1
|
Demirci S, Fuentes RR, van Dooijeweert W, Aflitos S, Schijlen E, Hesselink T, de Ridder D, van Dijk ADJ, Peters S. Chasing breeding footprints through structural variations in Cucumis melo and wild relatives. G3-GENES GENOMES GENETICS 2021; 11:6044141. [PMID: 33561242 PMCID: PMC8022733 DOI: 10.1093/g3journal/jkaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Cucumis melo (melon or muskmelon) is an important crop in the family of the Cucurbitaceae. Melon is cross pollinated and domesticated at several locations throughout the breeding history, resulting in highly diverse genetic structure in the germplasm. Yet, the relations among the groups and cultivars are still incomplete. We shed light on the melonbreeding history, analyzing structural variations ranging from 50 bp up to 100 kb, identified from whole genome sequences of 100 selected melon accessions and wild relatives. Phylogenetic trees based on SV types completely resolve cultivars and wild accessions into two monophyletic groups and clustering of cultivars largely correlates with their geographic origin. Taking into account morphology, we found six mis-categorized cultivars. Unique inversions are more often shared between cultivars, carrying advantageous genes and do not directly originate from wild species. Approximately 60% of the inversion breaks carry a long poly A/T motif, and following observations in other plant species, suggest that inversions in melon likely resulted from meiotic recombination events. We show that resistance genes in the linkage V region are expanded in the cultivar genomes compared to wild relatives. Furthermore, particular agronomic traits such as fruit ripening, fragrance, and stress response are specifically selected for in the melon subspecies. These results represent distinctive footprints of selective breeding that shaped today's melon. The sequences and genomic relations between land races, wild relatives, and cultivars will serve the community to identify genetic diversity, optimize experimental designs, and enhance crop development.
Collapse
Affiliation(s)
- Sevgin Demirci
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.,Department of Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.,Keygene N.V., 6708 PW Wageningen, the Netherlands
| | - Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Willem van Dooijeweert
- Centre for Genetic Resources, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Saulo Aflitos
- Bejo Zaden B.V., 1749 CZ Warmenhuizen, the Netherlands
| | - Elio Schijlen
- Department of Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Thamara Hesselink
- Department of Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.,Biometris, Wageningen University & Research, 6708PB Wageningen, the Netherlands
| | - Sander Peters
- Department of Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
2
|
Lian Q, Fu Q, Xu Y, Hu Z, Zheng J, Zhang A, He Y, Wang C, Xu C, Chen B, Garcia-Mas J, Zhao G, Wang H. QTLs and candidate genes analyses for fruit size under domestication and differentiation in melon (Cucumis melo L.) based on high resolution maps. BMC PLANT BIOLOGY 2021; 21:126. [PMID: 33658004 PMCID: PMC7931605 DOI: 10.1186/s12870-021-02904-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Melon is a very important horticultural crop produced worldwide with high phenotypic diversity. Fruit size is among the most important domestication and differentiation traits in melon. The molecular mechanisms of fruit size in melon are largely unknown. RESULTS Two high-density genetic maps were constructed by whole-genome resequencing with two F2 segregating populations (WAP and MAP) derived from two crosses (cultivated agrestis × wild agrestis and cultivated melo × cultivated agrestis). We obtained 1,871,671 and 1,976,589 high quality SNPs that show differences between parents in WAP and MAP. A total of 5138 and 5839 recombination events generated 954 bins in WAP and 1027 bins in MAP with the average size of 321.3 Kb and 301.4 Kb respectively. All bins were mapped onto 12 linkage groups in WAP and MAP. The total lengths of two linkage maps were 904.4 cM (WAP) and 874.5 cM (MAP), covering 86.6% and 87.4% of the melon genome. Two loci for fruit size were identified on chromosome 11 in WAP and chromosome 5 in MAP, respectively. An auxin response factor and a YABBY transcription factor were inferred to be the candidate genes for both loci. CONCLUSION The high-resolution genetic maps and QTLs analyses for fruit size described here will provide a better understanding the genetic basis of domestication and differentiation, and provide a valuable tool for map-based cloning and molecular marker assisted breeding.
Collapse
Affiliation(s)
- Qun Lian
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Qiushi Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yongyang Xu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Zhicheng Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Jing Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Aiai Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yuhua He
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Changsheng Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200000, China
| | - Chuanqiang Xu
- Shenyang Agricultural University, College of Horticulture, Shenyang, 110866, China
| | - Benxue Chen
- Design Gollege, Zhoukou Normal University, Zhoukou, 466000, China
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Guangwei Zhao
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Huaisong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
3
|
Rao PG, Behera TK, Gaikwad AB, Munshi AD, Srivastava A, Boopalakrishnan G, Vinod. Genetic analysis and QTL mapping of yield and fruit traits in bitter gourd (Momordica charantia L.). Sci Rep 2021; 11:4109. [PMID: 33603131 PMCID: PMC7893057 DOI: 10.1038/s41598-021-83548-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bitter gourd (Momordica charantia L.) is an economically important vegetable crop grown in tropical parts of the world. In this study, a high-density linkage map of M. charantia was constructed through genotyping-by-sequencing (GBS) technology using F2:3 mapping population generated from the cross DBGy-201 × Pusa Do Mausami. About 2013 high-quality SNPs were assigned on a total of 20 linkage groups (LGs) spanning over 2329.2 CM with an average genetic distance of 1.16 CM. QTL analysis was performed for six major yield-contributing traits such as fruit length, fruit diameter, fruit weight, fruit flesh thickness, number of fruits per plant and yield per plant. These six quantitative traits were mapped with 19 QTLs (9 QTLs with LOD > 3) using composite interval mapping (CIM). Among 19 QTLs, 12 QTLs derived from 'Pusa Do Mausami' revealed a negative additive effect when its allele increased trait score whereas 7 QTLs derived from 'DBGy-201' revealed a positive additive effect when its allele trait score increased. The phenotypic variation (R2%) elucidated by these QTLs ranged from 0.09% (fruit flesh thickness) on LG 14 to 32.65% (fruit diameter) on LG 16 and a total of six major QTLs detected. Most QTLs detected in the present study were located relatively very close, maybe due to the high correlation among the traits. This information will serve as a significant basis for marker-assisted selection and molecular breeding in bitter gourd crop improvement.
Collapse
Affiliation(s)
- P Gangadhara Rao
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Ambika B Gaikwad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - A D Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Arpita Srivastava
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - G Boopalakrishnan
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
4
|
Kaur G, Pathak M, Singla D, Chhabra G, Chhuneja P, Kaur Sarao N. Quantitative Trait Loci Mapping for Earliness, Fruit, and Seed Related Traits Using High Density Genotyping-by-Sequencing-Based Genetic Map in Bitter Gourd ( Momordica charantia L.). FRONTIERS IN PLANT SCIENCE 2021; 12:799932. [PMID: 35211132 PMCID: PMC8863046 DOI: 10.3389/fpls.2021.799932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 05/17/2023]
Abstract
Bitter gourd (Momordica charantia L.) is an important vegetable crop having numerous medicinal properties. Earliness and yield related traits are main aims of bitter gourd breeding program. High resolution quantitative trait loci (QTLs) mapping can help in understanding the molecular basis of phenotypic variation of these traits and thus facilitate marker-assisted breeding. The aim of present study was to identify genetic loci controlling earliness, fruit, and seed related traits. To achieve this, genotyping-by-sequencing (GBS) approach was used to genotype 101 individuals of F4 population derived from a cross between an elite cultivar Punjab-14 and PAUBG-6. This population was phenotyped under net-house conditions for three years 2018, 2019, and 2021. The linkage map consisting of 15 linkage groups comprising 3,144 single nucleotide polymorphism (SNP) markers was used to detect the QTLs for nine traits. A total of 50 QTLs for these traits were detected which were distributed on 11 chromosomes. The QTLs explained 5.09-29.82% of the phenotypic variance. The highest logarithm of the odds (LOD) score for a single QTL was 8.68 and the lowest was 2.50. For the earliness related traits, a total of 22 QTLs were detected. For the fruit related traits, a total of 16 QTLs and for seed related traits, a total of 12 QTLs were detected. Out of 50 QTLs, 20 QTLs were considered as frequent QTLs (FQ-QTLs). The information generated in this study is very useful in the future for fine-mapping and marker-assisted selection for these traits in bitter gourd improvement program.
Collapse
Affiliation(s)
- Gurpreet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Mamta Pathak
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | - Deepak Singla
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Gautam Chhabra
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Navraj Kaur Sarao
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Navraj Kaur Sarao,
| |
Collapse
|
5
|
Kaur G, Pathak M, Singla D, Sharma A, Chhuneja P, Sarao NK. High-Density GBS-Based Genetic Linkage Map Construction and QTL Identification Associated With Yellow Mosaic Disease Resistance in Bitter Gourd ( Momordica charantia L.). FRONTIERS IN PLANT SCIENCE 2021; 12:671620. [PMID: 34249043 PMCID: PMC8264296 DOI: 10.3389/fpls.2021.671620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 05/14/2023]
Abstract
Yellow mosaic disease (YMD) in bitter gourd (Momordica charantia) is a devastating disease that seriously affects its yield. Although there is currently no effective method to control the disease, breeding of resistant varieties is the most effective and economic option. Moreover, quantitative trait locus (QTL) associated with resistance to YMD has not yet been reported. With the objective of mapping YMD resistance in bitter gourd, the susceptible parent "Punjab-14" and the resistant parent "PAUBG-6" were crossed to obtain F4 mapping population comprising 101 individuals. In the present study, the genotyping by sequencing (GBS) approach was used to develop the genetic linkage map. The map contained 3,144 single nucleotide polymorphism (SNP) markers, consisted of 15 linkage groups, and it spanned 2415.2 cM with an average marker distance of 0.7 cM. By adopting the artificial and field inoculation techniques, F4:5 individuals were phenotyped for disease resistance in Nethouse (2019), Rainy (2019), and Spring season (2020). The QTL analysis using the genetic map and phenotyping data identified three QTLs qYMD.pau_3.1, qYMD.pau_4.1, and qYMD.pau_5.1 on chromosome 3, 4, and 5 respectively. Among these, qYMD.pau_3.1, qYMD.pau_4.1 QTLs were identified during the rainy season, explaining the 13.5 and 21.6% phenotypic variance respectively, whereas, during the spring season, qYMD.pau_4.1 and qYMD.pau_5.1 QTLs were observed with 17.5 and 22.1% phenotypic variance respectively. Only one QTL qYMD.pau_5.1 was identified for disease resistance under nethouse conditions with 15.6% phenotypic variance. To our knowledge, this is the first report on the identification of QTLs associated with YMD resistance in bitter gourd using SNP markers. The information generated in this study is very useful in the future for fine-mapping and marker-assisted selection for disease resistance.
Collapse
Affiliation(s)
- Gurpreet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Mamta Pathak
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | - Deepak Singla
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Abhishek Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Navraj Kaur Sarao
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Navraj Kaur Sarao,
| |
Collapse
|
6
|
Liu S, Gao P, Zhu Q, Zhu Z, Liu H, Wang X, Weng Y, Gao M, Luan F. Resequencing of 297 melon accessions reveals the genomic history of improvement and loci related to fruit traits in melon. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2545-2558. [PMID: 32559013 PMCID: PMC7680547 DOI: 10.1111/pbi.13434] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 05/21/2023]
Abstract
Domestication and improvement are two important stages in crop evolution. Melon (Cucumis melo L.) is an important vegetable crop with wide phenotypic diversity in many horticultural traits, especially fruit size, flesh thickness and aroma, which are likely the results of long-term extensive selection during its evolution. However, selective signals in domestication and improvement stages for these remarkable variations remain unclear. We resequenced 297 wild, landrace and improved melon accessions and obtained 2 045 412 high-quality SNPs. Population structure and genetic diversity analyses revealed independent and two-step selections in two subspecies of melon: ssp. melo and ssp. agrestis during melon breeding. We detected 233 (~18.35 Mbp) and 159 (~17.71 Mbp) novel potential selective signals during the improvement stage in ssp. agrestis and spp. melo, respectively. Two alcohol acyltransferase genes (CmAATs) unique to the melon genome compared with other cucurbit crops may have undergone stronger selection in ssp. agrestis for the characteristic aroma as compared with other cucurbits. Genome-wide association analysis identified eight fruit size and seven flesh thickness signals overlapping with selective sweeps. Compared with thin-skinned ssp. agrestis, thick-skinned ssp. melo has undergone a stronger selection for thicker flesh. In most melon accessions, CmCLV3 has pleiotropic effects on carpel number and fruit shape. Findings from this study provide novel insights into melon crop evolution, and new tools to advance melon breeding.
Collapse
Affiliation(s)
- Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region)Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
- College of Horticulture and Landscape ArchitectureNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region)Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
- College of Horticulture and Landscape ArchitectureNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
| | - Qianglong Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region)Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
- College of Horticulture and Landscape ArchitectureNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
| | - Zicheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region)Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
- College of Horticulture and Landscape ArchitectureNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
| | - Hongyu Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region)Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
- College of Horticulture and Landscape ArchitectureNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
| | - Xuezheng Wang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region)Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
- College of Horticulture and Landscape ArchitectureNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
| | - Yiqun Weng
- USDA‐ARSVegetable Crops Research UnitHorticulture DepartmentUniversity of WisconsinMadison CityWIUSA
| | - Meiling Gao
- College of Life Sciences, Agriculture and ForestryQiqihar UniversityQiqihar CityHeilongjiang ProvinceChina
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region)Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
- College of Horticulture and Landscape ArchitectureNortheast Agricultural UniversityHarbin CityHeilongjiang ProvinceChina
| |
Collapse
|
7
|
Liu P, Wang S, Wang X, Yang X, Li Q, Wang C, Chen C, Shi Q, Ren Z, Wang L. Genome-wide characterization of two-component system (TCS) genes in melon (Cucumis melo L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:197-213. [PMID: 32229405 DOI: 10.1016/j.plaphy.2020.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
To better understand cytokinin signaling in melon (Cucumis melo L.), one of the most important fruit crops in the Cucurbitaceae family, we identified and characterized melon two-component system (TCS) genes in this study. The results showed that there were 51 genes encoding putative TCS proteins in melon, and these TCS genes were classified into 3 subgroups, with 17 HK(L)s (histidine kinase/histidine-kinase like; 9 HKs and 8 HKLs), 9 HPs (histidine phosphotransfer proteins; 6 authentic and 3 pseudo), and 25 RRs (response regulators; 8 Type-A, 11 Type-B and 6 pseudo). The identity values of these cytokinin signaling proteins were revealed by analyzing their conserved motifs, domains and amino acid sequences. By analyzing TCS genes in different plant species, we found that melon HK(L)s, HPs and RRs had closer phylogenetic relationships with cucumber genes than with the genes of other plants, and the expansion of melon cytokinin signaling genes might be attributed to segmental duplication events. Analysis of the putative promoter regions (2-kb upstream regions of the start codon) revealed the enrichment of stress- and hormone-response cis-elements. The involvement of these putative TCS genes in melon cytokinin signaling was further supported by qRT-PCR data.
Collapse
Affiliation(s)
- Panjing Liu
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Shuoshuo Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiangfei Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaoyu Yang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiang Li
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chao Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Lina Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
8
|
Lin TK, Lin YP, Lin SF. Genetic Analysis and Fine Mapping of a Spontaneously Mutated Male Sterility Gene in Brassica rapa ssp. chinensis. G3 (BETHESDA, MD.) 2020; 10:1309-1318. [PMID: 32046970 PMCID: PMC7144089 DOI: 10.1534/g3.120.401091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/07/2020] [Indexed: 11/22/2022]
Abstract
Male sterility has been widely used in hybrid seed production in Brassica, but not in B. rapa ssp. chinensis, and genetic models of male sterility for this subspecies are unclear. We discovered a spontaneous mutant in B. rapa ssp. chinensis A series of progeny tests indicated that male sterility in B. rapa ssp. chinensis follows a three-allele model with BrMsa , BrMsb , and BrMsc The male sterility locus has been mapped to chromosome A07 in BC1 and F2 populations through genotyping by sequencing. Fine mapping in a total of 1,590 F2 plants narrowed the male sterility gene BrMs to a 400 kb region, with two SNP markers only 0.3 cM from the gene. Comparative gene mapping shows that the Ms gene in B. rapa ssp. pekinensis is different from the BrMs gene of B. rapa ssp. chinensis, despite that both genes are located on chromosome A07. Interestingly, the DNA sequence orthologous to a male sterile gene in Brassica napus, BnRf, is within 400 kb of the BrMs locus. The BnRf orthologs of B. rapa ssp. chinensis were sequenced, and one KASP marker (BrMs_indel) was developed for genotyping based on a 14 bp indel at intron 4. Cosegregation of male sterility and BrMs_indel genotypes in the F2 population indicated that BnRf from B. napus and BrMs from B. rapa are likely to be orthologs. The BrMs_indel marker developed in this study will be useful in marker-assisted selection for the male sterility trait.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, R.O.C. 10617
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Ya-Ping Lin
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, Taiwan, R.O.C. 41362
| | - Shun-Fu Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, R.O.C. 10617
| |
Collapse
|
9
|
Pan Y, Wang Y, McGregor C, Liu S, Luan F, Gao M, Weng Y. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1-21. [PMID: 31768603 DOI: 10.1007/s00122-019-03481-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 11/11/2019] [Indexed: 05/28/2023]
Abstract
The Cucurbitaceae family hosts many economically important fruit vegetables (cucurbits) such as cucumber, melon, watermelon, pumpkin/squash, and various gourds. The cucurbits are probably best known for the diverse fruit sizes and shapes, but little is known about their genetic basis and molecular regulation. Here, we reviewed the literature on fruit size (FS), shape (FSI), and fruit weight (FW) QTL identified in cucumber, melon, and watermelon, from which 150 consensus QTL for these traits were inferred. Genome-wide survey of the three cucurbit genomes identified 253 homologs of eight classes of fruit or grain size/weight-related genes cloned in Arabidopsis, tomato, and rice that encode proteins containing the characteristic CNR (cell number regulator), CSR (cell size regulator), CYP78A (cytochrome P450), SUN, OVATE, TRM (TONNEAU1 Recruiting Motif), YABBY, and WOX domains. Alignment of the consensus QTL with candidate gene homologs revealed widespread structure and function conservation of fruit size/shape gene homologs in cucurbits, which was exemplified with the fruit size/shape candidate genes CsSUN25-26-27a and CsTRM5 in cucumber, CmOFP1a in melon, and ClSUN25-26-27a in watermelon. In cucurbits, the andromonoecy (for 1-aminocyclopropane-1-carboxylate synthase) and the carpel number (for CLAVATA3) loci are known to have pleiotropic effects on fruit shape, which may complicate identification of fruit size/shape candidate genes in these regions. The present work illustrates the power of comparative analysis in understanding the genetic architecture of fruit size/shape variation, which may facilitate QTL mapping and cloning for fruit size-related traits in cucurbits. The limitations and perspectives of this approach are also discussed.
Collapse
Affiliation(s)
- Yupeng Pan
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuhui Wang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cecilia McGregor
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Shi Liu
- College of Horticulture and, Landscape Architecture at Northeast Agricultural University, Harbin, 150030, China
| | - Feishi Luan
- College of Horticulture and, Landscape Architecture at Northeast Agricultural University, Harbin, 150030, China
| | - Meiling Gao
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI, 53706, USA.
| |
Collapse
|
10
|
Li Y, Huang YF, Huang SH, Kuang YH, Tung CW, Liao CT, Chuang WP. Genomic and phenotypic evaluation of rice susceptible check TN1 collected in Taiwan. BOTANICAL STUDIES 2019; 60:19. [PMID: 31468345 PMCID: PMC6715756 DOI: 10.1186/s40529-019-0269-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Taichung Native 1 (TN1), a variety of rice (Oryza sativa L.) developed in Taiwan, has played a key role in the green revolution of this major staple crop because of its semi-dwarf characteristics. Due to its susceptibility, it has been used as a susceptibility indicator in rice insect and pathogen resistance studies worldwide. While within-variety differences have been reported for agronomic traits in other rice varieties, no study has addressed the within-variety consistency of pathogen and insect susceptibility of TN1, which would influence the result interpretation of plant-pest interaction studies. Therefore, the objective of this study was to evaluate the genomic consistency and to assess a range of agronomic and insect susceptibility traits in three representative accessions of TN1 in Taiwan. RESULTS Among these three accessions, two were identical across 43,325 genome-wide single nucleotide polymorphisms (SNPs) while the third one differed at four SNPs. Of the three accessions of TN1, there were minor differences in seed length, seed breadth, length/width ratio, number of leaves and tillers, and number of unfilled seeds. Besides, there was no effect on relative growth rate of Cnaphalocrocis medinalis larvae fed on the three accession sources. Furthermore, there is no different on plant susceptibility among these three accessions against C. medinalis and Nilaparvata lugens. CONCLUSION Our study indicates that it is appropriate to use TN1 in Taiwan to test for rice insect susceptibility as it yields consistent results.
Collapse
Affiliation(s)
- Yi Li
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Yung-Fen Huang
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Shou-Horng Huang
- Department of Plant Protection, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, COA, Chiayi, 60044, Taiwan
| | - Yun-Hung Kuang
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Chung-Ta Liao
- Crop Enviroment Division, Taichung District Agricultural Research and Extension Station, COA, Dacun Township, Changhua County, 51544, Taiwan
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
11
|
Pereira L, Ruggieri V, Pérez S, Alexiou KG, Fernández M, Jahrmann T, Pujol M, Garcia-Mas J. QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC PLANT BIOLOGY 2018; 18:324. [PMID: 30509167 PMCID: PMC6278158 DOI: 10.1186/s12870-018-1537-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/19/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Melon shows a broad diversity in fruit morphology and quality, which is still underexploited in breeding programs. The knowledge of the genetic basis of fruit quality traits is important for identifying new alleles that may be introduced in elite material by highly efficient molecular breeding tools. RESULTS In order to identify QTLs controlling fruit quality, a recombinant inbred line population was developed using two commercial cultivars as parental lines: "Védrantais", from the cantalupensis group, and "Piel de Sapo", from the inodorus group. Both have desirable quality traits for the market, but their fruits differ in traits such as rind and flesh color, sugar content, ripening behavior, size and shape. We used a genotyping-by-sequencing strategy to construct a dense genetic map, which included around five thousand variants distributed in 824 bins. The RIL population was phenotyped for quality and morphology traits, and we mapped 33 stable QTLs involved in sugar and carotenoid content, fruit and seed morphology and major loci controlling external color of immature fruit and mottled rind. The median confidence interval of the QTLs was 942 kb, suggesting that the high density of the genetic map helped in increasing the mapping resolution. Some of these intervals contained less than a hundred annotated genes, and an integrative strategy combining gene expression and resequencing data enabled identification of candidate genes for some of these traits. CONCLUSION Several QTLs controlling fruit quality traits in melon were identified and delimited to narrow genomic intervals, using a RIL population and a GBS-based genetic map.
Collapse
Affiliation(s)
- L. Pereira
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| | - V. Ruggieri
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| | - S. Pérez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| | - K. G. Alexiou
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| | - M. Fernández
- Semillas Fitó S.A., 08348 Cabrera de Mar, Barcelona, Spain
| | - T. Jahrmann
- Semillas Fitó S.A., 08348 Cabrera de Mar, Barcelona, Spain
| | - M. Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| | - J. Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| |
Collapse
|
12
|
Branham SE, Levi A, Katawczik M, Fei Z, Wechter WP. Construction of a genome-anchored, high-density genetic map for melon (Cucumis melo L.) and identification of Fusarium oxysporum f. sp. melonis race 1 resistance QTL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:829-837. [PMID: 29372283 DOI: 10.1007/s00122-017-3039-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/11/2017] [Indexed: 05/22/2023]
Abstract
Four QTLs and an epistatic interaction were associated with disease severity in response to inoculation with Fusarium oxysporum f. sp. melonis race 1 in a recombinant inbred line population of melon. The USDA Cucumis melo inbred line, MR-1, harbors a wealth of alleles associated with resistance to several major diseases of melon, including powdery mildew, downy mildew, Alternaria leaf blight, and Fusarium wilt. MR-1 was crossed to an Israeli cultivar, Ananas Yok'neam, which is susceptible to all of these diseases, to generate a recombinant inbred line (RIL) population of 172 lines. In this study, the RIL population was genotyped to construct an ultra-dense genetic linkage map with 5663 binned SNPs anchored to the C. melo genome and exhibits the overall high quality of the assembly. The utility of the densely genotyped population was demonstrated through QTL mapping of a well-studied trait, resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (Fom) race 1. A major QTL co-located with the previously validated resistance gene Fom-2. In addition, three minor QTLs and an epistatic interaction contributing to Fom race 1 resistance were identified. The MR-1 × AY RIL population provides a valuable resource for future QTL mapping studies and marker-assisted selection of disease resistance in melon.
Collapse
Affiliation(s)
- Sandra E Branham
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Amnon Levi
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Melanie Katawczik
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - W Patrick Wechter
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.
| |
Collapse
|
13
|
A high-density linkage map and QTL mapping of fruit-related traits in pumpkin (Cucurbita moschata Duch.). Sci Rep 2017; 7:12785. [PMID: 28986571 PMCID: PMC5630576 DOI: 10.1038/s41598-017-13216-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022] Open
Abstract
Pumpkin (Cucurbita moschata) is an economically worldwide crop. Few quantitative trait loci (QTLs) were reported previously due to the lack of genomic and genetic resources. In this study, a high-density linkage map of C. moschata was structured by double-digest restriction site-associated DNA sequencing, using 200 F2 individuals of CMO-1 × CMO-97. By filtering 74,899 SNPs, a total of 3,470 high quality SNP markers were assigned to the map spanning a total genetic distance of 3087.03 cM on 20 linkage groups (LGs) with an average genetic distance of 0.89 cM. Based on this map, both pericarp color and strip were fined mapped to a novel single locus on LG8 in the same region of 0.31 cM with phenotypic variance explained (PVE) of 93.6% and 90.2%, respectively. QTL analysis was also performed on carotenoids, sugars, tuberculate fruit, fruit diameter, thickness and chamber width with a total of 12 traits. 29 QTLs distributed in 9 LGs were detected with PVE from 9.6% to 28.6%. It was the first high-density linkage SNP map for C. moschata which was proved to be a valuable tool for gene or QTL mapping. This information will serve as significant basis for map-based gene cloning, draft genome assembling and molecular breeding.
Collapse
|
14
|
Hu Z, Deng G, Mou H, Xu Y, Chen L, Yang J, Zhang M. A re-sequencing-based ultra-dense genetic map reveals a gummy stem blight resistance-associated gene in Cucumis melo. DNA Res 2017; 25:1-10. [PMID: 28985339 PMCID: PMC5824858 DOI: 10.1093/dnares/dsx033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022] Open
Abstract
The melon (Cucumis melo) genome and genetic maps with hundreds to thousands of single nucleotide polymorphism markers were recently released. However, a high-resolution genetic map was lacking. Gummy stem blight (Gsb) is a destructive disease responsible for considerable economic losses during melon production. We herein describe the development of an ultra-dense genetic map consisting of 12,932 recombination bin markers covering 1,818 cM, with an average distance of 0.17 cM between adjacent tags. A comparison of the genetic maps for melon, watermelon, and cucumber revealed chromosome-level syntenic relationships and recombination events among the three Cucurbitaceae species. Our genetic map was useful for re-anchoring the genome scaffolds of melon. More than 92% assembly was anchored to 12 pseudo-chromosomes and 90% of them were oriented. Furthermore, 1,135 recombination hotspots revealed an unbalanced recombination rate across the melon genome. Genetic analyses of the Gsb-resistant and -susceptible lines indicated the resistance phenotype is mediated by a single dominant gene. We identified Gsb-resistance gene candidates in a 108-kb region on pseudo-chromosome 4. Our findings verify the utility of an ultra-dense genetic map for mapping a gene of interest, and for identifying new disease resistant genes.
Collapse
Affiliation(s)
- Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Guancong Deng
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Haipeng Mou
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Yuhui Xu
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Li Chen
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| |
Collapse
|