1
|
Dong S, Zou J, Fang B, Zhao Y, Shi F, Song G, Huang S, Feng H. Defect in BrMS1, a PHD-finger transcription factor, induces male sterility in ethyl methane sulfonate-mutagenized Chinese cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:992391. [PMID: 36061794 PMCID: PMC9433997 DOI: 10.3389/fpls.2022.992391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 05/30/2023]
Abstract
Male sterility is an ideal character for the female parent in commercial hybrid seed production in Chinese cabbages. We identified three allele male sterile mutants msm2-1/2/3 in progenies of ethyl methane sulfonate mutagenized Chinese cabbage. It was proved that their male sterilities were controlled by a same recessive nuclear gene. Cytological observation showed that the delayed tapetal programmed cell death (PCD) as well as the abnormal pollen exine and intine led to pollen abortion in these mutants. MutMap combined with KASP analyses showed that BraA10g019050.3C, a homologous gene of AtMS1 encoding a PHD-finger transcription factor and regulated pollen development, was the causal gene. A single-nucleotide mutation from G to A occurred at the 2443th base of BrMS1 in msm2-1 which results in premature termination of the PHD-finger protein translation; a single-nucleotide mutation from G to A existed at 1372th base in msm2-2 that makes for frameshift mutation; a single-nucleotide mutation from G to A distributed at 1887th base in msm2-3 which issues in the amino acid changed from Asp to Asn. The three allelic mutations in BrMS1 all led to the male sterile phenotype, which revealed its function in stamen development. Quantitative reverse transcription polymerase chain reaction analysis indicated that BrMS1 specially expressed in the anther at the early stage of pollen development and its expression level was higher in msm2-1/2/3 than that in the wild-type "FT." BrMS1 was located at the nucleus and a length of 12 amino acid residues at the C-terminus had transcriptional activation activity. RNA-seq indicated that the mutation in BrMS1 affected the transcript level of genes related to the tapetum PCD and pollen wall formation, which brought out the pollen abortion. These male sterile mutants we developed provided a novel gene resource for hybrid breeding in Chinese cabbage.
Collapse
|
2
|
Identification of a biomass unaffected pale green mutant gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Sci Rep 2022; 12:7731. [PMID: 35546169 PMCID: PMC9095832 DOI: 10.1038/s41598-022-11825-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Chlorophyll (Chl) is an essential component of the photosynthetic apparatus and pigments in plant greening. Leaf color is an important agronomic and commercial trait of Chinese cabbage. In this study, we identified a pale green mutant pgm created by ethyl methane sulfonate (EMS) mutagenesis in Chinese cabbage. Compared with wild-type (FT), pgm had a lower Chl content with a higher Chl a/b ratio, imperfect chloroplast structure, and lower non-photochemical quenching. However, its net photosynthetic rate and biomass showed no significant differences. Genetic analysis revealed that the pale green phenotype of pgm was controlled by a recessive nuclear gene, designated as Brpgm. We applied BSR-Seq, linkage analysis, and whole-genome resequencing to map Brpgm and predicted that the target gene was BraA10g007770.3C (BrCAO), which encodes chlorophyllide a oxygenase (CAO). Brcao sequencing results showed that the last nucleotide of its first intron changed from G to A, causing the deletion of the first nucleotide in its second CDS and termination of the protein translation. The expression of BrCAO in pgm was upregulated, and the enzyme activity of CAO in pgm was significantly decreased. These results provide an approach to explore the function of BrCAO and create a pale green variation in Chinese cabbage.
Collapse
|
3
|
Cai B, Wang T, Fu W, Harun A, Ge X, Li Z. Dosage-Dependent Gynoecium Development and Gene Expression in Brassica napus-Orychophragmus violaceus Addition Lines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1766. [PMID: 34579298 PMCID: PMC8469106 DOI: 10.3390/plants10091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Distant hybridization usually leads to female sterility of the hybrid but the mechanism behind this is poorly understood. Complete pistil abortion but normal male fertility was shown by one Brassica napus-Orychophragmus violaceus monosomic alien addition line (MA, AACC + 1 IO, 2n = 39) produced previously. To study the effect of a single O. violaceus chromosome addition on pistil development in different genetic backgrounds, hybrids between the MA and B. carinata (BBCC), B. juncea (AABB), and two synthetic hexaploids (AABBCC) were firstly produced in this study which show complete female sterility. A microspore culture was further performed to produce the haploid monosomic alien addition line (HMA, AC + 1 IO, 2n = 20) and disomic addition line (DA, AACC + 2 IO, 2n = 40) together with haploid (H, AC, 2n = 19) and double haploid (DH, AACC, 2n = 38) plants of B. napus from MA to investigate the dosage effect of the alien O. violaceus chromosome on pistil development and gene expression. Compared to MA, the development of the pistils of DA and HMA was completely or partially recovered, in which the pistils could swell and elongate to a normal shape after open pollination, although no seeds were produced. Comparative RNA-seq analyses revealed that the numbers of the differentially expressed genes (DEGs) were significantly different, dosage-dependent, and consistent with the phenotypic difference in pairwise comparisons of HMA vs. H, DA vs. DH, MA vs. DH, MA vs. DA, and MA vs. HMA. The gene ontology (GO) enrichment analysis of DEGs showed that a number of genes involved in the development of the gynoecium, embryo sac, ovule, and integuments. Particularly, several common DEGs for pistil development shared in HMA vs. H and DA vs. DH showed functions in genotoxic stress response, auxin transport, and signaling and adaxial/abaxial axis specification. The results provided updated information for the molecular mechanisms behind the gynoecium development of B. napus responding to the dosage of alien O. violaceus chromosomes.
Collapse
Affiliation(s)
| | | | | | | | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.C.); (T.W.); (W.F.); (A.H.); (Z.L.)
| | | |
Collapse
|
4
|
Huang S, Liu W, Xu J, Liu Z, Li C, Feng H. The SAP function in pistil development was proved by two allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC PLANT BIOLOGY 2020; 20:538. [PMID: 33256588 PMCID: PMC7708145 DOI: 10.1186/s12870-020-02741-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pistil development is a complicated process in plants, and female sterile mutants are ideal material for screening and cloning pistil development-related genes. Using the female sterile mutant (fsm1), BraA04g009730.3C was previously predicted as a candidate mutant gene encoding the STERILE APETALA (SAP) transcriptional regulator. In the current study, a parallel female sterile mutant (fsm2) was derived from EMS mutagenesis of a Chinese cabbage DH line 'FT' seeds. RESULTS Both fsm2 and fsm1 mutant phenotypes exhibited pistil abortion and smaller floral organs. Genetic analysis indicated that the phenotype of mutant fsm2 was also controlled by a single recessive nuclear gene. Allelism testing showed that the mutated fsm1 and fsm2 genes were allelic. A single-nucleotide mutation (G-to-A) in the first exon of BraA04g009730.3C caused a missense mutation from GAA (glutamic acid) to GGA (glycine) in mutant fsm2 plants. Both allelic mutations of BraA04g009730.3C in fsm1 and fsm2 conferred the similar pistil abortion phenotype, which verified the SAP function in pistil development. To probe the mechanism of SAP-induced pistil abortion, we compared the mutant fsm1 and wild-type 'FT' pistil transcriptomes. Among the 3855 differentially expressed genes obtained, 29 were related to ovule development and 16 were related to organ size. CONCLUSION Our study clarified the function of BraA04g009730.3C and revealed that it was responsible for ovule development and organ size. These results lay a foundation to elucidate the molecular mechanism of pistil development in Chinese cabbage.
Collapse
Affiliation(s)
- Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Wenjie Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Junjie Xu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chengyu Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
5
|
Huang S, Peng S, Liu Z, Li C, Tan C, Yao R, Li D, Li X, Hou L, Feng H. Investigation of the genes associated with a male sterility mutant (msm) in Chinese cabbage (Brassica campestris ssp. pekinensis) using RNA-Seq. Mol Genet Genomics 2019; 295:233-249. [PMID: 31673754 DOI: 10.1007/s00438-019-01618-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
In Chinese cabbage, hybrid seed production is performed using male sterility lines, an important approach to heterosis utilization. In this study, a stably inherited male sterile mutant msm was obtained from the 'FT'-doubled haploid line of Chinese cabbage using isolated microspore culture combined with 60Co γ-ray mutagenesis. The genetic backgrounds of 'FT' and msm were highly consistent; however, compared with wild-type 'FT', msm exhibited completely degenerated stamens and no pollen phenotype. Other characters showed no significant differences. Cytological observations revealed that stamen abortion in msm begins during the tetrad period and that tapetum cells were abnormally expanded and highly vacuolated, leading to microspore abortion. Genetic analysis indicated that the msm mutant phenotype is controlled by a single recessive nuclear gene. Comparative transcriptome analysis of 'FT' and msm flower buds using RNA-Seq technology revealed 1653 differentially expressed genes, among which, a large number associated with male sterility were detected, including 64 pollen development- and pollen tube growth-related genes, 94 pollen wall development-related genes, 11 phytohormone-related genes, and 16 transcription factor-related genes. An overwhelming majority of these genes were down-regulated in msm compared with 'FT'. Furthermore, KEGG pathway analysis indicated that a variety of carbohydrate metabolic and lipid metabolic pathways were significantly enriched, which may be related to pollen abortion. The expression patterns of 24 male sterility-related genes were analyzed using qRT-PCR. In addition, 24,476 single-nucleotide polymorphisms and 413,073 insertion-deletion events were specifically detected in msm. These results will facilitate elucidation of the regulatory mechanisms underlying male sterility in Chinese cabbage.
Collapse
Affiliation(s)
- Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shenling Peng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Chengyu Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Chong Tan
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Runpeng Yao
- Department of Horticulture, Tonghua Horticulture Research Institute, Tonghua, 134000, People's Republic of China
| | - Danyang Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Xiang Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Li Hou
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
6
|
Zhang L, Zou J, Li S, Wang B, Raboanatahiry N, Li M. Characterization and expression profiles of miRNAs in the triploid hybrids of Brassica napus and Brassica rapa. BMC Genomics 2019; 20:649. [PMID: 31412776 PMCID: PMC6694508 DOI: 10.1186/s12864-019-6001-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyploidy provides a means of interspecific genome transfer to incorporate preferable traits from progenitor to progeny. However, few studies on miRNA expression profiles of interspecific hybrids of B. napus (AnAnCnCn) and B. rapa (ArAr) have been reported. RESULTS Here, we apply small RNA sequencing to explore miRNA expression patterns between B. napus, B. rapa and their F1 hybrid. Bioinformatics analysis identified 376, 378, 383 conserved miRNAs and 82, 76, 82 novel miRNAs in B. napus, B. rapa and the F1 hybrid, respectively. Moreover, 213 miRNAs were found to be differentially expressed between B. napus, B. rapa and the F1 hybrid. The present study also shows 211 miRNAs, including 77 upregulated and 134 downregulated miRNAs, to be nonadditively expressed in the F1 hybrid. Furthermore, miRNA synteny analysis revealed high genomic conservation between the genomes of B. napus, B. rapa and their F1 hybrid, with some miRNA loss and gain events in the F1 hybrid. CONCLUSIONS This study not only provides useful resources for exploring global miRNA expression patterns and genome structure but also facilitates genetic research on the roles of miRNAs in genomic interactions of Brassica allopolyploids.
Collapse
Affiliation(s)
- Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shisheng Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, 250000, China
| | - Nadia Raboanatahiry
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China.
| |
Collapse
|
7
|
Liu W, Huang S, Liu Z, Lou T, Tan C, Wang Y, Feng H. A missense mutation of STERILE APETALA leads to female sterility in Chinese cabbage (Brassica campestris ssp. pekinensis). PLANT REPRODUCTION 2019; 32:217-228. [PMID: 30806770 DOI: 10.1007/s00497-019-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
Flower development is essential for the sexual reproduction and crop yield of plants. Thus, a better understanding of plant sterility from the perspective of morphological and molecular genetics is imperative. In our previous study, a recessive female-sterile Chinese cabbage mutant fsm was obtained from a doubled haploid line 'FT' via an isolated microspore culture combined with EMS mutagenesis. Pistil aniline blue staining and stigma scanning observation showed that the growth of the stigma papillar cells and pollen tubes of the mutant fsm were normal. Therefore, the female sterility was due to abnormal development of the ovules. To map the mutant fsm, 3108 F2 individuals were selected for linkage analysis. Two closely linked markers, Indel-I2 and Indel-I7, were localized on the flanking region of fsm at distances of 0.05 cM and 0.06 cM, respectively. The physical distance between Indel-I2 and Indel-I7 was ~ 1376 kb, with 107 genes remaining in the target region. This region was located on the chromosome A04 centromere, on which low recombination rates and a high frequency of repetitive sequences were present. Whole-genome re-sequencing detected a single-nucleotide (C-to-A) transition (TCG/TAG) on the exon of BraA04001030, resulting in a premature stop codon. Genotyping revealed that the female-sterile phenotype was fully cosegregated with this SNP. BraA04001030 encodes a homologue of STERILE APETALA (SAP) transcriptional regulator, which plays vital roles in floral development. The results of the present study suggest that BraA04001030 is a strong candidate gene for fsm and provide the basis for exploring the molecular mechanism underlying female sterility in Chinese cabbage.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Chong Tan
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Yiheng Wang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
8
|
Teng C, Du D, Xiao L, Yu Q, Shang G, Zhao Z. Mapping and Identifying a Candidate Gene ( Bnmfs) for Female-Male Sterility through Whole-Genome Resequencing and RNA-Seq in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:2086. [PMID: 29326731 PMCID: PMC5733364 DOI: 10.3389/fpls.2017.02086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/22/2017] [Indexed: 05/03/2023]
Abstract
In oilseed crops, carpel and stamen development play vital roles in pollination and rapeseed yield, but the genetic mechanisms underlying carpel and stamen development remain unclear. Herein, a male- and female-sterile mutant was obtained in offspring of a (Brassica napus cv. Qingyou 14) × (Qingyou 14 × B. rapa landrace Dahuang) cross. Subsequently, F2-F9 populations were generated through selfing of the heterozygote plants among the progeny of each generation. The male- and female-sterility exhibited stable inheritance in successive generations and was controlled by a recessive gene. The mutant kept the same chromosome number (2n = 38) as B. napus parent but showed abnormal meiosis for male and female. One candidate gene for the sterility was identified by simple sequence repeat (SSR) and insertion deletion length polymorphism (InDel) markers in F7-F9 plants, and whole-genome resequencing with F8 pools and RNA sequencing with F9 pools. Whole-genome resequencing found three candidate intervals (35.40-35.68, 35.74-35.75, and 45.34-46.45 Mb) on chromosome C3 in B. napus and candidate region for Bnmfs was narrowed to approximately 1.11-Mb (45.34-46.45 M) by combining SSR and InDel marker analyses with whole-genome resequencing. From transcriptome profiling in 0-2 mm buds, all of the genes in the candidate interval were detected, and only two genes with significant differences (BnaC03g56670D and BnaC03g56870D) were revealed. BnaC03g56870D was a candidate gene that shared homology with the CYP86C4 gene of Arabidopsis thaliana. Quantitative reverse transcription (qRT)-PCR analysis showed that Bnmfs primarily functioned in flower buds. Thus, sequencing and expression analyses provided evidence that BnaC03g56870D was the candidate gene for male and female sterility in the B. napus mutant.
Collapse
|