1
|
Bhattacharya S, Sen MK, Hamouzová K, Košnarová P, Bharati R, Menendez J, Soukup J. Pyroxsulam Resistance in Apera spica-venti: An Emerging Challenge in Crop Protection. PLANTS (BASEL, SWITZERLAND) 2024; 14:74. [PMID: 39795334 PMCID: PMC11722645 DOI: 10.3390/plants14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Apera spica-venti, a prevalent weed in Czech winter wheat fields, has developed resistance to ALS-inhibiting herbicides due to their frequent use. This study reports a biotype of A. spica-venti resistant to pyroxsulam, with cross and multiple resistance to iodosulfuron, propoxycarbazone, pinoxaden, and chlortoluron. Dose-response experiments revealed high resistance of both R1 and R2 biotypes to pyroxsulam, with resistance factors (RF) of 6.69 and 141.65, respectively. Pre-treatment with malathion reduced RF by 2.40× and 1.25× in R1 and R2, indicating the potential involvement of cytochrome P450 (CytP450). NBD-Cl pre-treatment decreased RF only in R2, suggesting possible GST involvement. Gene analysis revealed no mutations (at previously reported sites) or overexpression in the acetolactate synthase (ALS) gene. However, a significant difference in ALS enzyme activity between resistant and susceptible biotypes points to target-site resistance mechanisms. Studies with 14C-labeled pyroxsulam showed that reduced absorption and translocation were not likely resistance mechanisms. In summary, herbicide resistance in A. spica-venti appears to result from multiple mechanisms. Possible causes include target-site resistance from an unidentified ALS mutation (within coding or regulatory regions). Enhanced herbicide metabolism via CytP450s and GSTs is also a contributing factor. Further experimental validation is needed to confirm these mechanisms and fully understand the resistance. This evolution underscores the adaptive capacity of weed populations under herbicide pressure, emphasizing the need for alternative control strategies.
Collapse
Affiliation(s)
- Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (S.B.); (P.K.); (J.S.)
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (S.B.); (P.K.); (J.S.)
| | - Katerina Hamouzová
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (S.B.); (P.K.); (J.S.)
| | - Pavlína Košnarová
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (S.B.); (P.K.); (J.S.)
| | - Rohit Bharati
- Plant Virus and Vector Interactions, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic
| | - Julio Menendez
- Departamento de Ciencias Agroforestales, Escuela Politécnica Superior, Campus Universitario de La Rábida, 21071 Palos de la Frontera, Huelva, Spain;
| | - Josef Soukup
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (S.B.); (P.K.); (J.S.)
| |
Collapse
|
2
|
Pagnoncelli Jr FDB, Losada FB, Alvear MJG, Gonzalez-Andujar JL, Trezzi MM, Bittencourt HVH, Salomão HM. Response characterization and target site mechanism study in glyphosate-resistant populations of Lolium multiflorum L. from Brazil. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105737. [PMID: 38225083 DOI: 10.1016/j.pestbp.2023.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Italian ryegrass (Lolium multiflorum L.) is an invasive species widely spread in croplands worldwide. The intensive use of glyphosate has resulted in the selection of resistance to this herbicide in Italian ryegrass. This work characterized the response to glyphosate of Italian ryegrass populations from the South and Southwest regions of Paraná, Brazil. A total of 44 Italian ryegrass populations were collected in farming areas, and were classified for glyphosate resistance with 75% of populations resistant to gloyphosate. Of these, 3 resistant (VT05AR, MR20AR and RN01AR) and three susceptible (VT07AS, MR05AS and RN01AS) of these populations were selected to determine the resistance level and the involvement of the target site mechanisms for glyphosate resistance. Susceptible populations GR50 ranged from 165.66 to 218.17 g.e.a. ha-1 and resistant populations from 569.37 to 925.94, providing RI ranging from 2.88 and 4.70. No mutation in EPSPS was observed in the populations, however, in two (MR20AR and RN02AR) of the three resistant populations, an increase in the number of copies of the EPSPs gene (11 to 57×) was detected. The number of copies showed a positive correlation with the gene expression (R2 = 0.86) and with the GR50 of the populations (R2 = 0.81). The increase in EPSPS gene copies contributes to glyphosate resistance in Italian ryegrass populations from Brazil.
Collapse
Affiliation(s)
| | - Francisco Barro Losada
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), Alameda del Obispo, 14004 Cordoba, Spain
| | - Maria Jose Gimenez Alvear
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), Alameda del Obispo, 14004 Cordoba, Spain
| | - Jose L Gonzalez-Andujar
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Spain and International Laboratory on Global Change (LINCGlobal) (CSIC), Alameda del Obispo, 14005 Cordoba, Spain
| | - Michelangelo Muzell Trezzi
- Department of Agricultural Sciences, Federal Technological University of Paraná, Via do Conhecimento, km 01, 85503-390 Pato Branco, Paraná, Brazil.
| | - Henrique Von Hertwig Bittencourt
- Department of Agronomy, Federal University of Fronteira Sul, BR-158, s/n, Zona Rural, 85301-970-Laranjeiras do Sul, Paraná, Brazil
| | - Helis Marina Salomão
- Department of Agricultural Sciences, Federal Technological University of Paraná, Via do Conhecimento, km 01, 85503-390 Pato Branco, Paraná, Brazil
| |
Collapse
|
3
|
Palma-Bautista C, Vázquez-Garcia JG, López-Valencia G, Domínguez-Valenzuela JA, Barro F, De Prado R. Reduced Glyphosate Movement and Mutation of the EPSPS Gene (Pro106Ser) Endow Resistance in Conyza canadensis Harvested in Mexico. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4477-4487. [PMID: 36892583 DOI: 10.1021/acs.jafc.2c07833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Glyphosate has been the most widely used herbicide for decades providing a unique tool, alone or in mixtures, to control weeds on citrus in Veracruz. Conyza canadensis has developed glyphosate resistance for the first time in Mexico. The level and mechanisms of resistance of four resistant populations Rs (R1, R2, R3, and R4) were studied and compared with that of a susceptible population (S). Resistance factor levels showed two moderately resistant populations (R2 and R3) and two highly resistant populations (R1 and R4). Glyphosate translocation through leaves to roots was ∼2.8 times higher in the S population than in the four R populations. A mutation (Pro106Ser) in the EPSPS2 gene was identified in the R1 and R4 populations. Mutation in the target site associated with reduced translocation is involved in increased glyphosate resistance in the R1 and R4 populations; whereas for the R2 and R3 populations, it was only mediated by reduced translocation. This is the first study of glyphosate resistance in C. canadensis from Mexico in which the resistance mechanisms involved are described in detail and control alternatives are proposed.
Collapse
Affiliation(s)
- Candelario Palma-Bautista
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba 14014, Spain
| | - José G Vázquez-Garcia
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba 14014, Spain
| | - Gabriela López-Valencia
- Departamento de Parasitología Agrícola, Universidad Autónoma Chapingo, Texcoco 56230, Estado de México, México
| | | | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), Cordoba 14004, Spain
| | - Rafael De Prado
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba 14014, Spain
| |
Collapse
|
4
|
de Oliveira MVD, Bittencourt Fernandes GM, da Costa KS, Vakal S, Lima AH. Virtual screening of natural products against 5-enolpyruvylshikimate-3-phosphate synthase using the Anagreen herbicide-like natural compound library. RSC Adv 2022; 12:18834-18847. [PMID: 35873314 PMCID: PMC9240924 DOI: 10.1039/d2ra02645g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes a reaction involved in the production of amino acids essential for plant growth and survival. EPSPS is the main target of glyphosate, a broad-spectrum herbicide that acts as a competitive inhibitor concerning phosphoenolpyruvate (PEP), which is the natural substrate of EPSPS. In the present study, we introduce a natural compound library, named Anagreen, which is a compendium of herbicide-like compounds obtained from different natural product databases. Herein, we combined the structure- and ligand-based virtual screening strategies to explore Anagreen against EPSPS using the structure of glyphosate complexed with a T102I/P106S mutant of EPSPS from Eleusine indica (EiEPSPS) as a starting point. First, ligand-based pharmacophore screening was performed to select compounds with a similar pharmacophore to glyphosate. Then, structure-based pharmacophore modeling was applied to build a model which represents the molecular features of glyphosate. Then, consensus docking was performed to rank the best poses of the natural compounds against the PEP binding site, and then molecular dynamics simulations were performed to analyze the stability of EPSPS complexed with the selected ligands. Finally, we have investigated the binding affinity of the complexes using free energy calculations. The selected hit compound, namely AG332841, showed a stable conformation and binding affinity to the EPSPS structure and showed no structural similarity to the already known weed EPSPS inhibitors. Our computational study aims to clarify the inhibition of the mutant EiEPSPS, which is resistant to glyphosate, and identify new potential herbicides from natural products.
Collapse
Affiliation(s)
- Maycon Vinicius Damasceno de Oliveira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará 66075-110 Belém Pará Brazil
| | - Gilson Mateus Bittencourt Fernandes
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará 66075-110 Belém Pará Brazil
| | - Kauê S da Costa
- Institute of Biodiversity, Federal University of Western Pará Santarém Pará Brazil
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University Turku Finland
| | - Anderson H Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará 66075-110 Belém Pará Brazil
| |
Collapse
|
5
|
Yang Y, Gardner C, Gupta P, Peng Y, Piasecki C, Millwood RJ, Ahn TH, Stewart CN. Novel Candidate Genes Differentially Expressed in Glyphosate-Treated Horseweed ( Conyza canadensis). Genes (Basel) 2021; 12:1616. [PMID: 34681011 PMCID: PMC8535903 DOI: 10.3390/genes12101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The evolution of herbicide-resistant weed species is a serious threat for weed control. Therefore, we need an improved understanding of how gene regulation confers herbicide resistance in order to slow the evolution of resistance. The present study analyzed differentially expressed genes after glyphosate treatment on a glyphosate-resistant Tennessee ecotype (TNR) of horseweed (Conyza canadensis), compared to a susceptible biotype (TNS). A read size of 100.2 M was sequenced on the Illumina platform and subjected to de novo assembly, resulting in 77,072 gene-level contigs, of which 32,493 were uniquely annotated by a BlastX alignment of protein sequence similarity. The most differentially expressed genes were enriched in the gene ontology (GO) term of the transmembrane transport protein. In addition, fifteen upregulated genes were identified in TNR after glyphosate treatment but were not detected in TNS. Ten of these upregulated genes were transmembrane transporter or kinase receptor proteins. Therefore, a combination of changes in gene expression among transmembrane receptor and kinase receptor proteins may be important for endowing non-target-site glyphosate-resistant C. canadensis.
Collapse
Affiliation(s)
- Yongil Yang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (Y.Y.); (Y.P.); (C.P.); (R.J.M.)
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Cory Gardner
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103, USA; (C.G.); (P.G.); (T.-H.A.)
| | - Pallavi Gupta
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103, USA; (C.G.); (P.G.); (T.-H.A.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Yanhui Peng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (Y.Y.); (Y.P.); (C.P.); (R.J.M.)
- Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333, USA
| | - Cristiano Piasecki
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (Y.Y.); (Y.P.); (C.P.); (R.J.M.)
- ATSI Brasil Pesquisa e Consultoria, Passo Fundo 99054-328, RS, Brazil
| | - Reginald J. Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (Y.Y.); (Y.P.); (C.P.); (R.J.M.)
| | - Tae-Hyuk Ahn
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103, USA; (C.G.); (P.G.); (T.-H.A.)
- Department of Computer Science, Saint Louis University, St. Louis, MO 63103, USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (Y.Y.); (Y.P.); (C.P.); (R.J.M.)
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
6
|
Alcántara-de la Cruz R, Cruz-Hipolito HE, Domínguez-Valenzuela JA, De Prado R. Glyphosate ban in Mexico: potential impacts on agriculture and weed management. PEST MANAGEMENT SCIENCE 2021; 77:3820-3831. [PMID: 33723895 DOI: 10.1002/ps.6362] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Since glyphosate was classified as potentially carcinogenic by the International Agency for Research on Cancer, public debate regarding the environmental impact and health risks from its use has intensified. Almost all regulatory agencies throughout the world have concluded that the judicious use of glyphosate does not pose risks to the environment and human health. However, on the last day of 2020 the Mexican government decreed a ban of this herbicide beginning January, 2024. In current Mexican agriculture there are no safer chemical and/or other weed management technologies that allow for the economical substitution of glyphosate for weed control. Many Mexican weed scientists agree that glyphosate use should be reduced, but not banned outright. This decree could have more negative economic and social consequences as well as environmental and human health risks than benefits, which could compromise the country's food and public security. Crop yields are projected by some to decline by up to 40% with this ban, increasing food prices, making food less accessible to low-income consumers. In addition, a black market for the smuggling and illegal sale of glyphosate is possible. The possible environmental, economic and social impacts caused by the glyphosate ban in Mexico are discussed, emphasizing the impact on weed management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ricardo Alcántara-de la Cruz
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, Brazil
- Departamento de Parasitología Agrícola, Universidad Autónoma Chapingo, Texcoco, Mexico
| | | | | | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
| |
Collapse
|
7
|
Yu H, Huang S, Chen P, Ji M, Cui H, Chen J, Li X. Different leaf-mediated deposition, absorbed and metabolism behaviors of 2,4-D isooctyl ester between Triticum aestivum and Aegilops tauschii Coss. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104848. [PMID: 33993966 DOI: 10.1016/j.pestbp.2021.104848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Tausch's goatgrass (Aegilops tauschii Coss.), is a major weed species, infesting wheat (Triticum aestivum) fields in China. 2,4-D isooctyl ester is widely used for broadleaf weed control and selected as a tool to study the differences between, A. tauschii and T. aestivum. In this study, we measured the growth responses of these species to 2,4-D isooctyl ester and found that T. aestivum was more sensitive to the herbicide than A. tauschii. To clarify the reasons for this difference, we measured the leaf-mediated deposition, absorption and metabolism of 2,4-D isooctyl ester and the expression of auxin receptor transport inhibitor response (TIR1) gene in T. aestivum and A. tauschii. The results indicated that the deposition of 2,4-D isooctyl ester droplets may be lower on A. tauschii than on T. aestivum, because of the increased contact angle and greater density of trichomes on the leaves of the former. A distinct increase in 2,4-D isooctyl ester uptake was detected in T. aestivum during the entire experimental period, and the rate was 2.2-fold greater than that in A. tauschii at 6 h after treatment. Compared with A. tauschii, T. aestivum exhibited a greater accumulation of primary metabolite 2,4-D in plants, which may be responsible for the different responses of the two species. Additionally, the absolute expression level of TIR1 was clearly greater in T. aestivum than that in A. tauschii. These data will be helpful to further understand the differences between T. aestivum and A. tauschii, which may provide a unique perspective for the development and identification of new target compounds that are effective against this weed species.
Collapse
Affiliation(s)
- Haiyan Yu
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing 100193, China
| | - Songtao Huang
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing 100193, China
| | - Pingping Chen
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing 100193, China
| | - Meijing Ji
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing 100193, China
| | - Hailan Cui
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing 100193, China
| | - Jingchao Chen
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing 100193, China
| | - Xiangju Li
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuanxilu, Beijing 100193, China.
| |
Collapse
|
8
|
Baek Y, Bobadilla LK, Giacomini DA, Montgomery JS, Murphy BP, Tranel PJ. Evolution of Glyphosate-Resistant Weeds. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:93-128. [PMID: 33932185 DOI: 10.1007/398_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Widespread adoption of glyphosate-resistant crops and concomitant reliance on glyphosate for weed control set an unprecedented stage for the evolution of herbicide-resistant weeds. There are now 48 weed species that have evolved glyphosate resistance. Diverse glyphosate-resistance mechanisms have evolved, including single, double, and triple amino acid substitutions in the target-site gene, duplication of the gene encoding the target site, and others that are rare or nonexistent for evolved resistance to other herbicides. This review summarizes these resistance mechanisms, discusses what is known about their evolution, and concludes with some of the impacts glyphosate-resistant weeds have had on weed management.
Collapse
Affiliation(s)
- Yousoon Baek
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Lucas K Bobadilla
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Darci A Giacomini
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | | | - Brent P Murphy
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
9
|
Beres ZT, Giese LA, Mackey DM, Owen MDK, Page ER, Snow AA. Target-site EPSPS Pro-106-Ser mutation in Conyza canadensis biotypes with extreme resistance to glyphosate in Ohio and Iowa, USA. Sci Rep 2020; 10:7577. [PMID: 32371909 PMCID: PMC7200745 DOI: 10.1038/s41598-020-64458-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/13/2020] [Indexed: 11/22/2022] Open
Abstract
Documenting the diversity of mechanisms for herbicide resistance in agricultural weeds is helpful for understanding evolutionary processes that contribute to weed management problems. More than 40 species have evolved resistance to glyphosate, and at least 13 species have a target-site mutation at position 106 of EPSPS. In horseweed (Conyza canadensis), this p106 mutation has only been reported in Canada. Here, we sampled seeds from one plant (= biotype) at 24 sites in Ohio and 20 in Iowa, screened these biotypes for levels of resistance, and sequenced their DNA to detect the p106 mutation. Resistance categories were based on 80% survival at five glyphosate doses: S (0×), R1 (1×), R2 (8×), R3 (20×), or R4 (40×). The p106 mutation was not found in the19 biotypes scored as S, R1, or R2, while all 25 biotypes scored as R3 or R4 had the same proline-to-serine substitution at p106. These findings represent the first documented case of target-site mediated glyphosate resistance in horseweed in the United States, and the first to show that this mutation was associated with very strong resistance. We hypothesize that the p106 mutation has occurred multiple times in horseweed and may be spreading rapidly, further complicating weed management efforts.
Collapse
Affiliation(s)
- Zachery T Beres
- Department of Evolution, Ecology, and Organismal Biology; Ohio State University, Columbus, OH, 43210, USA.
| | - Laura A Giese
- Department of Horticulture and Crop Science; Ohio State University, Columbus, OH, 43210, USA
| | - David M Mackey
- Department of Horticulture and Crop Science; Ohio State University, Columbus, OH, 43210, USA
| | - Micheal D K Owen
- Department of Agronomy; Iowa State University, Ames, IA, 50011, USA
| | - Eric R Page
- Harrow Research and Devleopment Centre, Agriculture and Agri-Food Canada, Harrow, ON, N8H 4W7, Canada
| | - Allison A Snow
- Department of Evolution, Ecology, and Organismal Biology; Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
10
|
New Case of False-Star-Grass (Chloris distichophylla) Population Evolving Glyphosate Resistance. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10030377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chloris distichophylla, suspected of glyphosate resistance (GR), was collected from areas of soybean cultivation in Rio Grande do Sul, Brazil. A comparison was made with a susceptible population (GS) to evaluate the resistance level, mechanisms involved, and control alternatives. Glyphosate doses required to reduce the dry weight (GR50) or cause a mortality rate of 50% (LD50) were around 5.1–3 times greater in the GR population than in the GS population. The shikimic acid accumulation was around 6.2-fold greater in GS plants than in GR plants. No metabolized glyphosate was found in either GR or GS plants. Both populations did not differ in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) basal activity or in vitro inhibition of EPSPS activity by glyphosate (I50). The maximum glyphosate absorption was observed at 96 hours after treatment (HAT), which was twofold higher in the GS plants than in the GR plants. This confirms the first case of glyphosate resistance in C. distichophylla. In addition, at 96 HAT, the GS plants translocated more 14C-glyphosate than the GR ones. The best options for the chemical control of both C. distichophylla populations were clethodim, quizalofop, paraquat, glufosinate, tembotrione, diuron, and atrazine. The first case of glyphosate resistance in C. distichophylla was due to impaired uptake and translocation. Chemical control using multiple herbicides with different modes of action (MOA) could be a tool used for integrated weed management (IWM) programs.
Collapse
|
11
|
Chen J, Huang H, Wei S, Cui H, Li X, Zhang C. Glyphosate resistance in Eleusine indica: EPSPS overexpression and P106A mutation evolved in the same individuals. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:203-208. [PMID: 32284128 DOI: 10.1016/j.pestbp.2020.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 05/23/2023]
Abstract
Goosegrass is one of the most widespread weeds in orchards and tea plantations in China, and glyphosate is a popular herbicide used to control it. However, high glyphosate selection pressure has led to some populations becoming resistant. The objectives of this research were to determine resistance levels and possible resistance mechanisms of goosegrass populations from several tea plantations in Zhejiang Province in China. The resistance indexes in four goosegrass populations (SH, SY, CA and CX) ranged from 4.9 to 13.4, and lower shikimate accumulation in these populations compared with a glyphosate-susceptible (GS) population confirmed their resistance to glyphosate. No mutations in the target gene EPSPS were found in populations SH and SY, however, the expression of EPSPS in these two populations was 9.3 and 29.7 times higher than that in the GS population, respectively. In the CX population, a P106S mutation in EPSPS was found in 6.7% of the individuals and another 80.0% of individuals had EPSPS amplification. In population CA, all the individuals had a P106A mutation and 86.7% of them had amplification in EPSPS. The EPSPS copy numbers ranged from 5.2 to 62.3 in these four resistant populations. There was a positive correlation between signal intensities of primary anti-EPSPS antibody and the copy number of the EPSPS protein, as indicated by immunoblot analysis. In population CA, with high-level resistance to glyphosate, both P106A mutation and amplification in EPSPS evolved in the same individuals in this population.
Collapse
Affiliation(s)
- Jingchao Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Hongjuan Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Shouhui Wei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Hailan Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiangju Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China.
| | - Chaoxian Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China.
| |
Collapse
|
12
|
Mora AD, Rosario J, Rojano-Delgado AM, Palma-Bautista C, Torra J, Alcántara-de la Cruz R, De Prado R. Multiple Resistance to Synthetic Auxin Herbicides and Glyphosate in Parthenium hysterophorus Occurring in Citrus Orchards. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10010-10017. [PMID: 31414816 DOI: 10.1021/acs.jafc.9b03988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dominican farmers have started to apply synthetic auxin herbicides (SAHs) as the main alternative to mitigate the impacts of the occurrence of glyphosate-resistant (GR) Parthenium hysterophorus populations in citrus orchards. A GR P. hysterophorus population survived field labeled rates of glyphosate, 2,4-dichlorophenoxyacetic acid (2,4-D), dicamba, and picloram, which showed poor control (<50%). In in vivo assays, resistance levels were high for glyphosate and moderate for picloram, dicamba, and 2,4-D. Sequencing the 5-enolpyruvylshikimate-3-phosphate synthase gene revealed the double Thr-102-Ile and Pro-106-Ser amino acid substitution, conferring resistance to glyphosate. Additionally, reduced absorption and impaired translocation contributed to this resistance. Regarding SAH, impaired 2,4-D transport and enhanced metabolism were confirmed in resistant plants. The application of malathion improved the efficacy of SAHs (control >50%), showing that metabolism of these herbicides was mediated by cytochrome P450 enzymes. This study reports, for the first time, multiple resistance to SAHs and glyphosate in P. hysterophorus.
Collapse
Affiliation(s)
- Andrés D Mora
- Department of Agricultural Chemistry and Edaphology , University of Cordoba , 14071 Cordoba , Spain
| | - Jesús Rosario
- Universidad Católica Tecnológica del Cibao-UCATECI , La Vega 41000 , República Dominicana
| | - Antonia M Rojano-Delgado
- Department of Agricultural Chemistry and Edaphology , University of Cordoba , 14071 Cordoba , Spain
| | | | - Joel Torra
- Department d'Hortofructicultura, Botánica i Jardineria, Agrotecnio , Universitat de Lleida , 25198 Lleida , Spain
| | | | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology , University of Cordoba , 14071 Cordoba , Spain
| |
Collapse
|
13
|
Management of Glyphosate-Resistant Weeds in Mexican Citrus Groves: Chemical Alternatives and Economic Viability. PLANTS 2019; 8:plants8090325. [PMID: 31487903 PMCID: PMC6783860 DOI: 10.3390/plants8090325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
Glyphosate is a cheap herbicide that has been used to control a wide range of weeds (4-6 times/year) in citrus groves of the Gulf of Mexico; however, its excessive use has selected for glyphosate-resistant weeds. We evaluated the efficacy and economic viability of 13 herbicide treatments (glyphosate combined with PRE- and/or POST-emergence herbicides and other alternative treatments), applied in tank-mixture or sequence, to control glyphosate-resistant weeds in two Persian lime groves (referred to as SM-I and SM-II) of the municipality of Acateno, Puebla, during two years (2014 and 2015). The SM-I and SM-II fields had 243 and 346 weeds/m2, respectively, composed mainly of Bidens pilosa and Leptochloa virgata. Echinochloa colona was also frequent in SM-II. The glyphosate alone treatments (1080, 1440, or 1800 g ae ha-1) presented control levels of the total weed population ranging from 64% to 85% at 15, 30, and 45 d after treatment (DAT) in both fields. Mixtures of glyphosate with grass herbicides such as fluazifop-p-butyl, sethoxydim, and clethodim efficiently controlled E. colona and L. virgata, but favored the regrowth of B. pilosa. The sequential applications of glyphosate + (bromacil + diuron) and glufosinate + oxyfluorfen controlled more than 85% the total weed community for more than 75 days. However, these treatments were between 360% and 390% more expensive (1.79 and 1.89 $/day ha-1 of satisfactory weed control, respectively), compared to the representative treatment (glyphosate 1080 g ae ha-1 = USD $29.0 ha-1). In practical and economic terms, glufosinate alone was the best treatment controlling glyphosate resistant weeds maintaining control levels >80% for at least 60 DAT ($1.35/day ha-1). The rest of the treatments, applied in tank-mix or in sequence with glyphosate, had similar or lower control levels (~70%) than glyphosate at 1080 g ae ha-1. The adoption of glufosiante alone, glufosinate + oxyfluorfen or glyphosate + (bromacil + diuron) must consider the cost of satisfactory weed control per day, the period of weed control, as well as other factors associated with production costs to obtain an integrated weed management in the short and long term.
Collapse
|
14
|
Bracamonte E, Silveira HMD, Alcántara-de la Cruz R, Domínguez-Valenzuela JA, Cruz-Hipolito HE, De Prado R. From tolerance to resistance: mechanisms governing the differential response to glyphosate in Chloris barbata. PEST MANAGEMENT SCIENCE 2018; 74:1118-1124. [PMID: 29384251 DOI: 10.1002/ps.4874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Susceptibility and the mechanism (s) governing tolerance/resistance to glyphosate were characterized in two putative-glyphosate-resistant Chloris barbata populations (R1 and R2), collected in Persian lime orchards from Colima State, Mexico, comparing them with one non-treated population (referred to as S). RESULTS Glyphosate doses required to reduce fresh weight or cause mortality by 50% were 4.2-6.4 times higher in resistant populations than in the S population. The S population accumulated 4.3 and 5.2 times more shikimate than the R2 and R1 populations, respectively. There were no differences in 14 C-glyphosate uptake between R and S populations, but the R plants translocated at least 12% less herbicide to the rest of plant and roots 96 h after treatment. Insignificant amounts of glyphosate were metabolized to aminomethyl phosphonate and glyoxylate in both R and S plants. The 5-enolpyruvylshikimate-3-phosphate synthase gene of the R populations contained the Pro106-Ser mutation, giving them a resistance 12 (R2) and 14.7 (R1) times greater at target-site level compared with the S population. CONCLUSION The Pro106-Ser mutation governs the resistance to glyphosate of the R1 and R2 C barbata populations, but the impaired translocation could contribute to the resistance. These results confirm the first case of glyphosate resistance evolved in this species. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Enzo Bracamonte
- Faculty of Agricultural Sciences, National University of Cordoba (UNC), Cordoba, Argentina
| | | | | | | | | | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, Cordoba, Spain
| |
Collapse
|
15
|
Zhong G, Wu Z, Yin J, Chai L. Responses of Hydrilla verticillata (L.f.) Royle and Vallisneria natans (Lour.) Hara to glyphosate exposure. CHEMOSPHERE 2018; 193:385-393. [PMID: 29154113 DOI: 10.1016/j.chemosphere.2017.10.173] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Glyphosate is a broad-spectrum herbicide that is frequently detected in water bodies and is harmful to aquatic systems. We conducted an experiment to explore the ecological sensitivity of Hydrilla verticillata (L.f.) Royle and Vallisneria natans (Lour.) Hara to glyphosate. Our research focused on the physiological responses of H. verticillata and V. natans after exposure to various concentrations of glyphosate (0, 1, 10, 20, 30, 40, 50 and 80 mg/L) in hydroponic culture after one day (1D) and seven days (7D). The results show that after 1D, the soluble protein content of H. verticillata was significantly stimulated under low herbicide concentrations. Other indices for H. verticillata and V. natans had no remarkable changes at 1D. After 7D of treatment, the soluble protein content of H. verticillata showed no significant differences, while the malondialdehyde (MDA), pigment contents and catalase (CAT) activity significantly increased at low glyphosate concentrations. Guaiacol peroxidase (POD) activity in H. verticillata significantly increased with increasing herbicide concentrations. The chlorophyll a/b ratio of H. verticillata sharply decreased above 10 mg/L. For V. natans, soluble protein, chlorophyll a, and carotenoid content; and CAT activity declined significantly after glyphosate application, while other indicators showed no significant changes. Our results indicate that glyphosate concentrations from 0 to 80 mg/L can induce oxidative stress in H. verticillate and may impede metabolism processes for protein and pigments without causing oxidative stress in V. natans. Taken together, our results suggest that the sensitivity of H. verticillata to glyphosate exposure is higher than that of V. natans.
Collapse
Affiliation(s)
- Guidi Zhong
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Zhonghua Wu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, PR China.
| | - Jun Yin
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Lulu Chai
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, PR China
| |
Collapse
|
16
|
C Zanuncio J, C Lacerda M, Alcántara-de la Cruz R, P Brügger B, Pereira AIA, F Wilcken C, E Serrão J, S Sediyama C. Glyphosate-based herbicides toxicity on life history parameters of zoophytophagous Podisus nigrispinus (Heteroptera: Pentatomidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:245-250. [PMID: 28846929 DOI: 10.1016/j.ecoenv.2017.08.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The increase of agricultural areas with glyphosate-resistant (GR) crops, and use of this herbicide in Brazil, makes necessary to assess its impacts on non-target organisms. The objective was to evaluate the development, reproduction and life table parameters of Podisus nigrispinus (Heteroptera: Pentatomidae) reared on GR-soybean plants treated with glyphosate formulations (Zapp-Qi, Roundup-Transorb-R and Roundup-Original) at the recommended field dose (720g acid equivalent ha-1). Glyphosate formulations had no affect on nymph and adult weight of this predator. Fourth instar stage was shortest with Zapp Qi. Egg-adult period was similar between treatments (26 days) with a survival over 90%. Zapp-Qi and Roundup-Transorb-R (potassium-salt: K-salt) reduced the egg, posture and nymph number per female, and the longevity and oviposition periods of this predator. Podisus nigrispinus net reproductive rate was highest in GR-soybean plants treated with Roundup-Original (isopropylamine-salt: IPA-salt). However, the duration of one generation, intrinsic and finite increase rates, and time to duplicate the population, were similar between treatments. Glyphosate toxicity on P. nigrispinus depends of the glyphosate salt type. IPA-salt was least harmless to this predator. Formulations based on K-salt altered its reproductive parameters, however, the development and population dynamic were not affect. Therefore, these glyphosate formulations are compatible with the predator P. nigrispinus with GR-soybean crop.
Collapse
Affiliation(s)
- José C Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, 36570-900 Viçosa, Brasil
| | - Mabio C Lacerda
- Embrapa Arroz e Feijão, Empresa Brasileira de Pesquisa Agropecuária, Santo Antônio de Goiás, 75375-000 Goiás, Brasil
| | | | - Bruno P Brügger
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, 36570-900 Viçosa, Brasil
| | | | - Carlos F Wilcken
- Departamento de Proteção Vegetal, Universidade Estadual Paulista, 18610-307 Botucatu, Brasil
| | - José E Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Brasil
| | - Carlos S Sediyama
- Departamento de Fitotecnia, Universidade Federal de Viçosa, 36570-900 Viçosa, Brasil
| |
Collapse
|
17
|
Domínguez-Mendez R, Alcántara-de la Cruz R, Rojano-Delgado AM, Fernández-Moreno PT, Aponte R, De Prado R. Multiple mechanisms are involved in new imazamox-resistant varieties of durum and soft wheat. Sci Rep 2017; 7:14839. [PMID: 29093532 PMCID: PMC5665993 DOI: 10.1038/s41598-017-13874-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/03/2017] [Indexed: 01/23/2023] Open
Abstract
Weed control in wheat is one of the major goals of farmers in their efforts toward obtaining the highest crop yields for human foods. Several studies (dose-response, enzyme activity, absorption-translocation and metabolism) were conducted to characterize the resistance level of two new wheat cultivars called Rafalín (Triticum aestivum) and Antoñín (T. durum) that were obtained by conventional breeding based on Clearfield® technology; they are resistant (R) to imazamox compared to their sensitive (S) counterparts (Gazul and Simeto, respectively). The R-cultivars were 93.7-fold (Rafalín) and 43.7-fold (Antoñín) more resistant than their respective S-cultivars. The acetolactate synthase (ALS) enzyme activity revealed high resistance to imidazolinone (IMI) herbicides in R-cultivars, but no cross-resistance to other ALS herbicides was found. The Ser653Asn mutation that confers resistance to IMI herbicides was identified in the imi1 and imi2 genes of Rafalín and only in the imi1 gene of Antoñín. The 14C-imazamox absorption did not differ between the R- and S-cultivars. Imazamox was metabolized by Cyt-P450 into imazamox-hydroxyl and imazamox-glucoside in the R-cultivars, altering their translocation patterns. The differential sensitivity to imazamox between R-cultivars was due to the number of resistance genes that carry each genotype. The R-cultivars Rafalín and Antoñín could be excellent weed control tools.
Collapse
Affiliation(s)
- Rafael Domínguez-Mendez
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071, Cordoba, Spain
| | | | - Antonia M Rojano-Delgado
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071, Cordoba, Spain
| | - Pablo T Fernández-Moreno
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071, Cordoba, Spain
| | - Raphael Aponte
- BASF SE, Agricultural Products, 67117, Limburgerhof, Germany
| | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071, Cordoba, Spain
| |
Collapse
|
18
|
Gherekhloo J, Fernández-Moreno PT, Alcántara-de la Cruz R, Sánchez-González E, Cruz-Hipolito HE, Domínguez-Valenzuela JA, De Prado R. Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica). Sci Rep 2017; 7:6702. [PMID: 28751654 PMCID: PMC5532362 DOI: 10.1038/s41598-017-06772-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/16/2017] [Indexed: 11/09/2022] Open
Abstract
Glyphosate has been used for more than 15 years for weed management in citrus groves in the Gulf of Mexico, at up to 3-4 applications per year. Goosegrass (Eleusine indica (L.) Gaertn.) control has sometimes failed. In this research, the mechanisms governing three goosegrass biotypes (Ein-Or from an orange grove, and Ein-Pl1 and Ein-Pl2 from Persian lime groves) with suspected resistance to glyphosate were characterized and compared to a susceptible biotype (Ein-S). Dose-response and shikimate accumulation assays confirmed resistance of the resistant (R) biotypes. There were no differences in glyphosate absorption, but the R biotypes retained up to 62-78% of the herbicide in the treated leaf at 96 h after treatment (HAT), in comparison to the Ein-S biotype (36%). The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity in the Ein-Or and Ein-S biotypes was over 100-fold lower than the Ein-Pl1 and Ein-Pl2 ones. The latter showed a high EPSPS-basal activity, a mutation at Pro-106-Ser position in the EPSPS gene, and EPSPS overexpression. The EPSPS basal and EPSPS overexpression were positively correlated. The R goosegrass biotypes displayed poor glyphosate translocation. Furthermore, this grassweed showed, for the first time, two mechanisms at the target-site level (Pro-106-Ser mutation + EPSPS overexpression) acting together simultaneously against glyphosate.
Collapse
Affiliation(s)
- Javid Gherekhloo
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, 49189-43464, Gorgan, Iran
| | - Pablo T Fernández-Moreno
- Department of Agricultural Chemistry and Edaphology, Campus of Rabanales, University of Cordoba, 14071, Cordoba, Spain
| | | | | | | | | | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, Campus of Rabanales, University of Cordoba, 14071, Cordoba, Spain
| |
Collapse
|
19
|
Fernández-Moreno PT, Alcántara-de la Cruz R, Smeda RJ, De Prado R. Differential Resistance Mechanisms to Glyphosate Result in Fitness Cost for Lolium perenne and L. multiflorum. FRONTIERS IN PLANT SCIENCE 2017; 8:1796. [PMID: 29089958 PMCID: PMC5651048 DOI: 10.3389/fpls.2017.01796] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/03/2017] [Indexed: 05/11/2023]
Abstract
Multiple mechanisms of resistance to glyphosate are exhibited by populations of Lolium spp. worldwide. Association of resistance with growth and reproductive fitness is an important predictor for long-term success of glyphosate-resistant (R) versus glyphosate-susceptible (S) biotypes. Numerous studies were conducted on R- and S-biotypes of Italian ryegrass (Lolium multiflorum) and perennial ryegrass (L. perenne) to characterize the underlying mechanism(s) of glyphosate resistance and associate this with growth and reproductive fitness. L. perenne expressed both altered uptake and translocation as well as a genetic change at 106-Pro to -Ser, This pattern for two resistance mechanisms is unique. L. multiflorum also exhibited altered uptake and translocation as well as duplication of EPSPS gene copies. Reduced plant biomass and height for R-versus S-biotypes of both species was evident over two growing seasons. This resulted in S- versus R- L. multiflorum producing up to 47 and 38% more seeds in 2014 and 2015, respectively. S- L. perenne produced up to 20 and 30% more seeds in 2014 and 2015, respectively. Both non-target site and target-site mechanisms of glyphosate resistance can render Lolium spp. at a competitive disadvantage. This has long-term implications for the success of glyphosate-resistant plants in the absence of selection pressure.
Collapse
Affiliation(s)
- Pablo T. Fernández-Moreno
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, Cordoba, Spain
- *Correspondence: Pablo T. Fernández-Moreno,
| | | | - Reid J. Smeda
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, Cordoba, Spain
| |
Collapse
|
20
|
Bracamonte ER, Fernández-Moreno PT, Bastida F, Osuna MD, Alcántara-de la Cruz R, Cruz-Hipolito HE, De Prado R. Identifying Chloris Species from Cuban Citrus Orchards and Determining Their Glyphosate-Resistance Status. FRONTIERS IN PLANT SCIENCE 2017; 8:1977. [PMID: 29187862 PMCID: PMC5694787 DOI: 10.3389/fpls.2017.01977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/02/2017] [Indexed: 05/12/2023]
Abstract
The Chloris genus is a C4 photosynthetic species mainly distributed in tropical and subtropical regions. Populations of three Chloris species occurring in citrus orchards from central Cuba, under long history glyphosate-based weed management, were studied for glyphosate-resistant status by characterizing their herbicide resistance/tolerance mechanisms. Morphological and molecular analyses allowed these species to be identified as C. ciliata Sw., Chloris elata Desv., and Chloris barbata Sw. Based on the glyphosate rate that causes 50% mortality of the treated plants, glyphosate resistance (R) was confirmed only in C. elata, The R population was 6.1-fold more resistant compared to the susceptible (S) population. In addition, R plants of C. elata accumulated 4.6-fold less shikimate after glyphosate application than S plants. Meanwhile, populations of C. barbata and C. ciliata with or without glyphosate application histories showed similar LD50 values and shikimic acid accumulation rates, demonstrating that resistance to glyphosate have not evolved in these species. Plants of R and S populations of C. elata differed in 14C-glyphosate absorption and translocation. The R population exhibited 27.3-fold greater 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) activity than the S population due to a target site mutation corresponding to a Pro-106-Ser substitution found in the EPSPS gene. These reports show the innate tolerance to glyphosate of C. barbata and C. ciliata, and confirm the resistance of C. elata to this herbicide, showing that both non-target site and target-site mechanisms are involved in its resistance to glyphosate. This is the first case of herbicide resistance in Cuba.
Collapse
Affiliation(s)
- Enzo R. Bracamonte
- Faculty of Agricultural Sciences, National University of Cordoba (UNC), Cordoba, Argentina
| | | | - Fernando Bastida
- Department of Agroforestry Sciences, University of Huelva, Huelva, Spain
| | - María D. Osuna
- Agrarian Research Center “Finca La Orden Valdesequera”, Badajoz, Spain
| | - Ricardo Alcántara-de la Cruz
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
- *Correspondence: Ricardo Alcántara-de la Cruz
| | | | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, Cordoba, Spain
| |
Collapse
|