1
|
Wang X, Liu X, Su Y, Shen H. Rice Responses to Abiotic Stress: Key Proteins and Molecular Mechanisms. Int J Mol Sci 2025; 26:896. [PMID: 39940666 PMCID: PMC11817427 DOI: 10.3390/ijms26030896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The intensification of global climate change and industrialization has exacerbated abiotic stresses on crops, particularly rice, posing significant threats to food security and human health. The mechanisms by which rice responds to these stresses are complex and interrelated. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying rice's response to various abiotic stresses, including drought, salinity, extreme temperatures, and heavy metal pollution. We emphasize the molecular mechanisms and structural roles of key proteins involved in these stress responses, such as the roles of SLAC1 and QUAC1 in stomatal regulation, HKT and SOS proteins in salinity stress, heat shock proteins (HSPs) and heat stress transcription factors (HSFs) in temperature stress, and Nramp and ZIP transport proteins in response to heavy metal stress. This review elucidates the complex response networks of rice to various abiotic stresses, highlighting the key proteins and their related molecular mechanisms, which may further help to improve the strategies of molecular breeding.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Xuelei Liu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou 310024, China;
| | - Yonglin Su
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Huaizong Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou 310024, China;
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
2
|
Transcriptome Analysis Reveals the Stress Tolerance to and Accumulation Mechanisms of Cadmium in Paspalum vaginatum Swartz. PLANTS 2022; 11:plants11162078. [PMID: 36015382 PMCID: PMC9414793 DOI: 10.3390/plants11162078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 01/08/2023]
Abstract
Cadmium (Cd) is a non-essential heavy metal and high concentrations in plants causes toxicity of their edible parts and acts as a carcinogen to humans and animals. Paspalum vaginatum is widely cultivating as turfgrass due to its higher abiotic stress tolerance ability. However, there is no clear evidence to elucidate the mechanism for heavy metal tolerance, including Cd. In this study, an RNA sequencing technique was employed to investigate the key genes associated with Cd stress tolerance and accumulation in P. vaginatum. The results revealed that antioxidant enzyme activities catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and glutathione S-transferase GST) were significantly higher at 24 h than in other treatments. A total of 6820 (4457/2363, up-/down-regulated), 14,038 (9894/4144, up-/down-regulated) and 17,327 (7956/9371, up-/down-regulated) differentially expressed genes (DEGs) between the Cd1 vs. Cd0, Cd4 vs. Cd0, and Cd24 vs. Cd0, respectively, were identified. The GO analysis and the KEGG pathway enrichment analysis showed that DEGs participated in many significant pathways in response to Cd stress. The response to abiotic stimulus, the metal transport mechanism, glutathione metabolism, and the consistency of transcription factor activity were among the most enriched pathways. The validation of gene expression by qRT-PCR results showed that heavy metal transporters and signaling response genes were significantly enriched with increasing sampling intervals, presenting consistency to the transcriptome data. Furthermore, over-expression of PvSnRK2.7 can positively regulate Cd-tolerance in Arabidopsis. In conclusion, our results provided a novel molecular mechanism of the Cd stress tolerance of P. vaginatum and will lay the foundation for target breeding of Cd tolerance in turfgrass.
Collapse
|
3
|
Tarnowski K, Klimecka M, Ciesielski A, Goch G, Kulik A, Fedak H, Poznański J, Lichocka M, Pierechod M, Engh RA, Dadlez M, Dobrowolska G, Bucholc M. Two SnRK2-Interacting Calcium Sensor Isoforms Negatively Regulate SnRK2 Activity by Different Mechanisms. PLANT PHYSIOLOGY 2020; 182:1142-1160. [PMID: 31699848 PMCID: PMC6997710 DOI: 10.1104/pp.19.00900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 05/07/2023]
Abstract
SNF1-related protein kinases 2 (SnRK2s) are key signaling elements regulating abscisic acid-dependent plant development and responses to environmental stresses. Our previous data showed that the SnRK2-interacting Calcium Sensor (SCS) inhibits SnRK2 activity. Use of alternative transcription start sites located within the Arabidopsis (Arabidopsis thaliana) AtSCS gene results in two in-frame transcripts and subsequently two proteins, that differ only by the sequence position of the N terminus. We previously described the longer AtSCS-A, and now describe the shorter AtSCS-B and compare the two isoforms. The two isoforms differ substantially in their expression profiles in plant organs and in response to environmental stresses, in their calcium binding properties, and in their conformational dynamics in the presence and absence of Ca2+ Only AtSCS-A has the features of a calcium sensor. Both forms inhibit SnRK2 activity, but while AtSCS-A requires calcium for inhibition, AtSCS-B does not. Analysis of Arabidopsis plants stably expressing 35S::AtSCS-A-c-myc or 35S::AtSCS-B-c-myc in the scs-1 knockout mutant background revealed that, in planta, both forms are negative regulators of abscisic acid-induced SnRK2 activity and regulate plant resistance against water deficit. Moreover, the data highlight biochemical, biophysical, and functional properties of EF-hand-like motifs in plant proteins.
Collapse
Affiliation(s)
- Krzysztof Tarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Maria Klimecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Arkadiusz Ciesielski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Warsaw University, Department of Chemistry, 02-093 Warsaw, Poland
| | - Grażyna Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Halina Fedak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Marcin Pierechod
- The Norwegian Center for Structure Biology, Institute of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Richard A Engh
- The Norwegian Center for Structure Biology, Institute of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- University of Warsaw, Institute of Genetics and Biotechnology, 02-106 Warsaw, Poland
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Mao X, Li Y, Rehman SU, Miao L, Zhang Y, Chen X, Yu C, Wang J, Li C, Jing R. The Sucrose Non-Fermenting 1-Related Protein Kinase 2 (SnRK2) Genes Are Multifaceted Players in Plant Growth, Development and Response to Environmental Stimuli. PLANT & CELL PHYSIOLOGY 2020; 61:225-242. [PMID: 31834400 DOI: 10.1093/pcp/pcz230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/20/2019] [Indexed: 05/28/2023]
Abstract
Reversible protein phosphorylation orchestrated by protein kinases and phosphatases is a major regulatory event in plants and animals. The SnRK2 subfamily consists of plant-specific protein kinases in the Ser/Thr protein kinase superfamily. Early observations indicated that SnRK2s are mainly involved in response to abiotic stress. Recent evidence shows that SnRK2s are multifarious players in a variety of biological processes. Here, we summarize the considerable knowledge of SnRK2s, including evolution, classification, biological functions and regulatory mechanisms at the epigenetic, post-transcriptional and post-translation levels.
Collapse
Affiliation(s)
- Xinguo Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, P. R. China
| | - Yuying Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- College of Agronomy, Henan Agricultural University, Zhengzhou 450016, P. R. China
| | - Shoaib Ur Rehman
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Lili Miao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yanfei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- College of Agronomy, Henan Agricultural University, Zhengzhou 450016, P. R. China
| | - Xin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Chunmei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jingyi Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Chaonan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Ruilian Jing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
5
|
Sharma B, Meaders C, Wolfe D, Holappa L, Walcher-Chevillet C, Kramer EM. Homologs of LEAFY and UNUSUAL FLORAL ORGANS Promote the Transition From Inflorescence to Floral Meristem Identity in the Cymose Aquilegia coerulea. FRONTIERS IN PLANT SCIENCE 2019; 10:1218. [PMID: 31681357 PMCID: PMC6805967 DOI: 10.3389/fpls.2019.01218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Homologs of the transcription factor LEAFY (LFY) and the F-box family member UNUSUAL FLORAL ORGANS (UFO) have been found to promote floral meristem identity across diverse dicot model systems. The lower eudicot model Aquilegia produces cymose inflorescences that are independently evolved from the well-studied cymose models Petunia and tomato. We have previously characterized the expression pattern of the Aquilegia homolog AqLFY but in the current study, we add expression data on the two UFO homologs, AqUFO1 and 2, and conduct virus-induced gene silencing of all the loci. Down-regulation of AqLFY or AqUFO1 and 2 does not eliminate floral meristem identity but, instead, causes the transition from inflorescence to floral identity to become gradual rather than discrete. Inflorescences in down-regulated plants generate several nodes of bract/sepal chimeras and, once floral development does commence, flowers initiate several whorls of sepals before finally producing the wildtype floral whorls. In addition, silencing of AqUFO1/2 appears to specifically impact petal identity and/or the initiation of petal and stamen whorls. In general, however, there is no evidence for an essential role of AqLFY or AqUFO1/2 in transcriptional activation of the B or C gene homologs. These findings highlight differences between deeply divergent dicot lineages in the functional conservation of the floral meristem identity program.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Clara Meaders
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Damien Wolfe
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Lynn Holappa
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | | | - Elena M. Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|