1
|
Song G, Dong S, Liu C, Zou J, Ren J, Feng H. BrKCS6 mutation conferred a bright glossy phenotype to Chinese cabbage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:216. [PMID: 37776330 DOI: 10.1007/s00122-023-04464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
KEY MESSAGE BrKCS6 encoding 3-ketoacyl-CoA synthases was cloned through MutMap and KASP analysis, and its function was verified via allelic mutants in Chinese cabbage. Bright and glossy green appearance is an attractive commodity character for leafy vegetables and is mainly caused by the absence of epicuticular wax crystals. In this study, two allelic epicuticular wax crystal deficiency mutants, wdm9 and wdm10, were obtained from an EMS mutagenesis population of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. BrKCS6 encoding 3-ketoacyl-CoA synthases was identified as the candidate gene by MutMap and KASP analysis. A SNP (G to A) on BrKCS6 in wdm9 led to the amino acid substitution from serine (S) to phenylalanine (F), and another SNP (G to A) in wdm10 resulted in the amino acid substitution from serine (S) to leucine (L). Both SNPs are located in the ACP_syn_III_C conserved domain, corresponding to two highly conserved sites among BrKCS6 and its homologs. These two amino acid substitutions changed the secondary structure and the three-dimensional structure of BrKCS6 protein. qRT-PCR results showed that the relative expression of BrKCS6 significantly decreased in the flower, stem, and leaves in mutant, and the relative expressions of the downstream key genes of BrKCS6 were down-regulated in mutant. We were the first to clone the precious glossy bright gene BrKCS6 which has a great potential for commodity quality breeding in Chinese cabbage.
Collapse
Affiliation(s)
- Gengxing Song
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Shiyao Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Chuanhong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jiaqi Zou
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jie Ren
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
2
|
Liu C, Yu L, Yang L, Tan C, Shi F, Ye X, Liu Z. Identification of a new allele of BraA09g066480.3C controlling the wax-less phenotype of Chinese cabbage. BMC PLANT BIOLOGY 2023; 23:408. [PMID: 37658308 PMCID: PMC10472645 DOI: 10.1186/s12870-023-04424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Epidermal wax covers the surfaces of terrestrial plants to resist biotic and abiotic stresses. Wax-less flowering Chinese cabbage (Brassica campestris L. ssp. chinesis var. utilis tsen et lee) has the charateristics of lustrous green leaves and flower stalks, which are of high commercial value. RESULTS To clarify the mechanism of the wax deficiency, the wax-less flowering Chinese cabbage doubled-haploid (DH) line 'CX001' and Chinese cabbage DH line 'FT', obtained from isolated microspore culture, were used in the experiments. Genetic analysis showed that the wax-less phenotype of 'CX001' was controlled by a recessive nuclear gene, named wlm1 (wax-less mutation 1), which was fine-mapped on chromosome A09 by bulked segregant analysis sequencing (BSA-seq) of B.rapa genome V3.0. There was only one gene (BraA09g066480.3C) present in the mapping region. The homologous gene in Arabidopsis thaliana is AT1G02205 (CER1) that encodes an aldehyde decarboxylase in the epidermal wax metabolism pathway. Semi-quantitative reverse transcription PCR and transcriptome analysis indicated that BraA09g066480.3C was expressed in 'FT' but not in 'CX001'. BraA09g066480.3C was lost in the CXA genome to which 'CX001' belonged. CONCLUSION The work presented herein demonstrated that BraA09g066480.3C was the causal gene for wax-less flowering Chinese cabbage 'CX001'. This study will lay a foundation for further research on the molecular mechanism of epidermal wax synthesis in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Chuanhong Liu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Longfei Yu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Lu Yang
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chong Tan
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Fengyan Shi
- Vegetable Research Institute of Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Xueling Ye
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| | - Zhiyong Liu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
3
|
Song G, Liu C, Fang B, Ren J, Feng H. Identification of an epicuticular wax crystal deficiency gene Brwdm1 in Chinese cabbage ( Brassica campestris L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2023; 14:1161181. [PMID: 37324687 PMCID: PMC10267742 DOI: 10.3389/fpls.2023.1161181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Introduction The cuticle wax covering the plant surface is a whitish hydrophobic protective barrier in Chinese cabbage, and the epicuticular wax crystal deficiency normally has higher commodity value for a tender texture and glossy appearance. Herein, two allelic epicuticular wax crystal deficiency mutants, wdm1 and wdm7, were obtained from the EMS mutagenesis population of a Chinese cabbage DH line 'FT'. Methods The cuticle wax morphology was observed by Cryo-scanning electron microscopy (Cryo-SEM) and the composition of wax was determined by GC-MS. The candidate mutant gene was found by MutMap and validated by KASP. The function of candidate gene was verified by allelic variation. Results The mutants had fewer wax crystals and lower leaf primary alcohol and ester content. Genetic analysis revealed that the epicuticular wax crystal deficiency phenotype was controlled by a recessive nuclear gene, named Brwdm1. MutMap and KASP analyses indicated that BraA01g004350.3C, encoding an alcohol-forming fatty acyl-CoA reductase, was the candidate gene for Brwdm1. A SNP 2,113,772 (C to T) variation in the 6th exon of Brwdm1 in wdm1 led to the 262nd amino acid substitution from threonine (T) to isoleucine (I), which existed in a rather conserved site among the amino acid sequences from Brwdm1 and its homologs. Meanwhile, the substitution changed the three-dimensional structure of Brwdm1. The SNP 2,114,994 (G to A) in the 10th exon of Brwdm1 in wdm7 resulted in the change of the 434th amino acid from valine (V) to isoleucine (I), which occurred in the STERILE domain. KASP genotyping showed that SNP 2,114,994 was co-segregated with glossy phenotype. Compared with the wild type, the relative expression of Brwdm1 was significantly decreased in the leaves, flowers, buds and siliques of wdm1. Discussion These results indicated that Brwdm1 was indispensable for the wax crystals formation and its mutation resulted in glossy appearance in Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | - Jie Ren
- *Correspondence: Jie Ren, ; Hui Feng,
| | - Hui Feng
- *Correspondence: Jie Ren, ; Hui Feng,
| |
Collapse
|
4
|
Zhang S, Zhou F, Liu Z, Feng X, Li Y, Zhu P. Inactivation of BoORP3a, an oxysterol-binding protein, causes a low wax phenotype in ornamental kale. HORTICULTURE RESEARCH 2022; 9:uhac219. [PMID: 36479583 PMCID: PMC9720449 DOI: 10.1093/hr/uhac219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Identifying genes associated with wax deposition may contribute to the genetic improvement of ornamental kale. Here, we characterized a candidate gene for wax contents, BoORP3a, encoding an oxysterol-binding protein. We sequenced the BoORP3a gene and coding sequence from the high-wax line S0835 and the low-wax line F0819, which revealed 12 single nucleotide polymorphisms between the two lines, of which six caused five amino acids substitutions. BoORP3a appeared to be relatively well conserved in Brassicaceae, as determined by a phylogenetic analysis, and localized to the endoplasmic reticulum and the nucleus. To confirm the role of BoORP3a in wax deposition, we generated three orp3a mutants in a high-wax kale background via CRISPR/Cas9-mediated genome editing. Importantly, all three mutants exhibited lower wax contents and glossy leaves. Overall, these data suggest that BoORP3a may participate in cuticular wax deposition in ornamental kale.
Collapse
Affiliation(s)
| | | | | | - Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Yashu Li
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | | |
Collapse
|
5
|
BrWAX3, Encoding a β-ketoacyl-CoA Synthase, Plays an Essential Role in Cuticular Wax Biosynthesis in Chinese Cabbage. Int J Mol Sci 2022; 23:ijms231810938. [PMID: 36142850 PMCID: PMC9501823 DOI: 10.3390/ijms231810938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we identified a novel glossy mutant from Chinese cabbage, named SD369, and all wax monomers longer than 26 carbons were significantly decreased. Inheritance analysis revealed that the glossy trait of SD369 was controlled by a single recessive locus, BrWAX3. We fine-mapped the BrWAX3 locus to an interval of 161.82 kb on chromosome A09. According to the annotated genome of Brassica rapa, Bra024749 (BrCER60.A09), encoding a β-ketoacyl-CoA synthase, was identified as the candidate gene. Expression analysis showed that BrCER60.A09 was significantly downregulated in all aerial organs of glossy plants. Subcellular localization indicated that the BrCER60.A09 protein functions in the endoplasmic reticulum. A 5567-bp insertion was identified in exon 1 of BrCER60.A09 in SD369, which lead to a premature stop codon, thus causing a loss of function of the BrCER60.A09 enzyme. Moreover, comparative transcriptome analysis revealed that the ‘cutin, suberine, and wax biosynthesis’ pathway was significantly enriched, and genes involved in this pathway were almost upregulated in glossy plants. Further, two functional markers, BrWAX3-InDel and BrWAX3-KASP1, were developed and validated. Overall, these results provide a new information for the cuticular wax biosynthesis and provide applicable markers for marker-assisted selection (MAS)-based breeding of Brassica rapa.
Collapse
|
6
|
Yang S, Liu H, Wei X, Zhao Y, Wang Z, Su H, Zhao X, Tian B, Zhang XW, Yuan Y. BrWAX2 plays an essential role in cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:693-707. [PMID: 34766198 DOI: 10.1007/s00122-021-03993-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Map-based cloning was used to identify the BrWAX2 gene, which was involved in the cuticular wax biosynthesis. The malfunction of BrWAX2 together with other reduced expression of genes in alkane-forming pathway caused the glossy phenotype. Cuticular wax covering the outer plant surface plays various roles in protecting against biotic and abiotic stresses. Wax-less mutant shows glossy in stem and leaf surface and plays important roles in enriching Chinese cabbage germplasm resources for breeding brilliant green varieties. However, genes responsible for the glossy trait in Chinese cabbage are rarely reported. In this study, we identified a glossy Chinese cabbage line Y1211-1. Genetic analysis indicated that the glossy trait in Y1211-1 was controlled by a single recessive locus, BrWAX2 (Brassica rapa WAX 2). Using bulked segregant sequencing (BSA-Seq) and kompetitive allele-specific PCR (KASP) assays, BrWAX2 was fine-mapped to an interval of 100.78 kb. Functional annotation analysis, expression analysis, and sequence variation analysis revealed that Bra032670, homologous to CER1 in Arabidopsis, was the most likely candidate gene for BrWAX2. The gene Bra032670 was absent in glossy mutant. Cuticular wax composition analysis and RNA-Seq analysis suggested that the absence of BrWAX2 together with the decreased expression of other genes in alkane-forming pathway reduced the wax amount and caused the glossy phenotype. Furthermore, we developed and validated the functional marker BrWAX2-sp for BrWAX2. Overall, these results provide insight into the molecular mechanism underlying cuticular wax biosynthesis and reveal valuable information for marker-assisted selection (MAS) breeding in Chinese cabbage.
Collapse
Affiliation(s)
- Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Honglei Liu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Xiaobin Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiao-Wei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Ji J, Cao W, Tong L, Fang Z, Zhang Y, Zhuang M, Wang Y, Yang L, Lv H. Identification and validation of an ECERIFERUM2- LIKE gene controlling cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:4055-4066. [PMID: 34546379 DOI: 10.1007/s00122-021-03947-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
A single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for marker-assisted selection of glossiness. TL28-1 is a novel spontaneous wax-deficient mutant with a glossy phenotype identified from cabbage. In this study, the genetic analysis suggested that the wax-deficient trait of TL28-1 was controlled by a single recessive gene. All wax monomers longer than 28 carbons were significantly decreased in TL28-1. Fine-mapping results showed that the wax-deficient locus wdtl28 was located at an 80-kb interval between BOL01-20 and BOL01-24 markers on chromosome 1. According to the genome annotation of B. oleracea, the ECERIFERUM2- LIKE (CER2-LIKE) gene, BoCER2, was identified as the candidate gene. Phylogenetic analysis showed that BoCER2 and other CER2-LIKEs from vascular plants formed a clade within the BAHD superfamily of acyltransferases. The BoCER2 transcript was detected in various tissues, including stem, leaf, flower, and silique, but not in the cabbage roots. Subcellular localization indicated that BoCER2 protein functions in the endoplasmic reticulum. Further sequence analysis showed that a single nucleotide mutation (G to A) is present in the BoCER2 coding sequence in TL28-1, leading to a stop codon (TGA), hence premature translation termination. Linkage analysis showed that the homozygotic mutational BoCER2 co-segregated with wax deficiency. Moreover, the complementation test suggested that BoCER2 from wild type can rescue the wax deficiency of TL28-1. These results indicate that BoCER2 mutation hinders the elongation of very-long-chain fatty acid precursors in TL28-1, leading to wax deficiency. The allele-specific KASP marker designed in this study could be effective for marker-assisted selection of glossiness.
Collapse
Affiliation(s)
- Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Wenxue Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Long Tong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China.
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China.
| |
Collapse
|
8
|
Han F, Huang J, Xie Q, Liu Y, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Wang Y, Ji J, Li Z. Genetic mapping and candidate gene identification of BoGL5, a gene essential for cuticular wax biosynthesis in broccoli. BMC Genomics 2021; 22:811. [PMID: 34758753 PMCID: PMC8582161 DOI: 10.1186/s12864-021-08143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022] Open
Abstract
Background The aerial organs of most terrestrial plants are covered by cuticular waxes, which impart plants a glaucous appearance and play important roles in protecting against various biotic and abiotic stresses. Despite many glossy green (wax-defective) mutants being well characterized in model plants, little is known about the genetic basis of glossy green mutant in broccoli. Results B156 is a spontaneous broccoli mutant showing a glossy green phenotype. Detection by scanning electron microscopy (SEM) and chromatography-mass spectrometry (GC-MS) revealed that B156 is a cuticular wax-defective mutant, lacking waxes mostly longer than C28. Inheritance analysis revealed that this trait was controlled by a single recessive gene, BoGL5. Whole-genome InDel markers were developed, and a segregating F2 population was constructed to map BoGL5. Ultimately, BoGL5 was mapped to a 94.1 kb interval on C01. The BoCER2 gene, which is homologous to the Arabidopsis CER2 gene, was identified as a candidate of BoGL5 from the target interval. Sequence analyses revealed that Bocer2 in B156 harbored a G-to-T SNP mutation at the 485th nucleotide of the CDS, resulting in a W-to-L transition at the 162nd amino acid, a conserved site adjacent to an HXXXD motif of the deduced protein sequence. Expression analysis revealed that BoCER2 was significantly down-regulated in the leaves, stems, and siliques of B156 mutant than that of B3. Last, ectopic expression of BoCER2 in A. thaliana could, whereas Bocer2 could not, rescue the phenotype of cer2 mutant. Conclusions Overall, this study mapped the locus determining glossy phenotype of B156 and proved BoCER2 is functional gene involved in cuticular wax biosynthesis which would promotes the utilization of BoCER2 to enhance plant resistance to biotic and abiotic stresses, and breeding of B. oleracea cultivars with glossy traits. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08143-7.
Collapse
Affiliation(s)
- Fengqing Han
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Jingjing Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Qi Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
9
|
Liu T, Tang J, Chen L, Zeng J, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Differential expression of miRNAs and their targets in wax-deficient rapeseed. Sci Rep 2019; 9:12201. [PMID: 31434948 PMCID: PMC6704058 DOI: 10.1038/s41598-019-48439-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/02/2019] [Indexed: 11/25/2022] Open
Abstract
The cuticle of a plant, composed of cutin and wax, is the outermost hydrophobic layer covering the epidermis of all its aerial organs, protecting it from many abiotic and biotic stresses. The biosynthesis and regulation pathways of wax components have been well studied, whereas there are fewer reports on the small RNA-involved post-transcriptional regulation of wax biosynthesis in plants, particularly in Brassica napus. Previously, we conducted a study on a glossy mutant of rapeseed, and we assumed that there was a dominant repressor to inhibit the expression of wax-related genes. To verify this hypothesis and investigate the function of small RNAs in wax biosynthesis in B. napus, we constructed four small RNA libraries from the stem epidermis of wax-deficient mutant and wild-type plants for sequencing. Subsequently, 43,840,451 clean reads were generated and 24 nt sequences represented the dominant percentage. In total, 300 unique known miRNAs were identified and eight of them showed differential expression. In addition, the expression levels of six novel miRNAs were altered. Surprisingly, we found that four up-regulated miRNAs in the wax-deficient plants, bna-miR408b-5p, bna-miR165b-5p, bna-miR160a-3p, and bna-miR398-5p, were all complementary strands of their corresponding mature strands. Stem-loop qRT-PCR verified that the expression of bna-miR165a-5p was increased in the mutant stems, while its putative target, BnaA06g40560D (CYP96A2), was down-regulated. In addition, the expression of bna-miR827a was detected to be down-regulated in glossy mutant. 5' RACE experimental data showed that bna-miR827a cleaves three NITROGEN LIMITATION ADAPTATION (NLA) genes (BnaC08g45940D, BnaA10g01450D and BnaC05g01480D). The down-regulation of bna-miR827a resulted in decreased cleavage on its targets, and led to the up-regulation of its targets, especially BnaA10g01450D gene. These results showed that bna-miR165a-5p might participate in wax biosynthesis process by regulating its putative target BnaA06g40560D (CYP96A2). The expression levels of a phosphate (Pi)-related miRNA, bna-miR827a, and its target genes were affected in wax-deficient rapeseeds. These results will promote the study of post-transcriptional regulation mechanisms of wax biosynthesis in B. napus and provide new directions for further research.
Collapse
Affiliation(s)
- Tingting Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingquan Tang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiayue Zeng
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Genome-Wide Analysis of Coding and Long Non-Coding RNAs Involved in Cuticular Wax Biosynthesis in Cabbage ( Brassica oleracea L. var. capitata). Int J Mol Sci 2019; 20:ijms20112820. [PMID: 31185589 PMCID: PMC6600401 DOI: 10.3390/ijms20112820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/17/2022] Open
Abstract
Cuticular wax is a mixture of very long chain fatty acids (VLCFAs) and their derivatives, which determines vital roles for plant growth. In cabbage, the cuticular wax content of leaf blades is an important trait influencing morphological features of the head. Understanding the molecular basis of cuticular wax biosynthesis can help breeders develop high quality cabbage varieties. Here, we characterize a cabbage non-wax glossy (nwgl) plant, which exhibits glossy green phenotype. Cryo-scanning electron microscope analysis showed abnormal wax crystals on the leaf surfaces of nwgl plants. Cuticular wax composition analyzed by GC-MS displayed severely decreased in total wax loads, and individual wax components in nwgl leaves. We delimited the NWGL locus into a 99-kb interval between the at004 marker and the end of chromosome C08 through fine mapping. By high-throughput RNA sequencing, we identified 1247 differentially expressed genes (DEGs) and 148 differentially expressed lncRNAs in nwgl leaves relative to the wild-type. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the DEGs and cis-regulated target genes for differentially expressed lncRNAs were significantly enriched in wax and lipid biosynthetic or metabolic processes. Our results provide the novel foundation to explore the complex molecular basis of cuticular wax biosynthesis.
Collapse
|
11
|
Fine-mapping and transcriptome analysis of BoGL-3, a wax-less gene in cabbage (Brassica oleracea L. var. capitata). Mol Genet Genomics 2019; 294:1231-1239. [PMID: 31098741 DOI: 10.1007/s00438-019-01577-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/08/2019] [Indexed: 01/27/2023]
Abstract
The great majority of terrestrial plants produce epicuticular wax that is used to protect plants from a variety of biotic and abiotic stresses. Cabbage epicuticular wax is a white crystalline compound of various lipids. Wax-less cabbage has the characteristics of lustrous green leaves and beautiful exterior, which facilitates the brilliant green cabbage breeding. CGL-3 is a spontaneous wax-less mutant identified from cabbage. Genetic analysis indicated that the waxy deficiency of the mutant was controlled by a single dominant gene. To clarify the mechanism of the waxy deficiency, fine-mapping and transcriptome analysis of the wax-less gene, BoGL-3, were carried out in this study. The result of fine mapping showed that the wax-less gene, BoGL-3, was delimited in a 33.5-kb interval which is between the flanking marker C08-98 and the end of chromosome 8. Two cDNA libraries, constructed with wax-less cabbage CGL-3 and the wild-type cabbage WT, were sequenced for screening of the target gene BoGL-3. A total of 8340 genes were identified with significant differential expression between CGL-3 and WT. Among these genes, 3187 were up-regulated and 5153 were down-regulated in CGL-3. With homologous analysis, four differential expressed genes related to wax metabolism were obtained. Among these four genes, only Bol018504 is located within the region of fine-mapping. Bol08504 is homologous to CER1, which encodes fatty acid hydroxylase and plays an important role in wax synthesis in Arabidopsis. However, there was no difference of Bol08504 sequence between CGL-3 and WT. We suggested that Bol018504 was regulated by BoGL-3. The suppression of Bol018504 leads to the reduction of wax. These findings will be helpful to reveal the mechanism of the wax metabolism in cabbage and develop lustrous green cabbage germplasm material.
Collapse
|
12
|
Liu D, Dong X, Liu Z, Tang J, Zhuang M, Zhang Y, Lv H, Liu Y, Li Z, Fang Z, Yang L. Fine Mapping and Candidate Gene Identification for Wax Biosynthesis Locus, BoWax1 in Brassica oleracea L. var. capitata. FRONTIERS IN PLANT SCIENCE 2018; 9:309. [PMID: 29760714 PMCID: PMC5937124 DOI: 10.3389/fpls.2018.00309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Cuticular waxes play important roles in plant protection against various biotic and abiotic environmental stresses. The cuticular wax covering gives normal cabbage a glaucous appearance, but the appearance of waxless mutant is glossy green. Based on the present study, inheritance of the glossy green character of mutant HUAYOU2 follows a simple recessive pattern. Genetic analysis of an F2 population comprising 808 recessive individuals derived from HUAYOU2 (P1, maternal parent) and M36 (P2, paternal parent) revealed that a single recessive locus, BoWax1 (Brassica oleracea Wax 1), controls glossy green trait in B. oleracea. This locus was mapped to a region of 158.5 kb on chromosome C01. Based on nucleotide sequence analysis, Bol013612 was identified as the candidate gene for BoWax1. Sequencing results demonstrated that there is a deletion mutation of two nucleotides in the cDNA of Bol013612 of HUAYOU2, which may account for its glossy green trait. These results lay the foundation for functional analysis of BoWax1 and may accelerate research on wax metabolism in cabbage.
Collapse
Affiliation(s)
- Dongming Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Open Key Laboratory of Horticultural Plant Physiology and Genetic Improvement, High School of Henan Province, College of Horticulture, Henan Agricultural University, Zhengzhou, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xin Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhou Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Tang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Liu D, Tang J, Liu Z, Dong X, Zhuang M, Zhang Y, Lv H, Sun P, Liu Y, Li Z, Ye Z, Fang Z, Yang L. Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata). BMC PLANT BIOLOGY 2017; 17:223. [PMID: 29179675 PMCID: PMC5704555 DOI: 10.1186/s12870-017-1162-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The aerial parts of most land plants are covered with cuticular wax which is important for plants to avoid harmful factors. There is still no cloning study about wax synthesis gene of the alcohol-forming pathway in Brassica species. RESULTS Scanning electron microscopy (SEM) showed that, compared with wild type (WT), wax crystal are severely reduced in both the adaxial and abaxial sides of cabbage (Brassica oleracea L. var. capitata L.) leaves from the LD10GL mutant. Genetic analysis results revealed that the glossy trait of LD10GL is controlled by a single recessive gene, and fine mapping results revealed that the target gene Cgl2 (Cabbage glossy 2) is located within a physical region of 170 kb on chromosome 1. Based on sequence analysis of the genes in the mapped region, the gene designated Bol013612 was speculated to be the candidate gene. Gene Bol013612 is homologous to Arabidopsis CER4, which encodes fatty acyl-coenzyme A reductase. Sequencing identified a single nucleotide substitution at an intron/exon boundary that results in an insertion of six nucleotides in the cDNA of Bol013612 in LD10GL. The phenotypic defect of LD10GL was confirmed by a functional complementation test with Arabidopsis mutant cer4. CONCLUSIONS Our results indicated that wax crystals of cabbage mutant LD10GL are severely reduced and mutation of gene Bol013612 causes a glossy phenotype in the LD10GL mutant.
Collapse
Affiliation(s)
- Dongming Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Key Laboratory of Horticultural Plant Biology, MOE, Key Laboratory of Horticultural Crop Biology and Genetic Improvement, MOA, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jun Tang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zezhou Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xin Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Peitian Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yumei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, MOE, Key Laboratory of Horticultural Crop Biology and Genetic Improvement, MOA, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
14
|
Xiao Z, Hu Y, Zhang X, Xue Y, Fang Z, Yang L, Zhang Y, Liu Y, Li Z, Liu X, Liu Z, Lv H, Zhuang M. Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea). Genes (Basel) 2017; 8:genes8060147. [PMID: 28587228 PMCID: PMC5485511 DOI: 10.3390/genes8060147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/08/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022] Open
Abstract
Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage (Brassica oleracea) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2, respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1, seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380) were found, whereas in the region of BoHL2, two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Yang Hu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Xiaoli Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Yuqian Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Xing Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Zezhou Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, No. 12 Zhongguancun South Street, Beijing 100081, China.
| |
Collapse
|