1
|
Hassan AH, Mokhtar MM, El Allali A. Transposable elements: multifunctional players in the plant genome. FRONTIERS IN PLANT SCIENCE 2024; 14:1330127. [PMID: 38239225 PMCID: PMC10794571 DOI: 10.3389/fpls.2023.1330127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Transposable elements (TEs) are indispensable components of eukaryotic genomes that play diverse roles in gene regulation, recombination, and environmental adaptation. Their ability to mobilize within the genome leads to gene expression and DNA structure changes. TEs serve as valuable markers for genetic and evolutionary studies and facilitate genetic mapping and phylogenetic analysis. They also provide insight into how organisms adapt to a changing environment by promoting gene rearrangements that lead to new gene combinations. These repetitive sequences significantly impact genome structure, function and evolution. This review takes a comprehensive look at TEs and their applications in biotechnology, particularly in the context of plant biology, where they are now considered "genomic gold" due to their extensive functionalities. The article addresses various aspects of TEs in plant development, including their structure, epigenetic regulation, evolutionary patterns, and their use in gene editing and plant molecular markers. The goal is to systematically understand TEs and shed light on their diverse roles in plant biology.
Collapse
Affiliation(s)
- Asmaa H. Hassan
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Morad M. Mokhtar
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
2
|
Orozco-Arias S, Dupeyron M, Gutiérrez-Duque D, Tabares-Soto R, Guyot R. High nucleotide similarity of three Copia lineage LTR retrotransposons among plant genomes. Genome 2023; 66:51-61. [PMID: 36623262 DOI: 10.1139/gen-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transposable elements (TEs) are mobile elements found in the majority of eukaryotic genomes. TEs deeply impact the structure and evolution of chromosomes and can induce mutations affecting coding genes. In plants, the major group of TEs is long terminal repeat retrotransposons (LTR-RTs). They are classified into superfamilies (Gypsy, Copia) and subclassified into lineages. Horizontal transfer (HT), defined as the nonsexual transmission of genetic material between species, is a process allowing LTR-RTs to invade a new genome. Although this phenomenon was considered rare, recent studies demonstrate numerous transfers of LTR-RTs. This study aims to determine which LTR-RT lineages are shared with high similarity among 69 plant genomes. We identified and classified 88 450 LTR-RTs and determined 143 cases of high similarities between pairs of genomes. Most of them involved three Copia lineages (Oryco/Ivana, Retrofit/Ale, and Tork/Tar/Ikeros). A detailed analysis of three cases of high similarities involving Tork/Tar/Ikeros group shows an uneven distribution in the phylogeny of the elements and incongruence with between phylogenetic trees topologies, indicating they could be originated from HTs. Overall, our results suggest that LTR-RT Copia lineages share outstanding similarity between distant species and may likely be involved in HT mechanisms more frequent than initially estimated.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Sciences, Universidad Autónoma de Manizales, Colombia.,Department of Systems and Informatics, Universidad de Caldas, Colombia
| | - Mathilde Dupeyron
- Institut de Recherche pour le Développement, IRD, CIRAD, Université de Montpellier, France
| | | | - Reinel Tabares-Soto
- Department of Systems and Informatics, Universidad de Caldas, Colombia.,Department of Electronics and Automatization, Universidad Autónoma de Manizales, Colombia
| | - Romain Guyot
- Institut de Recherche pour le Développement, IRD, CIRAD, Université de Montpellier, France.,Department of Electronics and Automatization, Universidad Autónoma de Manizales, Colombia
| |
Collapse
|
3
|
Muller H, Loiseau V, Guillier S, Cordaux R, Gilbert C. Assessing the Impact of a Viral Infection on the Expression of Transposable Elements in the Cabbage Looper Moth (Trichoplusia ni). Genome Biol Evol 2021; 13:evab231. [PMID: 34613390 PMCID: PMC8634313 DOI: 10.1093/gbe/evab231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Most studies of stress-induced transposable element (TE) expression have so far focused on abiotic sources of stress. Here, we analyzed the impact of an infection by the AcMNPV baculovirus on TE expression in a cell line (Tnms42) and midgut tissues of the cabbage looper moth (Trichoplusia ni). We find that a large fraction of TE families (576/636 in Tnms42 cells and 503/612 in midgut) is lowly expressed or not expressed at all [≤ 4 transcripts per million (TPM)] in the uninfected condition (median TPM of 0.37 in Tnms42 and 0.46 in midgut cells). In the infected condition, a total of 62 and 187 TE families were differentially expressed (DE) in midgut and Tnms42 cells, respectively, with more up- (46) than downregulated (16) TE families in the former and as many up- (91) as downregulated (96) TE families in the latter. Expression log2 fold changes of DE TE families varied from -4.95 to 9.11 in Tnms42 cells and from -4.28 to 7.66 in midgut. Large variations in expression profiles of DE TEs were observed depending on the type of cells and on time after infection. Overall, the impact of AcMNPV on TE expression in T. ni is moderate but potentially sufficient to affect TE activity and genome architecture. Interestingly, one host-derived TE integrated into AcMNPV genomes is highly expressed in infected Tnms42 cells. This result shows that virus-borne TEs can be expressed, further suggesting that they may be able to transpose and that viruses may act as vectors of horizontal transfer of TEs in insects.
Collapse
Affiliation(s)
- Héloïse Muller
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Vincent Loiseau
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Sandra Guillier
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Universite de Poitiers, CNRS, France
| | - Clément Gilbert
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Yin H, Wu X, Shi D, Chen Y, Qi K, Ma Z, Zhang S. TGTT and AACA: two transcriptionally active LTR retrotransposon subfamilies with a specific LTR structure and horizontal transfer in four Rosaceae species. Mob DNA 2017; 8:14. [PMID: 29093758 PMCID: PMC5659011 DOI: 10.1186/s13100-017-0098-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/18/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Long terminal repeat retrotransposons (LTR-RTs) are major components of plant genomes. Common LTR-RTs contain the palindromic dinucleotide 5'-'TG'-'CA'-3' motif at the ends. Thus, further analyses of non-canonical LTR-RTs with non-palindromic motifs will enhance our understanding of their structures and evolutionary history. RESULTS Here, we report two new LTR-RT subfamilies (TGTT and AACA) with atypical dinucleotide ends of 5'-'TG'-'TT'-3', and 5'-'AA'-'CA'-3' in pear, apple, peach and mei. In total, 91 intact LTR-RTs were identified and classified into four TGTT and four AACA families. A structural annotation analysis showed that the four TGTT families, together with AACA1 and AACA2, belong to the Copia-like superfamily, whereas AACA3 and AACA4 appeared to be TRIM elements. The average amplification time frames for the eight families ranged from 0.05 to 2.32 million years. Phylogenetics coupled with sequence analyses revealed that the TGTT1 elements of peach were horizontally transferred from apple. In addition, 32 elements from two TGTT and three AACA families had detectable transcriptional activation, and a qRT-PCR analysis indicated that their expression levels varied dramatically in different species, organs and stress treatments. CONCLUSIONS Two novel LTR-RT subfamilies that terminated with non-palindromic dinucleotides at the ends of their LTRs were identified in four Rosaceae species, and a deep analysis showed their recent activity, horizontal transfer and varied transcriptional levels in different species, organs and stress treatments. This work enhances our understanding of the structural variation and evolutionary history of LTR-RTs in plants and also provides a valuable resource for future investigations of LTR-RTs having specific structures in other species.
Collapse
Affiliation(s)
- Hao Yin
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiao Wu
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Dongqing Shi
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Chen
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zhengqiang Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|