1
|
Saha J, Chaudhuri D, Kundu A, Bhattacharya S, Roy S, Giri K. Phylogenetic, structural, functional characterisation and effect of exogenous spermidine on rice ( Oryza sativa) HAK transporters under salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:160-182. [PMID: 36031595 DOI: 10.1071/fp22059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The HAK (High-affinity K+ ) family members mediate K+ transport that confers normal plant growth and resistance against unfavourable environmental conditions. Rice (Oryza sativa L.) HAK transporters have been extensively investigated for phylogenetic analyses with other plants species with very few of them functionally characterised. But very little information is known about their evolutionary aspects, overall structural, functional characterisation, and global expression pattern of the complete HAK family members in response to salt stress. In this study, 27 rice transporters were phylogenetically clustered with different dicot and monocot family members. Subsequently, the exon-intron structural patterns, conserved motif analyses, evolutionary divergence based different substitution matrix, orthologous-paralogous relationships were studied elaborately. Structural characterisations included a comparative study of secondary and tertiary structure, post-translational modifications, correspondence analyses, normal mode analyses, K+ /Na+ binding affinities of each of the OsHAK gene members. Global expression profile under salt stress showed clade-specific expression pattern of the proteins. Additionally, five OsHAK genes were chosen for further expression analyses in root and shoot tissues of two rice varieties during short-term salinity in the presence and absence of exogenous spermidine. All the information can be used as first-hand data for dissecting the administrative role of rice HAK transporters under various abiotic stresses.
Collapse
Affiliation(s)
- Jayita Saha
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India; and Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata 700118, West Bengal, India
| | - Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, Kolkata, West Bengal, India
| | - Sudipta Roy
- Department of Botany, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| |
Collapse
|
2
|
Zhao J, Qin G, Liu X, Li J, Liu C, Zhou J, Liu J. Genome-wide identification and expression analysis of HAK/KUP/KT potassium transporter provides insights into genes involved in responding to potassium deficiency and salt stress in pepper ( Capsicum annuum L.). 3 Biotech 2022; 12:77. [PMID: 35251880 PMCID: PMC8873266 DOI: 10.1007/s13205-022-03136-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/30/2022] [Indexed: 11/29/2022] Open
Abstract
In plants, the HAK/KUP/KT family is the largest group of potassium transporters, and it plays an important role in mineral element absorption, plant growth, environmental stress adaptation, and symbiosis. Although these important genes have been investigated in many plant species, limited information is currently available on the HAK/KUP/KT genes for Pepper (Capsicum annuum L.). In the present study, a total of 20 CaHAK genes were identified from the pepper genome and the CaHAK genes were numbered 1 - 20 based on phylogenetic analysis. For the genes and their corresponding proteins, the physicochemical properties, phylogenetic relationship, chromosomal distribution, gene structure, conserved motifs, gene duplication events, and expression patterns were analyzed. Phylogenetic analysis divided CaHAK genes into four cluster (I-IV) based on their structural features and the topology of the phylogenetic tree. Purifying selection played a crucial role in the evolution of CaHAK genes, while whole-genome triplication contributed to the expansion of the CaHAK gene family. The expression patterns showed that CaHAK proteins exhibited functional divergence in terms of plant K+ uptake and salt stress response. In particular, transcript abundance of CaHAK3 and CaHAK7 was strongly and specifically up-regulated in pepper roots under low K+ or high salinity conditions, suggesting that these genes are candidates for high-affinity K+ uptake transporters and may play crucial roles in the maintenance of the Na+/K+ balance during salt stress in pepper. In summary, the results not only provided the important information on the characteristics and evolutionary relationships of CaHAKs, but also provided potential genes responding to potassium deficiency and salt stress. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03136-z.
Collapse
Affiliation(s)
- Jianrong Zhao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Gaihua Qin
- Institute of Horticultural Research, Anhui Academy of Agricultural Sciences (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei, Anhui China ,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiyu Li
- Institute of Horticultural Research, Anhui Academy of Agricultural Sciences (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei, Anhui China ,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chunyan Liu
- Institute of Horticultural Research, Anhui Academy of Agricultural Sciences (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei, Anhui China ,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianjian Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China ,Institute of Horticultural Research, Anhui Academy of Agricultural Sciences (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei, Anhui China
| |
Collapse
|
3
|
Nestrerenko EO, Krasnoperova OE, Isayenkov SV. Potassium Transport Systems and Their Role in Stress Response, Plant Growth, and Development. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Zhang H, Xiao W, Yu W, Jiang Y, Li R. Halophytic Hordeum brevisubulatum HbHAK1 Facilitates Potassium Retention and Contributes to Salt Tolerance. Int J Mol Sci 2020; 21:ijms21155292. [PMID: 32722526 PMCID: PMC7432250 DOI: 10.3390/ijms21155292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/30/2023] Open
Abstract
Potassium retention under saline conditions has emerged as an important determinant for salt tolerance in plants. Halophytic Hordeum brevisubulatum evolves better strategies to retain K+ to improve high-salt tolerance. Hence, uncovering K+-efficient uptake under salt stress is vital for understanding K+ homeostasis. HAK/KUP/KT transporters play important roles in promoting K+ uptake during multiple stresses. Here, we obtained nine salt-induced HAK/KUP/KT members in H. brevisubulatum with different expression patterns compared with H. vulgare through transcriptomic analysis. One member HbHAK1 showed high-affinity K+ transporter activity in athak5 to cope with low-K+ or salt stresses. The expression of HbHAK1 in yeast Cy162 strains exhibited strong activities in K+ uptake under extremely low external K+ conditions and reducing Na+ toxicity to maintain the survival of yeast cells under high-salt-stress. Comparing with the sequence of barley HvHAK1, we found that C170 and R342 in a conserved domain played pivotal roles in K+ selectivity under extremely low-K+ conditions (10 μM) and that A13 was responsible for the salt tolerance. Our findings revealed the mechanism of HbHAK1 for K+ accumulation and the significant natural adaptive sites for HAK1 activity, highlighting the potential value for crops to promote K+-uptake under stresses.
Collapse
Affiliation(s)
- Haiwen Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
| | - Wen Xiao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wenwen Yu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ying Jiang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
| | - Ruifen Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
- Correspondence: ; Tel.: +86-10-51503257
| |
Collapse
|
5
|
Rajappa S, Krishnamurthy P, Kumar PP. Regulation of AtKUP2 Expression by bHLH and WRKY Transcription Factors Helps to Confer Increased Salt Tolerance to Arabidopsis thaliana Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1311. [PMID: 32983201 PMCID: PMC7477289 DOI: 10.3389/fpls.2020.01311] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/11/2020] [Indexed: 05/02/2023]
Abstract
Potassium transporters play an essential role in maintaining cellular ion homeostasis, turgor pressure, and pH, which are critical for adaptation under salt stress. We identified a salt responsive Avicennia officinalis KUP/HAK/KT transporter family gene, AoKUP2, which has high sequence similarity to its Arabidopsis ortholog AtKUP2. These genes were functionally characterized in mutant yeast cells and Arabidopsis plants. Both AoKUP2 and AtKUP2 were induced by salt stress, and AtKUP2 was primarily induced in roots. Subcellular localization revealed that AoKUP2 and AtKUP2 are localized to the plasma membrane and mitochondria. Expression of AtKUP2 and AoKUP2 in Saccharomyces cerevisiae mutant strain (BY4741 trk1Δ::loxP trk2Δ::loxP) helped to rescue the growth defect of the mutant under different NaCl and K+ concentrations. Furthermore, constitutive expression of AoKUP2 and AtKUP2 conferred enhanced salt tolerance in Arabidopsis indicated by higher germination rate, better survival, and increased root and shoot length compared to the untreated controls. Analysis of Na+ and K+ contents in the shoots and roots showed that ectopic expression lines accumulated less Na+ and more K+ than the WT. Two stress-responsive transcription factors, bHLH122 and WRKY33, were identified as direct regulators of AtKUP2 expression. Our results suggest that AtKUP2 plays a key role in enhancing salt stress tolerance by maintaining cellular ion homeostasis.
Collapse
Affiliation(s)
- Sivamathini Rajappa
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Pannaga Krishnamurthy
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
| | - Prakash P. Kumar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
- *Correspondence: Prakash P. Kumar,
| |
Collapse
|
6
|
Zhang H, Xiao W, Yu W, Yao L, Li L, Wei J, Li R. Foxtail millet SiHAK1 excites extreme high-affinity K + uptake to maintain K + homeostasis under low K + or salt stress. PLANT CELL REPORTS 2018; 37:1533-1546. [PMID: 30030611 DOI: 10.1007/s00299-018-2325-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
This is the first evidence that SiHAK1 acts as a K+ transporter and is modulated by internal and external K+, which expands our understanding of the significant physiological roles of large HAK/KUP/KT transporters in crops. Crop genomes have shown the richness of K+ transporters in HAK/KUP/KT (High Affinity K+/K+ Uptake Proteins/K+ Transporter) family, and much progress have been achieved toward understanding the diverse roles of K+ uptake and translocation, and abiotic stresses resistance in this family. The HAK/KUP/KT family has increasingly been recognized to be at a pivotal status in the mediation of K+ translocation and long-term transport; however, our understanding of the molecular mechanisms remains limited. Foxtail millet is an ideal plant for studying long-distance potassium (K) transport because of its small diploid genome and better adaptability to arid lands. Here, we identified 29 putative HAK/KUP/KT proteins from the Setaria italica genome database. These genes were distributed in seven chromosomes of foxtail millet and divided into five clusters. SiHAK1 exhibited widespread expression in various tissues and significant up-regulation in the shoots under low K condition. SiHAK1 was localized in the cell membrane and low K elicited SiHAK1-meidated high-affinity K+ uptake activity in Cy162 yeast cells and Arabidopsis athak5 mutants. The transport activity of SiHAK1 was coordinately modulated by external K+ supply and internal K+ content in the cell under low K and high salt environment. Our findings reveal the K uptake mechanisms of SiHAK1 and indicated that it may be involved in the mediation of K homeostasis in S. italica under K+-deficiency and salt stress.
Collapse
Affiliation(s)
- Haiwen Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wen Xiao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wenwen Yu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Lei Yao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Legong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ruifen Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
7
|
|