential gene information for genetic improvement of olive.
Collapse
Affiliation(s)
- Qizhen Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qingqing Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yutong Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chenhe Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yufei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shuyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Guodong Rao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
2
|
Jin H, Tian Y, Zhang Y, Zhang R, Zhao H, Yang X, Song X, Dimitrov Y, Wu YE, Gao Q, Liu J, Zhang J, He Z. Genome-Wide Association Mapping of Processing Quality Traits in Common Wheat ( Triticum aestivum L.). Genes (Basel) 2023; 14:1816. [PMID: 37761956 PMCID: PMC10530800 DOI: 10.3390/genes14091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Processing quality is an important economic wheat trait. The marker-assisted selection (MAS) method plays a vital role in accelerating genetic improvement of processing quality. In the present study, processing quality in a panel of 165 cultivars grown in four environments was evaluated by mixograph. An association mapping analysis using 90 K and 660 K single nucleotide polymorphism (SNP) arrays identified 24 loci in chromosomes 1A, 1B (4), 1D, 2A, 2B (2), 3A, 3B, 3D (2), 4A (3), 4B, 5D (2), 6A, 7B (2) and 7D (2), explaining 10.2-42.5% of the phenotypic variances. Totally, 15 loci were stably detected in two or more environments. Nine loci coincided with known genes or QTL, whereas the other fifteen were novel loci. Seven candidate genes encoded 3-ketoacyl-CoA synthase, lipoxygenase, pyridoxal phosphate-dependent decarboxylase, sucrose synthase 3 and a plant lipid transfer protein/Par allergen. SNPs significantly associated with processing quality and accessions with more favorable alleles can be used for marker-assisted selection.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Yuanyuan Tian
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China; (Y.T.); (Y.Z.); (J.L.)
| | - Yan Zhang
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China; (Y.T.); (Y.Z.); (J.L.)
| | - Rui Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Haibin Zhao
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Xue Yang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Xizhang Song
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Yordan Dimitrov
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Yu-e Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Qiang Gao
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Jindong Liu
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China; (Y.T.); (Y.Z.); (J.L.)
| | - Jumei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China; (Y.T.); (Y.Z.); (J.L.)
| |
Collapse
|
3
|
Huang H, He Y, Cui A, Sun L, Han M, Wang J, Rui C, Lei Y, Liu X, Xu N, Zhang H, Zhang Y, Fan Y, Feng X, Ni K, Jiang J, Zhang X, Chen C, Wang S, Chen X, Lu X, Wang D, Wang J, Yin Z, Qaraevna BZ, Guo L, Zhao L, Ye W. Genome-wide identification of GAD family genes suggests GhGAD6 functionally respond to Cd2+ stress in cotton. Front Genet 2022; 13:965058. [PMID: 36176295 PMCID: PMC9513066 DOI: 10.3389/fgene.2022.965058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Glutamate decarboxylase (GAD) mainly regulated the biosynthesis of γ-aminobutyric acid (GABA) and played an important role in plant growth and stress resistance. To explore the potential function of GAD in cotton growth, the genome-wide identification, structure, and expression analysis of GAD genes were performed in this study. There were 10, 9, 5, and 5 GAD genes identified in G. hirsutum, G. barbadense, G. arboreum, and G. raimondii, respectively. GAD was divided into four clades according to the protein motif composition, gene structure, and phylogenetic relationship. The segmental duplication was the main way of the GAD gene family evolution. Most GhGADs respond to abiotic stress. Clade Ⅲ GAD was induced by Cd2+ stress, especially GhGAD6, and silencing GhGAD6 would lead to more serious Cd2+ poisoning in cotton. The oxidative damage caused by Cd2+ stress was relieved by increasing the GABA content. It was speculated that the decreased expression of GhGAD6 reduced the content of GABA in vivo and caused the accumulation of ROS. This study will further expand our understanding of the relationship between the evolution and function of the GhGAD gene family and provide new genetic resources for cotton breeding under environmental stress and phytoremediation.
Collapse
Affiliation(s)
- Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde, China
| | - Aihua Cui
- Cotton Research Institute of Jiangxi Province, Jiujiang, China
| | - Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Cun Rui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Yuqian Lei
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Xiaoyu Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Hong Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Xixian Feng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Jie Jiang
- Hunan Institute of Cotton Science, Changde, China
| | | | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Bobokhonova Zebinisso Qaraevna
- Department Cotton Growing, Genetics, Breeding and Seed, Tajik Agrarian University Named Shirinsho Shotemur Dushanbe, Dushanbe, Tajikistan
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, China
- *Correspondence: Wuwei Ye,
| |
Collapse
|
4
|
Shen S, Peng M, Fang H, Wang Z, Zhou S, Jing X, Zhang M, Yang C, Guo H, Li Y, Lei L, Shi Y, Sun Y, Liu X, Xu C, Tohge T, Yuan M, Fernie AR, Ning Y, Wang GL, Luo J. An Oryza-specific hydroxycinnamoyl tyramine gene cluster contributes to enhanced disease resistance. Sci Bull (Beijing) 2021; 66:2369-2380. [PMID: 36654123 DOI: 10.1016/j.scib.2021.03.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/16/2020] [Accepted: 01/07/2021] [Indexed: 02/03/2023]
Abstract
Genomic clustering of non-homologous genes for the biosynthesis of plant defensive compounds is an emerging theme, but insights into their formation and physiological function remain limited. Here we report the identification of a newly discovered hydroxycinnamoyl tyramine (HT) gene cluster in rice. This cluster contains a pyridoxamine 5'-phosphate oxidase (OsPDX3) producing the cofactor pyridoxal 5'-phosphate (PLP), a PLP-dependent tyrosine decarboxylase (OsTyDC1), and two duplicated hydroxycinnamoyl transferases (OsTHT1 and OsTHT2). These members were combined to represent an enzymological innovation gene cluster. Natural variation analysis showed that the abundance of the toxic tyramine intermediate of the gene cluster among different rice accessions is mainly determined by the coordinated transcription of OsTyDC1 and OsTHT1. Further pathogen incubation assays demonstrated that the end products of the HT gene cluster displayed enhanced resistance to the bacterial pathogen Xanthomonas oryzae pv. Oryzae (Xoo) and fungal pathogen Magnaporthe oryzae (M. oryzae), and the enhanced resistance is associated with the boost of phytoalexins and the activation of defense response. The unique presence of the HT gene cluster in Oryza AA genome, together with the enrichment of transposon elements within this gene cluster region, provides an evolutionary background to accelerate cluster member combinations. Our study not only discovered a gene cluster involved in the phenylpropanoid metabolism but also addressed the key aspects of gene cluster formation. In addition, our results provide a new metabolic pool for plant defense against pathogens.
Collapse
Affiliation(s)
- Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; VIB-UGent Center for Plant Systems Biology, Ghent University, Ghent 9052, Belgium
| | - Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zixuan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shen Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xinyu Jing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Guo
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Long Lei
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yuheng Shi
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yangyang Sun
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Congping Xu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Takayuki Tohge
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma Nara 630-0192, Japan
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus OH 43210, USA
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Zhang-Biehn S, Fritz AK, Zhang G, Evers B, Regan R, Poland J. Accelerating wheat breeding for end-use quality through association mapping and multivariate genomic prediction. THE PLANT GENOME 2021; 14:e20164. [PMID: 34817128 DOI: 10.1002/tpg2.20164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
In hard-winter wheat (Triticum aestivum L.) breeding, the evaluation of end-use quality is expensive and time-consuming, being relegated to the final stages of the breeding program after selection for many traits including disease resistance, agronomic performance, and grain yield. In this study, our objectives were to identify genetic variants underlying baking quality traits through genome-wide association study (GWAS) and develop improved genomic selection (GS) models for the quality traits in hard-winter wheat. Advanced breeding lines (n = 462) from 2015-2017 were genotyped using genotyping-by-sequencing (GBS) and evaluated for baking quality. Significant associations were detected for mixograph mixing time and bake mixing time, most of which were within or in tight linkage to glutenin and gliadin loci and could be suitable for marker-assisted breeding. Candidate genes for newly associated loci are phosphate-dependent decarboxylase and lipid transfer protein genes, which are believed to affect nitrogen metabolism and dough development, respectively. The use of GS can both shorten the breeding cycle time and significantly increase the number of lines that could be selected for quality traits, thus we evaluated various GS models for end-use quality traits. As a baseline, univariate GS models had 0.25-0.55 prediction accuracy in cross-validation and from 0 to 0.41 in forward prediction. By including secondary traits as additional predictor variables (univariate GS with covariates) or correlated response variables (multivariate GS), the prediction accuracies were increased relative to the univariate model using only genomic information. The improved genomic prediction models have great potential to further accelerate wheat breeding for end-use quality.
Collapse
Affiliation(s)
- Shichen Zhang-Biehn
- Dep. of Plant Pathology, Kansas State Univ., 4024 Throckmorton Plant Sciences Center, 1712 Claflin Rd., Manhattan, KS, 66506, USA
- current address: Syngenta, 317 330th St., Stanton, MN, 55018, USA
| | - Allan K Fritz
- Dep. of Agronomy, Kansas State Univ., 4012 Throckmorton Plant Sciences Center, 1712 Claflin Rd., Manhattan, KS, 66506, USA
| | - Guorong Zhang
- Agricultural Research Center-Hays, Kansas State Univ., 1232 240th Ave., Hays, KS, 67601, USA
| | - Byron Evers
- Dep. of Plant Pathology, Kansas State Univ., 4024 Throckmorton Plant Sciences Center, 1712 Claflin Rd., Manhattan, KS, 66506, USA
| | - Rebecca Regan
- Dep. of Grain Science and Industry, Kansas State Univ., Shellenberger 108, Manhattan, KS, 66506, USA
| | - Jesse Poland
- Dep. of Plant Pathology, Kansas State Univ., 4024 Throckmorton Plant Sciences Center, 1712 Claflin Rd., Manhattan, KS, 66506, USA
| |
Collapse
|
6
|
Santos Gomes D, de Andrade Silva EM, de Andrade Rosa EC, Silva Gualberto NG, de Jesus Souza MÁ, Santos G, Pirovani CP, Micheli F. Identification of a key protein set involved in Moniliophthora perniciosa necrotrophic mycelium and basidiocarp development. Fungal Genet Biol 2021; 157:103635. [PMID: 34700000 DOI: 10.1016/j.fgb.2021.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches' broom disease in cacao (Theobroma cacao L.). The biotrophic fungal phase initiates the disease and is characterized by a monokaryotic mycelium, while the necrotrophic phase is characterized by a dikaryotic mycelium and leads to necrosis of infected tissues. A study of the necrotrophic phase was conducted on bran-based solid medium, which is the only medium that enables basidiocarp and basidiospore production. Six different fungal developmental phases were observed according to the mycelium colour or the organ produced: white, yellow, pink, dark pink, primordium and basidiocarp. In this study, we identified notable proteins in each phase, particularly those accumulated prior to basidiocarp formation. Proteins were analysed by proteomics; 2-D gels showed 300-550 spots. Statistically differentially accumulated spots were sequenced by mass spectrometry and 259 proteins were identified and categorized into nine functional classes. Proteins related to energy metabolism, protein folding and morphogenesis that were potentially involved in primordium and basidiocarp formation were identified; these proteins may represent useful candidates for further analysis related to the spread and pathogenesis of this fungus. To the best of our knowledge, this report describes the first proteomic analysis of the developmental phases of Moniliophthora perniciosa.
Collapse
Affiliation(s)
- Dayane Santos Gomes
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Edson Mario de Andrade Silva
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Emilly Caroline de Andrade Rosa
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Nina Gabriela Silva Gualberto
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Monaliza Átila de Jesus Souza
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gesivaldo Santos
- Universidade Estadual do Sudoeste da Bahia (UESB), Av. José Moreira Sobrinho, Jequié, Bahia 45206-190, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil; CIRAD, UMR AGAP, F-34398 Montpellier, France.
| |
Collapse
|
7
|
Negri S, Commisso M, Avesani L, Guzzo F. The case of tryptamine and serotonin in plants: a mysterious precursor for an illustrious metabolite. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5336-5355. [PMID: 34009335 DOI: 10.1093/jxb/erab220] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Indolamines are tryptophan-derived specialized metabolites belonging to the huge and ubiquitous indole alkaloids group. Serotonin and melatonin are the best-characterized members of this family, given their many hormonal and physiological roles in animals. Following their discovery in plants, the study of plant indolamines has flourished and their involvement in important processes, including stress responses, growth and development, and reproduction, has been proposed, leading to their classification as a new category of phytohormones. However, the complex indolamine puzzle is far from resolved, particularly the biological roles of tryptamine, the early serotonin precursor representing the central hub of many downstream indole alkaloids. Tryptophan decarboxylase, which catalyzes the synthesis of tryptamine, strictly regulates the flux of carbon and nitrogen from the tryptophan pool into the indolamine pathway. Furthermore, tryptamine accumulates to high levels in the reproductive organs of many plant species and therefore cannot be classed as a mere intermediate but rather as an end product with potentially important functions in fruits and seeds. This review summarizes current knowledge on the role of tryptamine and its close relative serotonin, emphasizing the need for a clear understanding of the functions of, and mutual relations between, these indolamines and their biosynthesis pathways in plants.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| |
Collapse
|
8
|
Martina M, Tikunov Y, Portis E, Bovy AG. The Genetic Basis of Tomato Aroma. Genes (Basel) 2021; 12:genes12020226. [PMID: 33557308 PMCID: PMC7915847 DOI: 10.3390/genes12020226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Tomato (Solanum lycopersicum L.) aroma is determined by the interaction of volatile compounds (VOCs) released by the tomato fruits with receptors in the nose, leading to a sensorial impression, such as "sweet", "smoky", or "fruity" aroma. Of the more than 400 VOCs released by tomato fruits, 21 have been reported as main contributors to the perceived tomato aroma. These VOCs can be grouped in five clusters, according to their biosynthetic origins. In the last decades, a vast array of scientific studies has investigated the genetic component of tomato aroma in modern tomato cultivars and their relatives. In this paper we aim to collect, compare, integrate and summarize the available literature on flavour-related QTLs in tomato. Three hundred and 5ifty nine (359) QTLs associated with tomato fruit VOCs were physically mapped on the genome and investigated for the presence of potential candidate genes. This review makes it possible to (i) pinpoint potential donors described in literature for specific traits, (ii) highlight important QTL regions by combining information from different populations, and (iii) pinpoint potential candidate genes. This overview aims to be a valuable resource for researchers aiming to elucidate the genetics underlying tomato flavour and for breeders who aim to improve tomato aroma.
Collapse
Affiliation(s)
- Matteo Martina
- DISAFA, Plant Genetics and Breeding, University of Turin, 10095 Grugliasco, Italy;
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
| | - Ezio Portis
- DISAFA, Plant Genetics and Breeding, University of Turin, 10095 Grugliasco, Italy;
- Correspondence: (E.P.); (A.G.B.); Tel.: +39-011-6708807 (E.P.); +31-317-480762 (A.G.B.)
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
- Correspondence: (E.P.); (A.G.B.); Tel.: +39-011-6708807 (E.P.); +31-317-480762 (A.G.B.)
| |
Collapse
|
9
|
Zeiss DR, Piater LA, Dubery IA. Hydroxycinnamate Amides: Intriguing Conjugates of Plant Protective Metabolites. TRENDS IN PLANT SCIENCE 2021; 26:184-195. [PMID: 33036915 DOI: 10.1016/j.tplants.2020.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 05/09/2023]
Abstract
The syntheses of aromatic monoamines and aliphatic polyamines (PAs) are responsive to environmental stresses, with some modulating aspects of plant defense. Conjugation of amines to hydroxycinnamic acids (HCAs) generates HCA amides (HCAAs), with the conjugates possessing properties from both compounds. Conjugation may reduce the polarity of the resulting metabolite and assist in translocation, stability, and compartmentalization. Recent metabolomic insights identified HCAAs as biomarkers during plant-pathogen interactions, supporting a functional role in defense. The conjugates may contribute to regulation of the dynamic metabolic pool of hydroxycinnamates. This review highlights the occurrence of aromatic amines (AAs) and PAs in stress metabolism, conjugation to HCAs, and the roles of HCAAs during host defense, adding emphasis on their involvement in hydrogen peroxide (H2O2) production and cell-wall strengthening.
Collapse
Affiliation(s)
- Dylan R Zeiss
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Ian A Dubery
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa.
| |
Collapse
|
10
|
Zhou Y, Liao L, Liu X, Liu B, Chen X, Guo Y, Huang C, Zhao Y, Zeng Z. Crystal structure of Oryza sativa TDC reveals the substrate specificity for TDC-mediated melatonin biosynthesis. J Adv Res 2020; 24:501-511. [PMID: 32595985 PMCID: PMC7306523 DOI: 10.1016/j.jare.2020.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Plant tryptophan decarboxylase (TDC) is a type II Pyridoxal-5'-phosphate-dependent decarboxylase (PLP_DC) that could be used as a target to genetically improve crops. However, lack of accurate structural information on plant TDC hampers the understanding of its decarboxylation mechanisms. In the present study, the crystal structures of Oryza sativa TDC (OsTDC) in its complexes with pyridoxal-5'-phosphate, tryptamine and serotonin were determined. The structures provide detailed interaction information between TDC and its substrates. The Y359 residue from the loop gate is a proton donor and forms a Lewis acid-base pair with serotonin/tryptamine, which is associated with product release. The H214 residue is responsible for PLP binding and proton transfer, and its proper interaction with Y359 is essential for OsTDC enzyme activity. The extra hydrogen bonds formed between the 5-hydroxyl group of serotonin and the backbone carboxyl groups of F104 and P105 explain the discrepancy between the catalytic activity of TDC in tryptophan and in 5-hydroxytryptophan. In addition, an evolutionary analysis revealed that type II PLP_DC originated from glutamic acid decarboxylase, potentially as an adaptive evolution of mechanism in organisms in extreme environments. This study is, to our knowledge, the first to present a detailed analysis of the crystal structure of OsTDC in these complexes. The information regarding the catalytic mechanism described here could facilitate the development of protocols to regulate melatonin levels and thereby contribute to crop improvement efforts to improve food security worldwide.
Collapse
Affiliation(s)
- Yuanze Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijing Liao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xikai Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Biao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanlong Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210014, China
| | - Yucheng Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210014, China
| | - Zhixiong Zeng
- Shandong Provincial Key Laboratory of Microbial Engineering, College of Bioengineering, Qilu University of Technology, Jinan 250353, China
| |
Collapse
|
11
|
Structural insights into the mechanism of internal aldimine formation and catalytic loop dynamics in an archaeal Group II decarboxylase. J Struct Biol 2019; 208:137-151. [PMID: 31445086 DOI: 10.1016/j.jsb.2019.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023]
Abstract
Formation of the internal aldimine (LLP) is the first regulatory step that activates pyridoxal 5'-phosphate (PLP) dependent enzymes. The process involves a nucleophilic attack on PLP by an active site Lys residue, followed by proton transfers resulting in a carbinolamine (CBA) intermediate that undergoes dehydration to form the aldimine. Despite a general understanding of the pathway, the structural basis of the mechanistic roles of specific residues in each of these steps is unclear. Here we determined the crystal structure of the LLP form (holo-form) of a Group II PLP-dependent decarboxylase from Methanocaldococcus jannaschii (MjDC) at 1.7 Å resolution. By comparing the crystal structure of MjDC in the LLP form with that of the pyridoxal-P (non-covalently bound aldehyde) form, we demonstrate structural evidence for a water-mediated mechanism of LLP formation. A conserved extended hydrogen-bonding network around PLP coupled to the pyridinyl nitrogen influences activation and catalysis by affecting the electronic configuration of PLP. Furthermore, the two cofactor bound forms revealed open and closed conformations of the catalytic loop (CL) in the absence of a ligand, supporting a hypothesis for a regulatory link between LLP formation and CL dynamics. The evidence suggests that activation of Group II decarboxylases involves a complex interplay of interactions between the electronic states of PLP, the active site micro-environment and CL dynamics.
Collapse
|
12
|
Günther J, Lackus ND, Schmidt A, Huber M, Stödtler HJ, Reichelt M, Gershenzon J, Köllner TG. Separate Pathways Contribute to the Herbivore-Induced Formation of 2-Phenylethanol in Poplar. PLANT PHYSIOLOGY 2019; 180:767-782. [PMID: 30846485 PMCID: PMC6548255 DOI: 10.1104/pp.19.00059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/26/2019] [Indexed: 05/23/2023]
Abstract
Upon herbivory, the tree species western balsam poplar (Populus trichocarpa) produces a variety of Phe-derived metabolites, including 2-phenylethylamine, 2-phenylethanol, and 2-phenylethyl-β-d-glucopyranoside. To investigate the formation of these potential defense compounds, we functionally characterized aromatic l-amino acid decarboxylases (AADCs) and aromatic aldehyde synthases (AASs), which play important roles in the biosynthesis of specialized aromatic metabolites in other plants. Heterologous expression in Escherichia coli and Nicotiana benthamiana showed that all five AADC/AAS genes identified in the P trichocarpa genome encode active enzymes. However, only two genes, PtAADC1 and PtAAS1, were significantly upregulated after leaf herbivory. Despite a sequence similarity of ∼96%, PtAADC1 and PtAAS1 showed different enzymatic functions and converted Phe into 2-phenylethylamine and 2-phenylacetaldehyde, respectively. The activities of both enzymes were interconvertible by switching a single amino acid residue in their active sites. A survey of putative AADC/AAS gene pairs in the genomes of other plants suggests an independent evolution of this function-determining residue in different plant families. RNA interference -mediated-downregulation of AADC1 in gray poplar (Populus × canescens) resulted in decreased accumulation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside, whereas the emission of 2-phenylethanol was not influenced. To investigate the last step of 2-phenylethanol formation, we identified and characterized two P trichocarpa short-chain dehydrogenases, PtPAR1 and PtPAR2, which were able to reduce 2-phenylacetaldehyde to 2-phenylethanol in vitro. In summary, 2-phenylethanol and its glucoside may be formed in multiple ways in poplar. Our data indicate that PtAADC1 controls the herbivore-induced formation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside in planta, whereas PtAAS1 likely contributes to the herbivore-induced emission of 2-phenylethanol.
Collapse
Affiliation(s)
- Jan Günther
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Meret Huber
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|
13
|
Commisso M, Negri S, Bianconi M, Gambini S, Avesani S, Ceoldo S, Avesani L, Guzzo F. Untargeted and Targeted Metabolomics and Tryptophan Decarboxylase In Vivo Characterization Provide Novel Insight on the Development of Kiwifruits ( Actinidia deliciosa). Int J Mol Sci 2019; 20:E897. [PMID: 30791398 PMCID: PMC6413197 DOI: 10.3390/ijms20040897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
Kiwifruit (Actinidia deliciosa cv. Hayward) is a commercially important crop with highly nutritional green fleshy fruits. The post-harvest maturation of the fruits is well characterized, but little is known about the metabolic changes that occur during fruit development. Here we used untargeted metabolomics to characterize the non-volatile metabolite profile of kiwifruits collected at different time points after anthesis, revealing profound metabolic changes before the onset of ripening including the depletion of many classes of phenolic compounds. In contrast, the phytohormone abscisic acid accumulated during development and ripening, along with two indolamines (serotonin and its precursor tryptamine), and these were monitored in greater detail by targeted metabolomics. The role of indolamines in kiwifruit development is completely unknown, so we also characterized the identity of genes encoding tryptophan decarboxylase in A. deliciosa and its close relative A. chinensis to provide insight into the corresponding biological processes. Our results indicate that abscisic acid and indolamines fulfill unrecognized functions in the development and ripening of kiwifruits.
Collapse
Affiliation(s)
- Mauro Commisso
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
- Demethra Biotech, Strada dell'Innovazione 1, Camisano Vicentino, 36043 Vicenza, Italy.
| | - Stefano Negri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Martino Bianconi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
- Demethra Biotech, Strada dell'Innovazione 1, Camisano Vicentino, 36043 Vicenza, Italy.
| | - Sofia Gambini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Sara Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Stefania Ceoldo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
14
|
Identification of a Novel Gene Encoding the Specialized Alanine Decarboxylase in Tea ( Camellia sinensis) Plants. Molecules 2019; 24:molecules24030540. [PMID: 30717241 PMCID: PMC6384637 DOI: 10.3390/molecules24030540] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 11/17/2022] Open
Abstract
Theanine, a unique amino acid in Camellia sinensis, accounts for more than 50% of total free amino acids in tea and has a significant contribution to the quality of green tea. Previous research indicated that theanine is synthesized from glutamic acid (Glu) and ethylamine mainly in roots, and that theanine accumulation depends on the availability of ethylamine which is derived from alanine (Ala) decarboxylation catalyzed by alanine decarboxylase (AlaDC). However, the specific gene encoding AlaDC protein remains to be discovered in tea plants or in other species. To explore the gene of AlaDC in tea plants, the differences in theanine contents and gene expressions between pretreatment and posttreatment of long-time nitrogen starvation were analyzed in young roots of two tea cultivars. A novel gene annotated as serine decarboxylase (SDC) was noted for its expression levels, which showed high consistency with theanine content, and the expression was remarkably high in young roots under sufficient nitrogen condition. To verify its function, full-length complementary DNA (cDNA) of this candidate gene was cloned from young roots of tea seedlings, and the target protein was expressed and purified from Escherichia coli (E. coli). The enzymatic activity of the protein for Ala and Ser was measured in vitro using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). The results illustrated that the target protein could catalyze the decarboxylation of Ala despite of its high similarity with SDC from other species. Therefore, this novel gene was identified as AlaDC and named CsAlaDC. Furthermore, the gene expression levels of CsAlaDC in different tissues of tea plants were also quantified with quantitative real-time PCR (qRT-PCR). The results suggest that transcription levels of CsAlaDC in root tissues are significantly higher than those in leaf tissues. That may explain why theanine biosynthesis preferentially occurs in the roots of tea plants. The expression of the gene was upregulated when nitrogen was present, suggesting that theanine biosynthesis is regulated by nitrogen supply and closely related to nitrogen metabolism for C. sinensis. The results of this study are significant supplements to the theanine biosynthetic pathway and provide evidence for the differential accumulation of theanine between C. sinensis and other species.
Collapse
|