1
|
Yao P, He Q, Wang Y, Sun D, Chen X, Lu L. Genome-wide profiling and functional study of short N-terminal H2B variants in Arabidopsis. J Adv Res 2024:S2090-1232(24)00557-5. [PMID: 39672233 DOI: 10.1016/j.jare.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
INTRODUCTION Nucleosomes harboring specific histone variants show distinct chromatin localization patterns and regulatory functions, thereby playing crucial roles in epigenetic regulation. Compared to the well-understood variants of H2A and H3, the study about H2B variants is emerging. Deciphering the roles and regulatory mechanisms of H2B variants in plants will provide more knowledges about epigenetic regulations in plant biology. OBJECTIVES Using the model plant Arabidopsis thaliana as the research subject, we systematically analyzed histone H2B variants, four short N-terminal histone H2B variants (snH2Bs) were identified. The genomic distribution characteristics of these snH2Bs, their impact on plant growth, and the potential regulatory mechanisms were studied. METHODS By integrating whole-genome chromatin immunoprecipitation sequencing (ChIP-seq) and fluorescence microscopy localization analysis, the distribution of snH2Bs across the genome was identified. Single, double, and triple knock-out mutants were constructed using CRISPR-Cas9 to further explore the functions of snH2Bs in the growth process of Arabidopsis thaliana, the possible mechanisms were also discussed. RESULTS These snH2B variants are preferentially expressed in reproductive tissues and are detected in the nuclei of pollen grains. Further genome-wide profiling indicates that the snH2Bs distribute at active chromatin regions and are positively correlated with gene expression. By creating knock-out single, double, and triple mutants for these snH2Bs, we demonstrate that H2B.5 influences vegetative to reproductive transition. We also show that H2B.5 is required for proper accumulation of H3 lysine 9 acetylation and H2B mono-ubiquitination. CONCLUSION Overall, our study not only provide insights into the functions and chromatin characteristics of plant snH2Bs, but also supplies examples that illustrate the interplay between histone variants and histone modification. These findings contribute to the understanding of the fundamental principles of epigenetic regulation in eukaryotes and also highlight potential targets for crop improvement.
Collapse
Affiliation(s)
- Peng Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qin He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Danyang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430071, China.
| | - Li Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Hongshan Laboratory, Wuhan 430071, China.
| |
Collapse
|
2
|
Wang Y, Li Y, Zhou F, Zhang L, Gong J, Cheng C, Chen J, Lou Q. Genome-wide characterization, phylogenetic and expression analysis of Histone gene family in cucumber (Cucumis sativus L.). Int J Biol Macromol 2023; 230:123401. [PMID: 36702227 DOI: 10.1016/j.ijbiomac.2023.123401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Histones are essential components of chromatin and play an important role in regulating gene transcription and participating in DNA replication. Here, we performed a comprehensive analysis of this gene family. In this study, we identified 37 CsHistones that were classified into five groups (H1, H2A, H2B, H3 and H4). The closely linked subfamilies exhibited more similarity in terms of motifs and intron/exon numbers. Segmental duplication (SD) is the main driving force of cucumber CsHistones expansion. Analysis of cis-regulatory elements in the promoter region of CsHistones showed that CsHistones can respond to a variety of stresses. RNA-Seq analysis indicated that the expression of most CsHistones was associated with different stresses, including downy mildew, powdery mildew, wilt, heat, cold, salt stress, and waterlogging. Expression analysis showed that several genes of H3 group were highly expressed in different reproductive organs. Notably, CsCENH3 (CsHistone30) has the characteristics of a variant histone, and we demonstrated that CsCENH3 was localized on the nucleus and its proteins were expressed in centromere region. These findings provide valuable information for the identification and potential functions of Histone genes and ideas for the cultivation of CENH3-mediated haploid induction lines in cucumber.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianlei Gong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Mabuza LM, Mchunu NP, Crampton BG, Swanevelder DZH. Accelerated Breeding for Helianthus annuus (Sunflower) through Doubled Haploidy: An Insight on Past and Future Prospects in the Era of Genome Editing. PLANTS (BASEL, SWITZERLAND) 2023; 12:485. [PMID: 36771570 PMCID: PMC9921946 DOI: 10.3390/plants12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The aim of any breeding process is to fully express the targeted, superior/desirable parent characteristic in the progeny. Hybrids are often used in this dynamic, and complex process for which homozygous parents-which may require up to eight generations of back crossing and selection-are required. Doubled haploid (DH) technologies can facilitate the production of true breeding lines faster and in a more efficient manner than the traditional back crossing and selection strategies. Sunflower is the third most important oilseed crop in the world and has no available double haploid induction procedure/technique that can be efficiently used in breeding programs. A reproducible and efficient doubled haploid induction method would be a valuable tool in accelerating the breeding of new elite sunflower varieties. Although several attempts have been made, the establishment of a sunflower doubled haploid induction protocol has remained a challenge owing recalcitrance to in vitro culture regeneration. Approaches for haploid development in other crops are often cultivar specific, difficult to reproduce, and rely on available tissue culture protocols-which on their own are also cultivar and/or species specific. As an out-crossing crop, the lack of a double haploid system limits sunflower breeding and associated improvement processes, thereby delaying new hybrid and trait developments. Significant molecular advances targeting genes, such as the centromeric histone 3 (CenH3) and Matrilineal (MTL) gene with CRISPR/Cas9, and the successful use of viral vectors for the delivery of CRISPR/Cas9 components into plant cells eliminating the in vitro culture bottleneck, have the potential to improve double haploid technology in sunflower. In this review, the different strategies, their challenges, and opportunities for achieving doubled haploids in sunflower are explored.
Collapse
Affiliation(s)
- Londiwe M. Mabuza
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Nokuthula P. Mchunu
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Strategy, Planning and Partnerships, National Research Foundation, Pretoria 0184, South Africa
| | - Bridget G. Crampton
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Dirk Z. H. Swanevelder
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
| |
Collapse
|
4
|
Haploid Bio-Induction in Plant through Mock Sexual Reproduction. iScience 2020; 23:101279. [PMID: 32619703 PMCID: PMC7334361 DOI: 10.1016/j.isci.2020.101279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 10/25/2022] Open
Abstract
Haploidization is invaluable for basic genetic research and crop breeding. The haploid bio-induction principle is an important topic that remains largely unexplored. In this study, both CenH3 RNAi and in vitro inhibition were used to simulate and induce haploids in allopolyploid crop. Notably, in vitro CenH3 inhibition showed that the results were much the same to that of RNAi in phenotype, chromosome behavior, microspore production, and haploid induction. Cytological analyses of RNAi and inhibitor-treated progenies revealed elimination of chromosomes, defective microspores with empty nuclei, thereby giving rise to pseudo male gametes, and haploid parthenogenesis induction. We found distinct defective empty microspores that were positively correlated with the decrease of CenH3 during RNAi manipulation. Investigation through both in vivo and in vitro studies revealed that haploidization was induced through the pseudo male gamete-mediated mock sexual reproduction. The present results provide insights for the haploid parthenogenesis induction process.
Collapse
|
5
|
Gadamchetty P, Mullapudi PLV, Sanagala R, Markandan M, Polumetla AK. Genetic transformation of Chlorella vulgaris mediated by HIV-TAT peptide. 3 Biotech 2019; 9:139. [PMID: 30944786 DOI: 10.1007/s13205-019-1671-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/09/2019] [Indexed: 11/24/2022] Open
Abstract
Scientific interest in microalgal species is growing and, genetic transformation has definitely opened more avenues, in the ongoing research on microphytes. In the present study, we have attempted to transform Chlorella vulgaris by mobilizing double-stranded linear Transfer DNA (T-DNA) comprised of green fluorescent protein (egfp) gene cassette and hygromycin phosphotransferase II (hptII) gene cassette non-covalently bound to TAT peptide, into C. vulgaris cells treated with Triton X-100. The transformed C. vulgaris cells when examined under fluorescent microscope, exhibited green fluorescence in comparison to the untransformed cells. The transformed cells were further screened, and the surviving colonies were sub-cultured, on BG11 medium fortified with Hygromycin. The surviving colonies were confirmed for the presence of integrated T-DNA by Polymerase Chain Reaction with egfp and hptII gene-specific primers. This methodology has potential to substitute the existing tedious transformation methodologies and ease the future studies in microalgae.
Collapse
Affiliation(s)
- Pavan Gadamchetty
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- 2Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 India
| | - Phanindra Lakshmi Venkata Mullapudi
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- Visargha Agri Sciences Private Limited, Bhubaneswar, 751023 India
| | - Raghavendrarao Sanagala
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- Ganga Kaveri Seeds Private Limited, Hyderabad, 500001 India
| | - Manickavasagam Markandan
- 2Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 India
| | - Ananda Kumar Polumetla
- 1National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012 India
- 5Indian Institute of Rice Research, Hyderabad, 500030 India
| |
Collapse
|
6
|
Ren J, Wu P, Trampe B, Tian X, Lübberstedt T, Chen S. Novel technologies in doubled haploid line development. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1361-1370. [PMID: 28796421 PMCID: PMC5633766 DOI: 10.1111/pbi.12805] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 05/18/2023]
Abstract
haploid inducer line can be transferred (DH) technology can not only shorten the breeding process but also increase genetic gain. Haploid induction and subsequent genome doubling are the two main steps required for DH technology. Haploids have been generated through the culture of immature male and female gametophytes, and through inter- and intraspecific via chromosome elimination. Here, we focus on haploidization via chromosome elimination, especially the recent advances in centromere-mediated haploidization. Once haploids have been induced, genome doubling is needed to produce DH lines. This study has proposed a new strategy to improve haploid genome doubling by combing haploids and minichromosome technology. With the progress in haploid induction and genome doubling methods, DH technology can facilitate reverse breeding, cytoplasmic male sterile (CMS) line production, gene stacking and a variety of other genetic analysis.
Collapse
Affiliation(s)
- Jiaojiao Ren
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijingChina
- Department of AgronomyIowa State UniversityAmesIAUSA
| | - Penghao Wu
- College of AgronomyXinjiang Agriculture UniversityUrumqiChina
| | | | - Xiaolong Tian
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijingChina
| | | | - Shaojiang Chen
- National Maize Improvement Center of ChinaChina Agricultural UniversityBeijingChina
| |
Collapse
|