1
|
Zohoungbogbo HPF, Vihou F, Achigan-Dako EG, Barchenger DW. Current knowledge and breeding strategies for management of aphid-transmitted viruses of pepper ( Capsicum spp.) in Africa. FRONTIERS IN PLANT SCIENCE 2024; 15:1449889. [PMID: 39524558 PMCID: PMC11543480 DOI: 10.3389/fpls.2024.1449889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Aphid-transmitted viruses cause significant losses in pepper production worldwide, negatively affecting yield and quality. The emergence of new aphid-transmitted viruses or development of variants as well as the occurrence in mixed infections make management a challenge. Here, we overview the current status of the distribution, incidence and phylogeny of aphids and the viruses they transmit in pepper in Africa; outline the available genetic resources, including sources of resistance, resistance genes and molecular markers; and discuss the recent advances in understanding the genetic basis of resistance to the predominant African viruses infecting pepper. Pepper veinal mottle virus (PVMV; Potyvirus); Potato virus Y (PVY; Potyvirus), Chili veinal mottle virus (ChiVMV; Potyvirus), Cucumber mosaic virus (CMV; Cucumovirus) and Pepper veins yellow virus (PeVYV; Polerovirus) have been reported to be the most widespread and devastating aphid-transmitted viruses infecting pepper across Africa. Co-infection or mixed infection between aphid-transmitted viruses has been detected and the interrelationship between viruses that co-infect chili peppers is poorly understood. Establishing and evaluating existing and new diversity sets with more genetic diversity is an important component of developing host resistance and implementing integrated management strategies. However, more work needs to be done to characterize the aphid-transmitted viral strains across Africa and understand their phylogeny in order to develop more durable host resistance. In addition, a limited number of QTLs associated with resistance to the aphid-transmitted virus have been reported and QTL data are only available for PVY, ChiVMV and CMV mainly against European and Asian strains, although PVMV is likely the most important aphid-transmitted viral disease in Africa. There is a need to identify germplasm resources with resistance against various aphid-transmitted virus strains, and subsequent pyramiding of the resistance using marker-assisted selection could be an effective strategy. The recent advances in understanding the genetic basis of the resistance to the virus and the new breeding techniques that can be leveraged to accelerate breeding for aphid-transmitted virus in pepper are proposed as strategies to more efficiently develop resistant cultivars. The deployment of multi-genetic resistances in pepper is an effective and desirable method of managing viral-diseases in Africa and limit losses for farmers in a sustainable manner.
Collapse
Affiliation(s)
- Herbaud P. F. Zohoungbogbo
- World Vegetable Center, West and Central Africa–Coastal and Humid Regions, Cotonou, Benin
- Genetics, Biotechnology and Seed Science Unit, Laboratory of Crop Production, Physiology and Plant Breeding, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Fabrice Vihou
- Genetics, Biotechnology and Seed Science Unit, Laboratory of Crop Production, Physiology and Plant Breeding, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Enoch G. Achigan-Dako
- Genetics, Biotechnology and Seed Science Unit, Laboratory of Crop Production, Physiology and Plant Breeding, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin
| | | |
Collapse
|
2
|
Gramazio P, Alonso D, Arrones A, Villanueva G, Plazas M, Toppino L, Barchi L, Portis E, Ferrante P, Lanteri S, Rotino GL, Giuliano G, Vilanova S, Prohens J. Conventional and new genetic resources for an eggplant breeding revolution. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6285-6305. [PMID: 37419672 DOI: 10.1093/jxb/erad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
Eggplant (Solanum melongena) is a major vegetable crop with great potential for genetic improvement owing to its large and mostly untapped genetic diversity. It is closely related to over 500 species of Solanum subgenus Leptostemonum that belong to its primary, secondary, and tertiary genepools and exhibit a wide range of characteristics useful for eggplant breeding, including traits adaptive to climate change. Germplasm banks worldwide hold more than 19 000 accessions of eggplant and related species, most of which have yet to be evaluated. Nonetheless, eggplant breeding using the cultivated S. melongena genepool has yielded significantly improved varieties. To overcome current breeding challenges and for adaptation to climate change, a qualitative leap forward in eggplant breeding is necessary. The initial findings from introgression breeding in eggplant indicate that unleashing the diversity present in its relatives can greatly contribute to eggplant breeding. The recent creation of new genetic resources such as mutant libraries, core collections, recombinant inbred lines, and sets of introgression lines will be another crucial element and will require the support of new genomics tools and biotechnological developments. The systematic utilization of eggplant genetic resources supported by international initiatives will be critical for a much-needed eggplant breeding revolution to address the challenges posed by climate change.
Collapse
Affiliation(s)
- Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - David Alonso
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Gloria Villanueva
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Laura Toppino
- CREA Research Centre for Genomics and Bioinformatics, Via Paullese 28, 26836 Montanaso Lombardo, LO, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Paola Ferrante
- Agenzia Nazionale Per Le Nuove Tecnologie, L'energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Giuseppe Leonardo Rotino
- CREA Research Centre for Genomics and Bioinformatics, Via Paullese 28, 26836 Montanaso Lombardo, LO, Italy
| | - Giovanni Giuliano
- Agenzia Nazionale Per Le Nuove Tecnologie, L'energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
3
|
Chen L, Duan L, Sun M, Yang Z, Li H, Hu K, Yang H, Liu L. Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. FRONTIERS IN PLANT SCIENCE 2023; 13:1052569. [PMID: 36684716 PMCID: PMC9846265 DOI: 10.3389/fpls.2022.1052569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Ethyl methanesulfonate (EMS)-induced mutagenesis is a powerful tool to generate genetic resource for identifying untapped genes and characterizing the function of genes to understand the molecular basis of important agronomic traits. This review focuses on application of contemporary EMS mutagenesis in the field of plant development and abiotic stress tolerance research, with particular focuses on reviewing the mutation types, mutagenesis site, mutagen concentration, mutagenesis duration, the identification and characterization of mutations responsible for altered stress tolerance responses. The application of EMS mutation breeding combined with genetic engineering in the future plant breeding and fundamental research was also discussed. The collective information in this review will provide good insight on how EMS mutagenesis is efficiently applied to improve abiotic stress tolerance of crops with the utilization of Next-generation sequencing (NGS) for mutation identification.
Collapse
Affiliation(s)
- Liuzhu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Liu Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Minghui Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhuo Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Hongyu Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Keming Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
4
|
Richter R, Rossmann S, Gabriel D, Töpfer R, Theres K, Zyprian E. Differential expression of transcription factor- and further growth-related genes correlates with contrasting cluster architecture in Vitis vinifera 'Pinot Noir' and Vitis spp. genotypes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3249-3272. [PMID: 32812062 PMCID: PMC7567691 DOI: 10.1007/s00122-020-03667-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/03/2020] [Indexed: 05/18/2023]
Abstract
Grapevine (Vitis vinifera L.) is an economically important crop that needs to comply with high quality standards for fruit, juice and wine production. Intense plant protection is required to avoid fungal damage. Grapevine cultivars with loose cluster architecture enable reducing protective treatments due to their enhanced resilience against fungal infections, such as Botrytis cinerea-induced gray mold. A recent study identified transcription factor gene VvGRF4 as determinant of pedicel length, an important component of cluster architecture, in samples of two loose and two compact quasi-isogenic 'Pinot Noir' clones. Here, we extended the analysis to 12 differently clustered 'Pinot Noir' clones from five diverse clonal selection programs. Differential gene expression of these clones was studied in three different locations over three seasons. Two phenotypically opposite clones were grown at all three locations and served for standardization. Data were correlated with the phenotypic variation of cluster architecture sub-traits. A set of 14 genes with consistent expression differences between loosely and compactly clustered clones-independent from season and location-was newly identified. These genes have annotations related to cellular growth, cell division and auxin metabolism and include two more transcription factor genes, PRE6 and SEP1-like. The differential expression of VvGRF4 in relation to loose clusters was exclusively found in 'Pinot Noir' clones. Gene expression studies were further broadened to phenotypically contrasting F1 individuals of an interspecific cross and OIV reference varieties of loose cluster architecture. This investigation confirmed PRE6 and six growth-related genes to show differential expression related to cluster architecture over genetically divergent backgrounds.
Collapse
Affiliation(s)
- Robert Richter
- Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute, 76833, Siebeldingen, Germany
| | - Susanne Rossmann
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Doreen Gabriel
- Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Julius Kühn Institute, Bundesallee 58, 38116, Brunswick, Germany
| | - Reinhard Töpfer
- Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute, 76833, Siebeldingen, Germany
| | - Klaus Theres
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Eva Zyprian
- Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute, 76833, Siebeldingen, Germany.
| |
Collapse
|
5
|
Development and Characterization of an Ethyl Methane Sulfonate (EMS) Induced Mutant Population in Capsicum annuum L. PLANTS 2020; 9:plants9030396. [PMID: 32210121 PMCID: PMC7154856 DOI: 10.3390/plants9030396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/29/2022]
Abstract
Plant breeding explores genetic diversity in useful traits to develop new, high-yielding, and improved cultivars. Ethyl methane sulfonate (EMS) is a chemical widely used to induce mutations at loci that regulate economically essential traits. Additionally, it can knock out genes, facilitating efforts to elucidate gene functions through the analysis of mutant phenotypes. Here, we developed a mutant population using the small and pungent ornamental Capsicum annuum pepper “Micro-Pep”. This accession is particularly suitable for mutation studies and molecular research due to its compact growth habit and small size. We treated 9500 seeds with 1.3% EMS and harvested 3996 M2 lines. We then selected 1300 (32.5%) independent M2 families and evaluated their phenotypes over four years. The mutants displayed phenotypic variations in plant growth, habit, leaf color and shape, and flower and fruit morphology. An experiment to optimize Targeting Induced Local Lesions IN Genomes (TILLING) in pepper detected nine EMS-induced mutations in the eIF4E gene. The M2 families developed here exhibited broad phenotypic variation and should be valuable genetic resources for functional gene analysis in pepper molecular breeding programs using reverse genetics tools, including TILLING.
Collapse
|
6
|
Huo L, Sun X, Guo Z, Jia X, Che R, Sun Y, Zhu Y, Wang P, Gong X, Ma F. MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts. HORTICULTURE RESEARCH 2020; 7:21. [PMID: 32140230 PMCID: PMC7049305 DOI: 10.1038/s41438-020-0243-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/01/2020] [Accepted: 01/04/2020] [Indexed: 05/06/2023]
Abstract
High temperature is an abiotic stress factor that threatens plant growth and development. Autophagy in response to heat stress involves the selective removal of heat-induced protein complexes. Previously, we showed that a crucial autophagy protein from apple, MdATG18a, has a positive effect on drought tolerance. In the present study, we treated transgenic apple (Malus domestica) plants overexpressing MdATG18a with high temperature and found that autophagy protected them from heat stress. Overexpression of MdATG18a in apple enhanced antioxidase activity and contributed to the production of increased beneficial antioxidants under heat stress. Transgenic apple plants exhibited higher photosynthetic capacity, as shown by the rate of CO2 assimilation, the maximum photochemical efficiency of photosystem II (PSII), the effective quantum yield, and the electron transport rates in photosystems I and II (PSI and PSII, respectively). We also detected elevated autophagic activity and reduced damage to chloroplasts in transgenic plants compared to WT plants. In addition, the transcriptional activities of several HSP genes were increased in transgenic apple plants. In summary, we propose that autophagy plays a critical role in basal thermotolerance in apple, primarily through a combination of enhanced antioxidant activity and reduced chloroplast damage.
Collapse
Affiliation(s)
- Liuqing Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xun Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zijian Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xin Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Runmin Che
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yiming Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yanfei Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
7
|
Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants (Basel) 2020; 9:antiox9020097. [PMID: 31979214 PMCID: PMC7070715 DOI: 10.3390/antiox9020097] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
The current trend for substituting synthetic compounds with natural ones in the design and production of functional and healthy foods has increased the research interest about natural colorants. Although coloring agents from plant origin are already used in the food and beverage industry, the market and consumer demands for novel and diverse food products are increasing and new plant sources are explored. Fresh vegetables are considered a good source of such compounds, especially when considering the great color diversity that exists among the various species or even the cultivars within the same species. In the present review we aim to present the most common species of colored vegetables, focusing on leafy and fruit vegetables, as well as on vegetables where other plant parts are commercially used, with special attention to blue color. The compounds that are responsible for the uncommon colors will be also presented and their beneficial health effects and antioxidant properties will be unraveled.
Collapse
|
8
|
Xiao XO, Lin W, Li K, Feng X, Jin H, Zou H. Genome-Wide Analysis of Artificial Mutations Induced by Ethyl Methanesulfonate in the Eggplant ( Solanum melongena L.). Genes (Basel) 2019; 10:E595. [PMID: 31394801 PMCID: PMC6722539 DOI: 10.3390/genes10080595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
Whole-genome sequences of four EMS (ethyl methanesulfonate)-induced eggplant mutants were analyzed to identify genome-wide mutations. In total, 173.01 GB of paired-end reads were obtained for four EMS-induced mutants and (WT) wild type and 1,076,010 SNPs (single nucleotide polymorphisms) and 183,421 indels were identified. The most common mutation type was C/G to T/A transitions followed by A/T to G/C transitions. The mean densities were one SNP per 1.3 to 2.6 Mb. The effect of mutations on gene function was annotated and only 7.2% were determined to be deleterious. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed 10 and 11 genes, which were nonsynonymous mutation or frameshift deletion in 48-5 and L6-5 involved in the anthocyanin biosynthesis or flavone and flavonol biosynthesis. QRT-PCR results showed that only the Sme2.5_06210.1_g00004.1, which was annotated as UFGT (Flavonoid galactosidase transferase), expression significantly decreased in the L6-5 mutant compared with the WT. Also, the Sme2.5_06210.1_g00004.1 expression was lower in the colorless eggplant compared with colorful eggplant in the natural eggplant cultivar. These results suggest that Sme2.5_06210.1_g00004.1 may play a key role in eggplant anthocyanin synthesis.
Collapse
Affiliation(s)
- Xi-Ou Xiao
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China.
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China.
| | - Wenqiu Lin
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Ke Li
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Xuefeng Feng
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Hui Jin
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Huafeng Zou
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| |
Collapse
|
9
|
Zhang J, Li D, Shi X, Zhang D, Qiu S, Wei J, Zhang J, Zhou J, Zhu K, Xia Y. Mining and expression analysis of candidate genes involved in regulating the chilling requirement fulfillment of Paeonia lactiflora 'Hang Baishao'. BMC PLANT BIOLOGY 2017; 17:262. [PMID: 29273002 PMCID: PMC5741883 DOI: 10.1186/s12870-017-1205-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/06/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND The artificial enlargement of the planting area and ecological amplitude of ornamentals for horticultural and landscape applications are significant. Herbaceous peony (Paeonia lactiflora Pall.) is a world-famous ornamental with attractive and fragrant flowers and is mainly planted in temperate and cool areas. Comparatively higher winter temperatures in the subtropical and tropical Northern Hemisphere result in a deficit of chilling accumulation for bud dormancy release, which severely hinders "The southward plantation of herbaceous peony". Studies on the dormancy, chilling requirement (CR) and relevant molecular mechanisms of peony are needed to enhance our ability to extend the range of this valuable horticultural species. RESULTS Based on natural and artificial chilling experiments, and chilling hour (CH) and chilling unit (CU) evaluation systems, the lowest CR of 'Hang Baishao' was between 504.00 and 672.00 CHs and the optimal CR was 672.00 CHs and 856.08 CUs for achieving strong sprouting, growth and flowering performance. Transcriptome sequencing and gene identification by RNA-Seq were performed on 'Hang Baishao' buds during the dormancy and sprouting periods. Six gene libraries were constructed, and 66 temperature- and photoperiod-associated unigenes were identified as the potential candidate genes that may regulate or possibly determine CR characteristics. The difference in the expression patterns of SUPPRESSPOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) between the winters of 2012-2013 and 2015-2016, and the difference of CR fulfillment periods also between these two winters represented the interesting congruent relationships. This correlation was also observed for WRKY DNA-BINDING PROTEIN 33 (WRKY 33). CONCLUSIONS Combined with the results acquired from all of experiments, 'Hang Baishao' was confirmed to be a superb peony resource that have significantly low CR characteristics. The two genes of SOC1 and WRKY33 are likely involved in determining the CR amount and fulfillment period of 'Hang Baishao'. HEAT SHOCK PROTEIN, OSMOTIN and TIMING OF CAB EXPRESSION 1 also deserve attention for the CR research. This study could contribute to the knowledge of the deep factors and mechanisms that regulate CR characteristics, and may be beneficial for breeding new germplasms that have low CRs for landscape or horticulture applications in subtropical regions.
Collapse
Affiliation(s)
- Jiaping Zhang
- Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Danqing Li
- Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Xiaohua Shi
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311202 China
| | - Dong Zhang
- Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Shuai Qiu
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020 China
| | - Jianfen Wei
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020 China
| | - Jiao Zhang
- Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Jianghua Zhou
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311202 China
| | - Kaiyuan Zhu
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311202 China
| | - Yiping Xia
- Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
10
|
Yang JF, Chen YZ, Kawabata S, Li YH, Wang Y. Identification of Light-Independent Anthocyanin Biosynthesis Mutants Induced by Ethyl Methane Sulfonate in Turnip "Tsuda" (Brassica rapa). Int J Mol Sci 2017. [PMID: 28640193 PMCID: PMC5535824 DOI: 10.3390/ijms18071288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The epidermis of swollen storage roots in purple cultivars of turnip “Tsuda” (Brassica rapa) accumulates anthocyanin in a light-dependent manner, especially in response to UV-A light, of which the mechanism is unclear. In this study, we mutagenized 15,000 seeds by 0.5% (v/v) ethyl methane sulfonate (EMS) and obtained 14 mutants with abnormal anthocyanin production in their epidermis of swollen storage roots. These mutants were classified into two groups: the red mutants with constitutive anthocyanin accumulation in their epidermis of storage roots even in underground parts in darkness and the white mutants without anthocyanin accumulation in the epidermis of storage roots in aboveground parts exposed to sunlight. Test cross analysis demonstrated that w9, w68, w204, r15, r21, r30 and r57 contained different mutations responsible for their phenotypic variations. Further genetic analysis of four target mutants (w9, w68, w204 and r15) indicated that each of them was controlled by a different recessive gene. Intriguingly, the expression profiles of anthocyanin biosynthesis genes, including structural and regulatory genes, coincided with their anthocyanin levels in the epidermis of storage roots in the four target mutants. We proposed that potential genes responsible for the mutations should be upstream factors of the anthocyanin biosynthesis pathway in turnips, which provided resources to further investigate the mechanisms of light-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Jian-Fei Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Yun-Zhu Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Saneyuki Kawabata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo Tokyo 113-8654, Japan.
| | - Yu-Hua Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Yu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|