1
|
Singh D, Chaudhary P, Taunk J, Singh CK, Chinnusamy V, Sevanthi AM, Singh VJ, Pal M. Targeting Induced Local Lesions in Genomes (TILLING): advances and opportunities for fast tracking crop breeding. Crit Rev Biotechnol 2024; 44:817-836. [PMID: 37455414 DOI: 10.1080/07388551.2023.2231630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
The intensification of food production via conventional crop breeding alone is inadequate to cater for global hunger. The development of precise and expeditious high throughput reverse genetics approaches has hugely benefited modern plant breeding programs. Targeting Induced Local Lesions in Genomes (TILLING) is one such reverse genetics approach which employs chemical/physical mutagenesis to create new genetic sources and identifies superior/novel alleles. Owing to technical limitations and sectional applicability of the original TILLING protocol, it has been timely modified. Successions include: EcoTILLING, Double stranded EcoTILLING (DEcoTILLING), Self-EcoTILLING, Individualized TILLING (iTILLING), Deletion-TILLING (De-TILLING), PolyTILLING, and VeggieTILLING. This has widened its application to a variety of crops and needs. They can characterize mutations in coding as well as non-coding regions and can overcome complexities associated with the large genomes. Combining next generation sequencing tools with the existing TILLING protocols has enabled screening of huge germplasm collections and mutant populations for the target genes. In silico TILLING platforms have transformed TILLING into an exciting breeding approach. The present review outlines these multifarious TILLING modifications for precise mutation detection and their application in advance breeding programmes together with relevant case studies. Appropriate use of these protocols will open up new avenues for crop improvement in the twenty first century.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Vikram Jeet Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
2
|
Wang X, Wang A, Li Y, Xu Y, Wei Q, Wang J, Lin F, Gong D, Liu F, Wang Y, Peng L, Li J. A Novel Banana Mutant " RF 1" ( Musa spp. ABB, Pisang Awak Subgroup) for Improved Agronomic Traits and Enhanced Cold Tolerance and Disease Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:730718. [PMID: 34630479 PMCID: PMC8496975 DOI: 10.3389/fpls.2021.730718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Banana is a major fruit crop grown in tropical and subtropical regions worldwide. Among cultivars, "FenJiao, FJ" (Musa spp. ABB, Pisang Awak subgroup) is a popular variety of bananas, due to its better sugar-acid blend and relatively small fruit shape. However, because the traditional FJ variety grows relatively high in height, it is vulnerable to lodging and unsuitable for harvesting. In this study, we sought desirable banana mutants by carrying out ethyl methanesulfonate (EMS) mutagenesis with the FJ cultivar. After the FJ shoot tips had been treated with 0.8% (v/v) EMS for 4 h, we obtained a stably inherited mutant, here called "ReFen 1" (RF1), and also observed a semi-dwarfing phenotype. Compared with the wild type (FJ), this RF1 mutant featured consistently improved agronomic traits during 5-year field experiments conducted in three distinct locations in China. Notably, the RF1 plants showed significantly enhanced cold tolerance and Sigatoka disease resistance, mainly due to a substantially increased soluble content of sugar and greater starch accumulation along with reduced cellulose deposition. Therefore, this study not only demonstrated how a powerful genetic strategy can be used in fruit crop breeding but also provided insight into the identification of novel genes for agronomic trait improvement in bananas and beyond.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Anbang Wang
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yujia Li
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yi Xu
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qing Wei
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiashui Wang
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Fei Lin
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Deyong Gong
- The Fruit Tree Research Center, Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xinyi, China
| | - Fei Liu
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingyang Li
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Abid MA, Wang P, Zhu T, Liang C, Meng Z, Malik W, Guo S, Zhang R. Construction of Gossypium barbadense Mutant Library Provides Genetic Resources for Cotton Germplasm Improvement. Int J Mol Sci 2020; 21:ijms21186505. [PMID: 32899571 PMCID: PMC7554686 DOI: 10.3390/ijms21186505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
Allotetraploid cotton (Gossypium hirsutum and Gossypium barbadense) are cultivated worldwide for its white fiber. For centuries, conventional breeding approaches increase cotton yield at the cost of extensive erosion of natural genetic variability. Sea Island cotton (G. barbadense) is known for its superior fiber quality, but show poor adaptability as compared to Upland cotton. Here, in this study, we use ethylmethanesulfonate (EMS) as a mutagenic agent to induce genome-wide point mutations to improve the current germplasm resources of Sea Island cotton and develop diverse breeding lines with improved adaptability and excellent economic traits. We determined the optimal EMS experimental procedure suitable for construction of cotton mutant library. At M6 generation, mutant library comprised of lines with distinguished phenotypes of the plant architecture, leaf, flower, boll, and fiber. Genome-wide analysis of SNP distribution and density in yellow leaf mutant reflected the better quality of mutant library. Reduced photosynthetic efficiency and transmission electron microscopy of yellow leaf mutants revealed the effect of induced mutations at physiological and cellular level. Our mutant collection will serve as the valuable resource for basic research on cotton functional genomics, as well as cotton breeding.
Collapse
Affiliation(s)
- Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.A.A.); (P.W.); (T.Z.); (C.L.); (Z.M.); (S.G.)
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.A.A.); (P.W.); (T.Z.); (C.L.); (Z.M.); (S.G.)
| | - Tao Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.A.A.); (P.W.); (T.Z.); (C.L.); (Z.M.); (S.G.)
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.A.A.); (P.W.); (T.Z.); (C.L.); (Z.M.); (S.G.)
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.A.A.); (P.W.); (T.Z.); (C.L.); (Z.M.); (S.G.)
| | - Waqas Malik
- Genomics Lab, Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.A.A.); (P.W.); (T.Z.); (C.L.); (Z.M.); (S.G.)
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.A.A.); (P.W.); (T.Z.); (C.L.); (Z.M.); (S.G.)
- Correspondence:
| |
Collapse
|
4
|
Graham N, Patil GB, Bubeck DM, Dobert RC, Glenn KC, Gutsche AT, Kumar S, Lindbo JA, Maas L, May GD, Vega-Sanchez ME, Stupar RM, Morrell PL. Plant Genome Editing and the Relevance of Off-Target Changes. PLANT PHYSIOLOGY 2020; 183:1453-1471. [PMID: 32457089 PMCID: PMC7401131 DOI: 10.1104/pp.19.01194] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/07/2020] [Indexed: 05/12/2023]
Abstract
Site-directed nucleases (SDNs) used for targeted genome editing are powerful new tools to introduce precise genetic changes into plants. Like traditional approaches, such as conventional crossing and induced mutagenesis, genome editing aims to improve crop yield and nutrition. Next-generation sequencing studies demonstrate that across their genomes, populations of crop species typically carry millions of single nucleotide polymorphisms and many copy number and structural variants. Spontaneous mutations occur at rates of ∼10-8 to 10-9 per site per generation, while variation induced by chemical treatment or ionizing radiation results in higher mutation rates. In the context of SDNs, an off-target change or edit is an unintended, nonspecific mutation occurring at a site with sequence similarity to the targeted edit region. SDN-mediated off-target changes can contribute to a small number of additional genetic variants compared to those that occur naturally in breeding populations or are introduced by induced-mutagenesis methods. Recent studies show that using computational algorithms to design genome editing reagents can mitigate off-target edits in plants. Finally, crops are subject to strong selection to eliminate off-type plants through well-established multigenerational breeding, selection, and commercial variety development practices. Within this context, off-target edits in crops present no new safety concerns compared to other breeding practices. The current generation of genome editing technologies is already proving useful to develop new plant varieties with consumer and farmer benefits. Genome editing will likely undergo improved editing specificity along with new developments in SDN delivery and increasing genomic characterization, further improving reagent design and application.
Collapse
Affiliation(s)
- Nathaniel Graham
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, Minnesota 55108
- Pairwise, Durham, North Carolina 27709
| | - Gunvant B Patil
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | | | | | | | | | | | | | - Luis Maas
- Enza Zaden Research USA, San Juan Bautista, California 95045
| | | | | | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
5
|
Lian X, Liu Y, Guo H, Fan Y, Wu J, Guo H, Jiao C, Tang Z, Zhang L, Fan Y, Gou Z, Zhang C, Li T, Zeng F. Ethyl methanesulfonate mutant library construction in Gossypium hirsutum L. for allotetraploid functional genomics and germplasm innovation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:858-868. [PMID: 32239588 DOI: 10.1111/tpj.14755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
As the gene pool is exposed to both strain on land resources and a lack of diversity in elite allotetraploid cotton, the acquisition and identification of novel alleles has taken on epic importance in facilitating cotton genetic improvement and functional genomics research. Ethyl methanesulfonate (EMS) is an excellent mutagen that induces genome-wide efficient mutations to activate the mutagenic potential of plants with many advantages. The present study established, determined and verified the experimental procedure suitable for EMS-based mutant library construction as the general reference guide in allotetraploid upland cotton. This optimized method and procedure are efficient, and abundant EMS mutant libraries (approximately 12 000) in allotetraploid cotton were successfully obtained. More than 20 mutant phenotypes were observed and screened, including phenotypes of the leaf, flower, fruit, fiber and plant architecture. Through the plants mutant library, high-throughput and high-resolution melting technology-based variation evaluation detected the EMS-induced site mutation. Additionally, based on overall genome-wide mutation analyses by re-sequencing and mutant library assessment, the examination results demonstrated the ideal quality of the cotton EMS-treated mutant library constructed in this study with appropriate high mutation density and saturated genome. What is more, the collection is composed of a broad repertoire of mutants, which is the valuable resource for basic genetic research and functional genomics underlying complex allotetraploid traits, as well as cotton breeding.
Collapse
Affiliation(s)
- Xin Lian
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Huihui Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yijie Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianfei Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengzhi Jiao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhengmin Tang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhongyuan Gou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Changyu Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
6
|
Salih H, Gong W, He S, Mustafa NS, Du X. Comparative transcriptome analysis of TUCPs in Gossypium hirsutum Ligon-lintless-1 mutant and their proposed functions in cotton fiber development. Mol Genet Genomics 2018; 294:23-34. [DOI: 10.1007/s00438-018-1482-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
|
7
|
Szurman-Zubrzycka ME, Zbieszczyk J, Marzec M, Jelonek J, Chmielewska B, Kurowska MM, Krok M, Daszkowska-Golec A, Guzy-Wrobelska J, Gruszka D, Gajecka M, Gajewska P, Stolarek M, Tylec P, Sega P, Lip S, Kudełko M, Lorek M, Gorniak-Walas M, Malolepszy A, Podsiadlo N, Szyrajew KP, Keisa A, Mbambo Z, Todorowska E, Gaj M, Nita Z, Orlowska-Job W, Maluszynski M, Szarejko I. HorTILLUS-A Rich and Renewable Source of Induced Mutations for Forward/Reverse Genetics and Pre-breeding Programs in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2018; 9:216. [PMID: 29515615 PMCID: PMC5826354 DOI: 10.3389/fpls.2018.00216] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/05/2018] [Indexed: 05/23/2023]
Abstract
TILLING (Targeting Induced Local Lesions IN Genomes) is a strategy used for functional analysis of genes that combines the classical mutagenesis and a rapid, high-throughput identification of mutations within a gene of interest. TILLING has been initially developed as a discovery platform for functional genomics, but soon it has become a valuable tool in development of desired alleles for crop breeding, alternative to transgenic approach. Here we present the HorTILLUS ( Hordeum-TILLING-University of Silesia) population created for spring barley cultivar "Sebastian" after double-treatment of seeds with two chemical mutagens: sodium azide (NaN3) and N-methyl-N-nitrosourea (MNU). The population comprises more than 9,600 M2 plants from which DNA was isolated, seeds harvested, vacuum-packed, and deposited in seed bank. M3 progeny of 3,481 M2 individuals was grown in the field and phenotyped. The screening for mutations was performed for 32 genes related to different aspects of plant growth and development. For each gene fragment, 3,072-6,912 M2 plants were used for mutation identification using LI-COR sequencer. In total, 382 mutations were found in 182.2 Mb screened. The average mutation density in the HorTILLUS, estimated as 1 mutation per 477 kb, is among the highest mutation densities reported for barley. The majority of mutations were G/C to A/T transitions, however about 8% transversions were also detected. Sixty-one percent of mutations found in coding regions were missense, 37.5% silent and 1.1% nonsense. In each gene, the missense mutations with a potential effect on protein function were identified. The HorTILLUS platform is the largest of the TILLING populations reported for barley and best characterized. The population proved to be a useful tool, both in functional genomic studies and in forward selection of barley mutants with required phenotypic changes. We are constantly renewing the HorTILLUS population, which makes it a permanent source of new mutations. We offer the usage of this valuable resource to the interested barley researchers on cooperative basis.
Collapse
Affiliation(s)
- Miriam E. Szurman-Zubrzycka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Justyna Zbieszczyk
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Marek Marzec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Janusz Jelonek
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Beata Chmielewska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Marzena M. Kurowska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Milena Krok
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Justyna Guzy-Wrobelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Monika Gajecka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Patrycja Gajewska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Magdalena Stolarek
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Piotr Tylec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Paweł Sega
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Sabina Lip
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Monika Kudełko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Magdalena Lorek
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Małgorzata Gorniak-Walas
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Anna Malolepszy
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Nina Podsiadlo
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Katarzyna P. Szyrajew
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Anete Keisa
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Zodwa Mbambo
- Biosciences, Council for Scientific and Industrial Research, Pretoria, South Africa
| | | | - Marek Gaj
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Zygmunt Nita
- Seed Company Plant Breeding Strzelce Ltd., Plant Breeding and Acclimatization Institute, Błonie, Poland
| | - Wanda Orlowska-Job
- Seed Company Plant Breeding Strzelce Ltd., Plant Breeding and Acclimatization Institute, Błonie, Poland
| | - Miroslaw Maluszynski
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|