1
|
Kong Y, Zheng Y. Complex Signaling Networks Underlying Blue-Light-Mediated Floral Transition in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1533. [PMID: 40431098 PMCID: PMC12115001 DOI: 10.3390/plants14101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Blue light (BL) is important in regulating floral transition. In a controlled environment production system, BL can be manipulated easily and precisely in aspects like peak wavelength, intensity, duration, and co-action with other wavelengths. However, the results of previous studies about BL-mediated floral transition are inconsistent, which implies that an in-depth critical examination of the relevant physiological mechanisms is necessary. This review consolidates the recent findings on the role of BL in mediating floral transition not only in model plants, such as Arabidopsis thaliana, but also in crops, especially horticultural crops. The photoreceptors, floral integrator proteins, signal pathways, and key network components involved in BL-mediated floral transition are critically reviewed. This review provides possible explanations for the contrasting results of previous studies on BL-mediated flowering; it provides valuable information to explain and develop BL manipulation strategies for mediating flowering, especially in horticultural plants. The review also identifies the knowledge gaps and outlines future directions for research in related fields.
Collapse
Affiliation(s)
| | - Youbin Zheng
- School of Environmental Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
2
|
Stavridou E, Karamichali I, Siskas E, Bosmali I, Osanthanunkul M, Madesis P. Identification of Sex-Associated Genetic Markers in Pistacia lentiscus var. chia for Early Male Detection. Genes (Basel) 2024; 15:632. [PMID: 38790261 PMCID: PMC11120708 DOI: 10.3390/genes15050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Pistacia lentiscus var. chia is a valuable crop for its high-added-value mastic, a resin with proven pharmaceutical and cosmeceutical properties harvested from the male tree trunk. To achieve the maximum economic benefits from the cultivation of male mastic trees, it is important to develop early sex diagnosis molecular tools for distinguishing the sex type. Thus far, the work on sex identification has focused on Pistacia vera with promising results; however, the low transferability rates of these markers in P. lentiscus necessitates the development of species-specific sex-linked markers for P. lentiscus var. chia. To our knowledge, this is the first report regarding: (i) the development of species-specific novel transcriptome-based markers for P. lentiscus var. chia and their assessment on male, female and monoecious individuals using PCR-HRM analysis, thus, introducing a cost-effective method for sex identification with high accuracy that can be applied with minimum infrastructure, (ii) the effective sex identification in mastic tree using a combination of different sex-linked ISSR and SCAR markers with 100% accuracy, and (iii) the impact evaluation of sex type on the genetic diversity of different P. lentiscus var. chia cultivars. The results of this study are expected to provide species-specific markers for accurate sex identification that could contribute to the selection process of male mastic trees at an early stage for mass propagation systems and to facilitate future breeding efforts related to sex-linked productivity and quality of mastic resin.
Collapse
Affiliation(s)
- Evangelia Stavridou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (E.S.)
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
| | - Ioanna Karamichali
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
| | - Evangelos Siskas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (E.S.)
| | - Irini Bosmali
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
| | - Maslin Osanthanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Centre in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panagiotis Madesis
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
3
|
Wickramasinghe KP, Kong CY, Lin XQ, Zhao PF, Mehdi F, Li XJ, Liu XL, Mao J, Lu X. Photoperiodic and lighting treatments for flowering control and its genetic regulation in sugarcane breeding. Heliyon 2024; 10:e28531. [PMID: 38586380 PMCID: PMC10998108 DOI: 10.1016/j.heliyon.2024.e28531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/05/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Improvement of sugarcane is hampered due to its narrow genetic base, and the difficulty in synchronizing flowering further hinders the exploitation of the genetic potential of available germplasm resources. Therefore, the continuous evaluation and optimization of flowering control and induction techniques are vital for sugarcane improvement. In view of this, the review was conducted to investigate the current understanding of photoperiodic and lighting treatment effects on sugarcane flowering and its genetic regulation. Photoperiod facilities have made a significant contribution to flowering control in sugarcane; however, inductive photoperiods are still unknown for some genotypes, and some intended crosses are still impossible to produce because of unresponsive varieties. The effectiveness of lower red/far-red ratios in promoting sugarcane flowering has been widely understood. Furthermore, there is vast potential for utilizing blue, red, and far-red light wavelengths in the flowering control of sugarcane. In this context, light-emitting diodes (LEDs) remain efficient sources of light. Therefore, the combined use of photoperiod regimes with different light wavelengths and optimization of such treatment combinations might help to control and induce flowering in sugarcane parental clones. In sugarcane, FLOWERING LOCUS T (ScFT) orthologues from ScFT1 to ScFT13 have been identified, and interestingly, ScFT3 has evidently been identified as a floral inducer in sugarcane. However, independent assessments of different FT-like gene family members are recommended to comprehensively understand their role in the regulation of flowering. Similarly, we believe this review provides substantial information that is vital for the manipulation of flowering and exploitation of germplasm resources in sugarcane breeding.
Collapse
Affiliation(s)
- Kamal Priyananda Wickramasinghe
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Yunnan Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
- Sugarcane Research Institute, Uda Walawa, 70190, Sri Lanka
| | - Chun-yan Kong
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Yunnan Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| | - Xiu-qin Lin
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Yunnan Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| | - Pei-fang Zhao
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Yunnan Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| | - Faisal Mehdi
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Yunnan Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Xu-juan Li
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Yunnan Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| | - Xin-long Liu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Yunnan Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| | - Jun Mao
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Yunnan Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| | - Xin Lu
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Yunnan Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| |
Collapse
|
4
|
Zhao JX, Wang S, Liu J, Jiang XD, Wen J, Suo ZQ, Liu J, Zhong MC, Wang Q, Gu Z, Liu C, Deng Y, Hu JY, Li DZ. A comparative full-length transcriptomic resource provides insight into the perennial monocarpic mass flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1842-1855. [PMID: 37665679 DOI: 10.1111/tpj.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Perennial monocarpic mass flowering represents as a key developmental innovation in flowering time diversity in several biological and economical essential families, such as the woody bamboos and the shrubby Strobilanthes. However, molecular and genetic mechanisms underlying this important biodiversity remain poorly investigated. Here, we generated a full-length transcriptome resource incorporated into the BlueOmics database (http://blueomics.iflora.cn) for two Strobilanthes species, which feature contrasting flowering time behaviors. Using about 112 and 104 Gb Iso-seq reads together with ~185 and ~75 Gb strand-specific RNA seq data, we annotated 80 971 and 79 985 non-redundant full-length transcripts for the perennial polycarpic Strobilanthes tetrasperma and the perennial monocarpic Strobilanthes biocullata, respectively. In S. tetrasperma, we identified 8794 transcripts showing spatiotemporal expression in nine tissues. In leaves and shoot apical meristems at two developmental stages, 977 and 1121 transcripts were differentially accumulated in S. tetrasperma and S. biocullata, respectively. Interestingly, among the 33 transcription factors showing differential expression in S. tetrasperma but without differential expression in S. biocullata, three were involved potentially in the photoperiod and circadian-clock pathway of flowering time regulation (FAR1 RELATED SEQUENCE 12, FRS12; NUCLEAR FACTOR Y A1, NFYA1; PSEUDO-RESPONSE REGULATOR 5, PRR5), hence provides an important clue in deciphering the flowering diversity mechanisms. Our data serve as a key resource for further dissection of molecular and genetic mechanisms underpinning key biological innovations, here, the perennial monocarpic mass flowering.
Collapse
Affiliation(s)
- Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jiazhi Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Wen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Quan Suo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qin Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhirong Gu
- Administration of National Nature Reserve of Badagongshan, Sangzhi, 427000, Hunan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
5
|
Yadav AK, Singh CK, Kalia RK, Mittal S, Wankhede DP, Kakani RK, Ujjainwal S, Aakash, Saroha A, Nathawat NS, Rani R, Panchariya P, Choudhary M, Solanki K, Chaturvedi KK, Archak S, Singh K, Singh GP, Singh AK. Genetic diversity, population structure, and genome-wide association study for the flowering trait in a diverse panel of 428 moth bean (Vigna aconitifolia) accessions using genotyping by sequencing. BMC PLANT BIOLOGY 2023; 23:228. [PMID: 37120525 PMCID: PMC10148550 DOI: 10.1186/s12870-023-04215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Moth bean (Vigna aconitifolia) is an underutilized, protein-rich legume that is grown in arid and semi-arid areas of south Asia and is highly resistant to abiotic stresses such as heat and drought. Despite its economic importance, the crop remains unexplored at the genomic level for genetic diversity and trait mapping studies. To date, there is no report of SNP marker discovery and association mapping of any trait in this crop. Therefore, this study aimed to dissect the genetic diversity, population structure and marker-trait association for the flowering trait in a diversity panel of 428 moth bean accessions using genotyping by sequencing (GBS) approach. RESULTS A total of 9078 high-quality single nucleotide polymorphisms (SNPs) were discovered by genotyping of 428 moth bean accessions. Model-based structure analysis and PCA grouped the moth bean accessions into two subpopulations. Cluster analysis revealed accessions belonging to the Northwestern region of India had higher variability than accessions from the other regions suggesting that this region represents its center of diversity. AMOVA revealed more variations within individuals (74%) and among the individuals (24%) than among the populations (2%). Marker-trait association analysis using seven multi-locus models including mrMLM, FASTmrEMMA FASTmrEMMA, ISIS EM-BLASSO, MLMM, BLINK and FarmCPU revealed 29 potential genomic regions for the trait days to 50% flowering, which were consistently detected in three or more models. Analysis of the allelic effect of the major genomic regions explaining phenotypic variance of more than 10% and those detected in at least 2 environments showed 4 genomic regions with significant phenotypic effect on this trait. Further, we also analyzed genetic relationships among the Vigna species using SNP markers. The genomic localization of moth bean SNPs on genomes of closely related Vigna species demonstrated that maximum numbers of SNPs were getting localized on Vigna mungo. This suggested that the moth bean is most closely related to V. mungo. CONCLUSION Our study shows that the north-western regions of India represent the center of diversity of the moth bean. Further, the study revealed flowering-related genomic regions/candidate genes which can be potentially exploited in breeding programs to develop early-maturity moth bean varieties.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Chandan Kumar Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Rajwant K Kalia
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | | | - Rajesh K Kakani
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Shraddha Ujjainwal
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Aakash
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Ankit Saroha
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - N S Nathawat
- ICAR- Central Arid Zone Research Institute, Regional Research Station, Bikaner, Rajasthan, India
| | - Reena Rani
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Pooja Panchariya
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Manoj Choudhary
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Kantilal Solanki
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - K K Chaturvedi
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India
| | - Sunil Archak
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Kuldeep Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | | | - Amit Kumar Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India.
| |
Collapse
|
6
|
Johansson M, Steffen A, Lewinski M, Kobi N, Staiger D. HDF1, a novel flowering time regulator identified in a mutant suppressing sensitivity to red light reduced 1 early flowering. Sci Rep 2023; 13:1404. [PMID: 36697433 PMCID: PMC9876914 DOI: 10.1038/s41598-023-28049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Arabidopsis SENSITIVITY TO RED LIGHT REDUCED 1 (SRR1) delays the transition from vegetative to reproductive development in noninductive conditions. A second-site suppressor screen for novel genes that overcome early flowering of srr1-1 identified a range of suppressor of srr1-1 mutants flowering later than srr1-1 in short photoperiods. Here, we focus on mutants flowering with leaf numbers intermediate between srr1-1 and Col. Ssm67 overcomes srr1-1 early flowering independently of day-length and ambient temperature. Full-genome sequencing and linkage mapping identified a causative SNP in a gene encoding a Haloacid dehalogenase superfamily protein, named HAD-FAMILY REGULATOR OF DEVELOPMENT AND FLOWERING 1 (HDF1). Both, ssm67 and hdf1-1 show increased levels of FLC, indicating that HDF1 is a novel regulator of this floral repressor. HDF1 regulates flowering largely independent of SRR1, as the effect is visible in srr1-1 and in Col, but full activity on FLC may require SRR1. Furthermore, srr1-1 has a delayed leaf initiation rate that is dependent on HDF1, suggesting that SRR1 and HDF1 act together in leaf initiation. Another mutant flowering intermediate between srr1-1 and wt, ssm15, was identified as a new allele of ARABIDOPSIS SUMO PROTEASE 1, previously implicated in the regulation of FLC stability.
Collapse
Affiliation(s)
- Mikael Johansson
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany.
| | - Alexander Steffen
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Natalie Kobi
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany.
| |
Collapse
|
7
|
Transcriptome Analysis of Lycoris chinensis Bulbs Reveals Flowering in the Age-Mediated Pathway. Biomolecules 2022; 12:biom12070899. [PMID: 35883454 PMCID: PMC9312979 DOI: 10.3390/biom12070899] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Lycoris is a summer bulbous flower that commonly needs to go through a long period of vegetative growth for 3 to 5 years before flowering. Plant flowering is regulated by a complex genetic network. Compared with most perennial flowers, knowledge on the molecular mechanism responsible for floral transition in bulbous flowers is lacking, and only a few genes that regulate flowering have been identified with few reports on the floral transition in Lycoris. In this study, we identified many differentially expressed genes (DEGs) and transcription factors (TFs) by RNA-Seq in L. chinensis bulbs of different ages, including one- to four-year-old nonflowering bulbs and four-year-old flowering bulbs. Some DEGs were enriched in Gene Ontology (GO) terms between the three- and four-year-old bulbs, and there most genes were enriched in terms of metabolic process and catalytic activity. In the four-year old bulbs, most of the DEGs that may be involved in flowering were classified under the GO term biological process, which was a totally different result from the vegetative bulbs. Some DEGs between flowering and nonflowering bulbs were enriched in plant hormone signal transduction, including the hormones auxin, cytokinin, abscisic acid, and ethylene, but no DEGs were enriched in the gibberellin pathway. Auxin is the main endogenous phytohormone involved in bulb growth and development, but cytokinin, abscisic acid, and ethylene were shown to increase in flowering bulbs. In addition, energy-metabolism-related genes maintain a high expression level in large bulbs, and some positive regulators (SPL, COL, and AP1) and early flowering genes were also shown to be highly expressed in the meristems of flowering bulbs. It suggested that sugar molecules may be the energy source that regulates the signal transduction of flowering by connecting with phytohormone signaling in Lycoris. A total of 1911 TFs were identified and classified into 89 categories, where the top six families with the largest gene numbers were C2H2, NAC, AP2/ERF-ERF, C3H, MYB-related, and WRKY. Most DEGs were in the AP2/ERF-ERF family, and most of them were downregulated in 4-year-old flowering bulbs. A number of families were reported to be involved in plant flowering, including NAC, AP2/ERF, MYB, WRKY, bZIP, MADS, and NF-Y. These results can act as a genetic resource to aid in the explanation of the genetic mechanism responsible for the flowering of Lycoris and other bulbous flowers.
Collapse
|
8
|
Guo YH, Luo C, Liu Y, Liang RZ, Yu HX, Lu XX, Mo X, Chen SQ, He XH. Isolation and functional analysis of two CONSTANS-like 1 genes from mango. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:125-135. [PMID: 35065373 DOI: 10.1016/j.plaphy.2022.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The CONSTANS-LIKE1 (COL1) gene plays an important role in the regulation of photoperiodic flowering in plants. In this study, two COL1 homolog genes, MiCOL1A and MiCOL1B, were isolated from mango (Mangifera indica L.). The open reading frames of MiCOL1A and MiCOL1B are 852 and 822 bp in length and encode 284 and 274 amino acids, respectively. The MiCOL1A and MiCOL1B proteins contain only one CCT domain and belong to the CO/COL group IV protein family. MiCOL1A and MiCOL1B were expressed both in vegetative and reproductive organs but with expression level differences. MiCOL1A was highly expressed in juvenile and adult leaves, but MiCOL1B was highly expressed in flowers. Seasonal expression analysis showed that MiCOL1A and MiCOL1B have similar expression patterns and higher expression levels during flower induction and flower organ differentiation periods. However, MiCOL1A and MiCOL1B exhibited unstable patterns in circadian expression analysis. MiCOL1A and MiCOL1B were localized in the nucleus and had transcriptional activation activity in yeast. Overexpression of MiCOL1A and MiCOL1B resulted in significantly delayed flowering time in Arabidopsis. Furthermore, we also found that overexpression of MiCOL1A and MiCOL1B enhanced drought tolerance in transgenic Arabidopsis. The results demonstrated that MiCOL1A and MiCOL1B are not only involved in flowering regulation but also play a role in the stress response of plants.
Collapse
Affiliation(s)
- Yi-Hang Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Rong-Zhen Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hai-Xia Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xin-Xi Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiao Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Shu-Quan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xin-Hua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
9
|
A framework of artificial light management for optimal plant development for smart greenhouse application. PLoS One 2021; 16:e0261281. [PMID: 34898651 PMCID: PMC8668093 DOI: 10.1371/journal.pone.0261281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
Smart greenhouse farming has emerged as one of the solutions to global food security, where farming productivity can be managed and improved in an automated manner. While it is known that plant development is highly dependent on the quantity and quality of light exposure, the specific impact of the different light properties is yet to be fully understood. In this study, using the model plant Arabidopsis, we systematically investigate how six different light properties (i.e., photoperiod, light offset, intensity, phase of dawn, duration of twilight and period) would affect plant development i.e., flowering time and hypocotyl (seedling stem) elongation using an established mathematical model of the plant circadian system relating light input to flowering time and hypocotyl elongation outputs for smart greenhouse application. We vary each of the light properties individually and then collectively to understand their effect on plant development. Our analyses show in comparison to the nominal value, the photoperiod of 18 hours, period of 24 hours, no light offset, phase of dawn of 0 hour, duration of twilight of 0.05 hour and a reduced light intensity of 1% are able to improve by at least 30% in days to flower (from 32.52 days to 20.61 days) and hypocotyl length (from 1.90 mm to 1.19mm) with the added benefit of reducing energy consumption by at least 15% (from 4.27 MWh/year to 3.62 MWh/year). These findings could provide beneficial solutions to the smart greenhouse farming industries in terms of achieving enhanced productivity while consuming less energy.
Collapse
|
10
|
Hirakawa H, Toyoda A, Itoh T, Suzuki Y, Nagano AJ, Sugiyama S, Onodera Y. A spinach genome assembly with remarkable completeness, and its use for rapid identification of candidate genes for agronomic traits. DNA Res 2021; 28:6303609. [PMID: 34142133 PMCID: PMC8231376 DOI: 10.1093/dnares/dsab004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 01/23/2023] Open
Abstract
Spinach (Spinacia oleracea) is grown as a nutritious leafy vegetable worldwide. To accelerate spinach breeding efficiency, a high-quality reference genome sequence with great completeness and continuity is needed as a basic infrastructure. Here, we used long-read and linked-read technologies to construct a de novo spinach genome assembly, designated SOL_r1.1, which was comprised of 287 scaffolds (total size: 935.7 Mb; N50 = 11.3 Mb) with a low proportion of undetermined nucleotides (Ns = 0.34%) and with high gene completeness (BUSCO complete 96.9%). A genome-wide survey of resistance gene analogues identified 695 genes encoding nucleotide-binding site domains, receptor-like protein kinases, receptor-like proteins and transmembrane-coiled coil domains. Based on a high-density double-digest restriction-site associated DNA sequencing-based linkage map, the genome assembly was anchored to six pseudomolecules representing ∼73.5% of the whole genome assembly. In addition, we used SOL_r1.1 to identify quantitative trait loci for bolting timing and fruit/seed shape, which harbour biologically plausible candidate genes, such as homologues of the FLOWERING LOCUS T and EPIDERMAL PATTERNING FACTOR-LIKE genes. The new genome assembly, SOL_r1.1, will serve as a useful resource for identifying loci associated with important agronomic traits and for developing molecular markers for spinach breeding/selection programs.
Collapse
Affiliation(s)
- Hideki Hirakawa
- The Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Yutaka Suzuki
- The Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan
| | - Suguru Sugiyama
- School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yasuyuki Onodera
- The Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
11
|
Wang G, Wang C, Lu G, Wang W, Mao G, Habben JE, Song C, Wang J, Chen J, Gao Y, Liu J, Greene TW. Knockouts of a late flowering gene via CRISPR-Cas9 confer early maturity in rice at multiple field locations. PLANT MOLECULAR BIOLOGY 2020; 104:137-150. [PMID: 32623622 DOI: 10.1007/s11103-020-01031-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
OsGhd7 gene was discovered by screening our rice activation tagging population. CRISPR-Cas9 created knockouts of OsGhd7 conferred early flowering and early maturity in rice varieties across multiple geographical locations in China. Our research shows that OsGhd7 is a good target for breeding early maturity rice varieties, and an excellent example of the advantages of applying the CRISPR-Cas9 technology for trait improvement. Flowering time (heading date) is an important trait for crop cultivation and yield. In this study, we discovered a late flowering gene OsGhd7 by screening our rice activation tagging population, and demonstrated that overexpression of OsGhd7 delayed flowering time in rice, and the delay in flowering time depended on the transgene expression level. OsGhd7 is a functional allele of the Ghd7 gene family; knockouts of OsGhd7 generated by CRISPR-Cas9 significantly accelerated flowering time and the earliness of the flowering time depended on field location. The homozygous OsGhd7 knockout lines showed approximately 8, 10, and 20 days earlier flowering than controls at three different locations in China (Changsha City, Sanya City, and Beijing City, respectively) that varied from 18.25° N to 39.90° N. Furthermore, knockouts of OsGhd7 also showed an early flowering phenotype in different rice varieties, indicating OsGhd7 can be used as a common target gene for using the CRISPR technology to modulate rice flowering time. The importance of OsGhd7 and CRISPR technology for breeding early maturity rice varieties are discussed.
Collapse
Affiliation(s)
- Guokui Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Changgui Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Guihua Lu
- Corteva™ Agriscience, Johnston, IA, USA.
| | - Wei Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Guanfan Mao
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | | | - Chao Song
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Jiantao Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Jian Chen
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Yang Gao
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Junhua Liu
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China.
| | | |
Collapse
|
12
|
Jiang Z, Sun L, Wei Q, Ju Y, Zou X, Wan X, Liu X, Yin Z. A New Insight into Flowering Regulation: Molecular Basis of Flowering Initiation in Magnolia × soulangeana 'Changchun'. Genes (Basel) 2019; 11:genes11010015. [PMID: 31877931 PMCID: PMC7017242 DOI: 10.3390/genes11010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Magnolia × soulangeana ‘Changchun’ are trees that bloom in spring and summer respectively after flower bud differentiation. Here, we use phenological and morphological observation and RNA-seq technology to study the molecular basis of flowering initiation in ‘Changchun’. During the process of flowering initiation in spring and summer, the growth of expanded flower buds increased significantly, and their shape was obviously enlarged, which indicated that flowering was initiated. A total of 168,120 expressed genes were identified in spring and summer dormant and expanded flower buds, of which 11,687 genes showed significantly differential expression between spring and summer dormant and expanded flower buds. These differentially expressed genes (DEGs) were mainly involved in plant hormone signal transduction, metabolic processes, cellular components, binding, and catalytic activity. Analysis of differential gene expression patterns revealed that gibberellin signaling, and some transcription factors were closely involved in the regulation of spring and summer flowering initiation in ‘Changchun’. A qRT-PCR (quantitative Real Time Polymerase Chain Reaction) analysis showed that BGISEQ-500 sequencing platform could truly reflect gene expression patterns. It also verified that GID1B (GIBBERELLIN INSENSITIVE DWARF1 B), GID1C, SPL8 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8), and GASA (GIBBERELLIC ACID-STIMULATED ARABIDOPSIS) family genes were expressed at high levels, while the expression of SPY (SPINDLY) was low during spring and summer flowering initiation. Meanwhile, the up- and down-regulated expression of, respectively, AGL6 (AGAMOUS-LIKE 6) and DREB3 (DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 3), AG15, and CDF1 (CYCLIC DOF FACTOR 1) might also be involved in the specific regulation of spring and summer flowering initiation. Obviously, flowering initiation is an important stage of the flowering process in woody plants, involving the specific regulation of relevant genes and transcription factors. This study provides a new perspective for the regulation of the flowering process in perennial woody plants.
Collapse
Affiliation(s)
- Zheng Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Liyong Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Qiang Wei
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China;
| | - Ye Ju
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Xuan Zou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Xiaoxia Wan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Xu Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
| | - Zengfang Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Z.J.); (L.S.); (Y.J.); (X.Z.); (X.W.); (X.L.)
- Correspondence: ; Tel.: +86-025-8542-7316
| |
Collapse
|
13
|
Wisser RJ, Fang Z, Holland JB, Teixeira JEC, Dougherty J, Weldekidan T, de Leon N, Flint-Garcia S, Lauter N, Murray SC, Xu W, Hallauer A. The Genomic Basis for Short-Term Evolution of Environmental Adaptation in Maize. Genetics 2019; 213:1479-1494. [PMID: 31615843 PMCID: PMC6893377 DOI: 10.1534/genetics.119.302780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding the evolutionary capacity of populations to adapt to novel environments is one of the major pursuits in genetics. Moreover, for plant breeding, maladaptation is the foremost barrier to capitalizing on intraspecific variation in order to develop new breeds for future climate scenarios in agriculture. Using a unique study design, we simultaneously dissected the population and quantitative genomic basis of short-term evolution in a tropical landrace of maize that was translocated to a temperate environment and phenotypically selected for adaptation in flowering time phenology. Underlying 10 generations of directional selection, which resulted in a 26-day mean decrease in female-flowering time, [Formula: see text] of the heritable variation mapped to [Formula: see text] of the genome, where, overall, alleles shifted in frequency beyond the boundaries of genetic drift in the expected direction given their flowering time effects. However, clustering these non-neutral alleles based on their profiles of frequency change revealed transient shifts underpinning a transition in genotype-phenotype relationships across generations. This was distinguished by initial reductions in the frequencies of few relatively large positive effect alleles and subsequent enrichment of many rare negative effect alleles, some of which appear to represent allelic series. With these genomic shifts, the population reached an adapted state while retaining [Formula: see text] of the standing molecular marker variation in the founding population. Robust selection and association mapping tests highlighted several key genes driving the phenotypic response to selection. Our results reveal the evolutionary dynamics of a finite polygenic architecture conditioning a capacity for rapid environmental adaptation in maize.
Collapse
Affiliation(s)
- Randall J Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716
| | - Zhou Fang
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - James B Holland
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695
- US Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695
| | - Juliana E C Teixeira
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716
| | - John Dougherty
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714
| | | | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Sherry Flint-Garcia
- US Department of Agriculture-Agricultural Research Service, Columbia, Missouri 65211
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Nick Lauter
- US Department of Agriculture-Agricultural Research Service, Ames, Iowa 50011
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843
| | - Wenwei Xu
- Agricultural Research and Extension Center, Texas A&M AgriLife Research, Lubbock, Texas 79403
| | - Arnel Hallauer
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
14
|
Wang L, Wu LM, Greaves IK, Dennis ES, Peacock WJ. In Arabidopsis hybrids and Hybrid Mimics, up-regulation of cell wall biogenesis is associated with the increased plant size. PLANT DIRECT 2019; 3:e00174. [PMID: 31709383 PMCID: PMC6834268 DOI: 10.1002/pld3.174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 05/12/2023]
Abstract
Hybrid breeding is of economic importance in agriculture for increasing yield, yet the basis of heterosis is not well understood. In Arabidopsis, crosses between different accessions produce hybrids with different levels of heterosis relative to parental phenotypes in biomass. In all hybrids, the advantage of the F1 hybrid in both phenotypic uniformity and yield gain is lost in the heterogeneous F2. F5/F6 Hybrid Mimics generated from a cross between C24 and Landsberg erecta (Ler) ecotypes demonstrated that the large plant phenotype of the F1 hybrids can be stabilized. Hybrid Mimic selection was applied to Wassilewskija (Ws)/Ler and Col/Ler hybrids. The two hybrids show different levels of heterosis. The Col/Ler hybrid generated F7 Hybrid Mimics with rosette diameter and fresh weight equivalent to the F1 hybrid at 30 DAS; F7 Ws/Ler Hybrid Mimics outperformed the F1 hybrid in both the rosette size and biomass. Transcriptome analysis revealed up-regulation of cell wall biosynthesis, and cell wall expansion genes could be a common pathway in increased size in the Arabidopsis hybrids and Hybrid Mimics. Intercross of two independent Hybrid Mimic lines can further increase the biomass gain. Our results encourage the use of Hybrid Mimics for breeding and for investigating the molecular basis of heterosis.
Collapse
Affiliation(s)
- Li Wang
- Faculty of ScienceUniversity of TechnologySydneyNSWAustralia
| | - Li Min Wu
- Agriculture and FoodCommonwealth Scientific Industrial Research OrganisationCanberraACTAustralia
| | - Ian K. Greaves
- Agriculture and FoodCommonwealth Scientific Industrial Research OrganisationCanberraACTAustralia
| | - Elizabeth S. Dennis
- Faculty of ScienceUniversity of TechnologySydneyNSWAustralia
- Agriculture and FoodCommonwealth Scientific Industrial Research OrganisationCanberraACTAustralia
| | - William James Peacock
- Faculty of ScienceUniversity of TechnologySydneyNSWAustralia
- Agriculture and FoodCommonwealth Scientific Industrial Research OrganisationCanberraACTAustralia
| |
Collapse
|
15
|
Belhassine F, Martinez S, Bluy S, Fumey D, Kelner JJ, Costes E, Pallas B. Impact of Within-Tree Organ Distances on Floral Induction and Fruit Growth in Apple Tree: Implication of Carbohydrate and Gibberellin Organ Contents. FRONTIERS IN PLANT SCIENCE 2019; 10:1233. [PMID: 31695709 PMCID: PMC6816281 DOI: 10.3389/fpls.2019.01233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
In plants, organs are inter-dependent for growth and development. Here, we aimed to investigate the distance at which interaction between organs operates and the relative contribution of within-tree variation in carbohydrate and hormonal contents on floral induction and fruit growth, in a fruit tree case study. Manipulations of leaf and fruit numbers were performed in two years on "Golden delicious" apple trees, at the shoot or branch scale or one side of Y-shape trees. For each treatment, floral induction proportion and mean fruit weight were recorded. Gibberellins content in shoot apical meristems, photosynthesis, and non-structural carbohydrate concentrations in organs were measured. Floral induction was promoted by leaf presence and fruit absence but was not associated with non-structural content in meristems. This suggests a combined action of promoting and inhibiting signals originating from leaves and fruit, and involving gibberellins. Nevertheless, these signals act at short distance only since leaf or fruit presence at long distances had no effect on floral induction. Conversely, fruit growth was affected by leaf presence even at long distances when sink demands were imbalanced within the tree, suggesting long distance transport of carbohydrates. We thus clarified the inter-dependence and distance effect among organs, therefore their degree of autonomy that appeared dependent on the process considered, floral induction or fruit growth.
Collapse
Affiliation(s)
- Fares Belhassine
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
- ITK, Montpellier, France
| | - Sébastien Martinez
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Sylvie Bluy
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | | | - Jean-Jacques Kelner
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Evelyne Costes
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Benoît Pallas
- UMR AGAP, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
16
|
Salentijn EMJ, Petit J, Trindade LM. The Complex Interactions Between Flowering Behavior and Fiber Quality in Hemp. FRONTIERS IN PLANT SCIENCE 2019; 10:614. [PMID: 31156677 PMCID: PMC6532435 DOI: 10.3389/fpls.2019.00614] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/25/2019] [Indexed: 05/05/2023]
Abstract
Hemp, Cannabis sativa L., is a sustainable multipurpose fiber crop with high nutrient and water use efficiency and with biomass of excellent quality for textile fibers and construction materials. The yield and quality of hemp biomass are largely determined by the genetic background of the hemp cultivar but are also strongly affected by environmental factors, such as temperature and photoperiod. Hemp is a facultative short-day plant, characterized by a strong adaptation to photoperiod and a great influence of environmental factors on important agronomic traits such as "flowering-time" and "sex determination." This sensitivity of hemp can cause a considerable degree of heterogeneity, leading to unforeseen yield reductions. Fiber quality for instance is influenced by the developmental stage of hemp at harvest. Also, male and female plants differ in stature and produce fibers with different properties and quality. Next to these causes, there is evidence for specific genotypic variation in fiber quality among hemp accessions. Before improved hemp cultivars can be developed, with specific flowering-times and fiber qualities, and adapted to different geographical regions, a better understanding of the molecular mechanisms controlling important phenological traits such as "flowering-time" and "sex determination" in relation to fiber quality in hemp is required. It is well known that genetic factors play a major role in the outcome of both phenological traits, but the major molecular factors involved in this mechanism are not characterized in hemp. Genome sequences and transcriptome data are available but their analysis mainly focused on the cannabinoid pathway for medical purposes. Herein, we review the current knowledge of phenotypic and genetic data available for "flowering-time," "sex determination," and "fiber quality" in short-day and dioecious crops, respectively, and compare them with the situation in hemp. A picture emerges for several controlling key genes, for which natural genetic variation may lead to desired flowering behavior, including examples of pleiotropic effects on yield quality and on carbon partitioning. Finally, we discuss the prospects for using this knowledge for the molecular breeding of this sustainable crop via a candidate gene approach.
Collapse
|
17
|
Cao K, Yan F, Xu D, Ai K, Yu J, Bao E, Zou Z. Phytochrome B1-dependent control of SP5G transcription is the basis of the night break and red to far-red light ratio effects in tomato flowering. BMC PLANT BIOLOGY 2018; 18:158. [PMID: 30081827 PMCID: PMC6080379 DOI: 10.1186/s12870-018-1380-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/30/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Phytochromes are dimeric proteins with critical roles in perceiving day length and the environmental signals that trigger flowering. Night break (NB) and the red to far-red light ratio (R:FR) have been used extensively as tools to study the photoperiodic control of flowering. However, at the molecular level, little is known about the effect of NB and different R:FR values on flowering in day-neutral plants (DNPs) such as tomato. RESULTS Here, we show that tomato SP5G, SP5G2, and SP5G3 are homologs of Arabidopsis thaliana FLOWERING LOCUS T (FT) that repress flowering in Nicotiana benthamiana. NB every 2 h at intensities of 10 μmol m- 2 s- 1 or lower R:FR (e.g., 0.6) caused a clear delay in tomato flowering and promoted SP5G mRNA expression. The promoted SP5G mRNA expression induced by red light NB and low R:FR treatments was reversed by a subsequent FR light stimulus or a higher R:FR treatment. The tomato phyB1 mutation abolished the effects of NB and lower R:FR treatments on flowering and SP5G mRNA expression, indicating that the effects were mediated by phytochrome B1 in tomato. CONCLUSION Our results strongly suggest that SP5G mRNA suppression is the principal cause of NB and lower R:FR effects on flowering in tomato.
Collapse
Affiliation(s)
- Kai Cao
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangze River, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
- Guangxi Zhong Nong Fu Yu International Agricultural Science and Technology Co., Ltd, Yulin, Guangxi China
| | - Fei Yan
- Shaanxi Key Laboratory Bio-resources, Shaanxi University of Technology, Hanzhong, Shaanxi China
| | - Dawei Xu
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangze River, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
| | - Kaiqi Ai
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
| | - Jie Yu
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
| | - Encai Bao
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangze River, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
- Guangxi Zhong Nong Fu Yu International Agricultural Science and Technology Co., Ltd, Yulin, Guangxi China
| | - Zhirong Zou
- The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangze River, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Horticulture College, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
18
|
Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, Guyader A, Guisnel R, Feugey L, Aubourg S, Celton JM, Daccord N, Dondini L, Gregori R, Lateur M, Houben P, Ordidge M, Paprstein F, Sedlak J, Nybom H, Garkava-Gustavsson L, Troggio M, Bianco L, Velasco R, Poncet C, Théron A, Moriya S, Bink MCAM, Laurens F, Tartarini S, Durel CE. Genome-Wide Association Mapping of Flowering and Ripening Periods in Apple. FRONTIERS IN PLANT SCIENCE 2017; 8:1923. [PMID: 29176988 PMCID: PMC5686452 DOI: 10.3389/fpls.2017.01923] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 05/17/2023]
Abstract
Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.
Collapse
Affiliation(s)
- Jorge Urrestarazu
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
- Department of Agricultural Sciences, Public University of Navarre, Pamplona, Spain
- *Correspondence: Jorge Urrestarazu
| | - Hélène Muranty
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Caroline Denancé
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Diane Leforestier
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Elisa Ravon
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Arnaud Guyader
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Rémi Guisnel
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Laurence Feugey
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Sébastien Aubourg
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Jean-Marc Celton
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Nicolas Daccord
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Luca Dondini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Roberto Gregori
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Marc Lateur
- Plant Breeding and Biodiversity, Centre Wallon de Recherches Agronomiques, Gembloux, Belgium
| | - Patrick Houben
- Plant Breeding and Biodiversity, Centre Wallon de Recherches Agronomiques, Gembloux, Belgium
| | - Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | | | - Jiri Sedlak
- Research and Breeding Institute of Pomology Holovousy Ltd., Horice, Czechia
| | - Hilde Nybom
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Kristianstad, Sweden
| | | | | | - Luca Bianco
- Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Charles Poncet
- Plateforme Gentyane, INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Anthony Théron
- Plateforme Gentyane, INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Shigeki Moriya
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Apple Research Station, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Morioka, Japan
| | - Marco C. A. M. Bink
- Wageningen UR, Biometris, Wageningen, Netherlands
- Hendrix Genetics, Boxmeer, Netherlands
| | - François Laurens
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Charles-Eric Durel
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Charles-Eric Durel
| |
Collapse
|