1
|
Cheng Y, Zhang Y, Liu C, Ai P, Liu J. Identification of genes regulating ovary differentiation after pollination in hazel by comparative transcriptome analysis. BMC PLANT BIOLOGY 2018; 18:84. [PMID: 29739322 PMCID: PMC5941469 DOI: 10.1186/s12870-018-1296-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/26/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Hazel (Corylus spp.) exhibits ovary differentiation and development that is initiated from the ovary primordium after pollination, conferring the plant with a unique delayed fertilization. Failure of development of the ovary and ovule after pollination can lead to ovary abortion and blank fruit formation, respectively, with consequent yield loss. However, the genes involved in ovary and ovule differentiation and development are largely unknown. RESULTS In unpollinated pistillate inflorescences (stage F), the stigma shows an extension growth pattern. After pollination, a rudimentary ovary begins to form (stage S), followed by ovule differentiation (stage T) and growth (stage FO). Total RNA was obtained from pistillate inflorescences or young ovaries at stage F, S, T and FO, and sequencing was carried out on a HiSeq 4000 system. De novo assembly of sequencing data yielded 62.58 Gb of nucleotides and 90,726 unigenes; 5524, 3468, and 8714 differentially expressed transcripts were identified in F-vs-S, S-vs-T, and T-vs-FO paired comparisons, respectively. An analysis of F-vs-S, S-vs-T, and T-vs-FO paired comparisons based on annotations in the Kyoto Encyclopedia of Genes and Genomes revealed six pathways that were significantly enriched during ovary differentiation, including ko04075 (Plant hormone signal transduction). Auxin level increased after pollination, and an immunohistochemical analysis indicated that auxin was enriched at the growth center of pistillate inflorescences and young ovaries. These results indicate that genes related to auxin biosynthesis, transport, signaling, the floral quartet model, and flower development may regulate ovary and ovule differentiation and development in hazel. CONCLUSIONS Our findings provide insight into the molecular mechanisms of ovary differentiation and development after pollination in this economically valuable plant.
Collapse
Affiliation(s)
- Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, Jilin Province, China
| | - Yuchu Zhang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, Jilin Province, China
| | - Chunming Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, Jilin Province, China
| | - Pengfei Ai
- College of Bioscience & Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050080, Hebei Province, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, Jilin Province, China.
| |
Collapse
|
2
|
Guo J, Cao K, Li Y, Yao JL, Deng C, Wang Q, Zhu G, Fang W, Chen C, Wang X, Guan L, Ding T, Wang L. Comparative Transcriptome and Microscopy Analyses Provide Insights into Flat Shape Formation in Peach ( Prunus persica). FRONTIERS IN PLANT SCIENCE 2017; 8:2215. [PMID: 29354151 PMCID: PMC5758543 DOI: 10.3389/fpls.2017.02215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/18/2017] [Indexed: 05/21/2023]
Abstract
Fruit shape is an important external characteristic that consumers use to select preferred fruit cultivars. In peach, the flat fruit cultivars have become more and more popular worldwide. Genetic markers closely linking to the flat fruit trait have been identified and are useful for marker-assisted breeding. However, the cellular and genetic mechanisms underpinning flat fruit formation are still poorly understood. In this study, we have revealed the differences in fruit cell number, cell size, and in gene expression pattern between the traditional round fruit and modern flat fruit cultivars. Flat peach cultivars possessed significantly lower number of cells in the vertical axis because cell division in the vertical direction stopped early in the flat fruit cultivars at 15 DAFB (day after full bloom) than in round fruit cultivars at 35 DAFB. This resulted in the reduction in vertical development in the flat fruit. Significant linear relationship was observed between fruit vertical diameter and cell number in vertical axis for the four examined peach cultivars (R2 = 0.9964) at maturation stage, and was also observed between fruit vertical diameter and fruit weight (R2 = 0.9605), which indicated that cell number in vertical direction contributed to the flat shape formation. Furthermore, in RNA-seq analysis, 4165 differentially expressed genes (DEGs) were detected by comparing RNA-seq data between flat and round peach cultivars at different fruit development stages. In contrast to previous studies, we discovered 28 candidate genes potentially responsible for the flat shape formation, including 19 located in the mapping site and 9 downstream genes. Our study indicates that flat and round fruit shape in peach is primarily determined by the regulation of cell production in the vertical direction during early fruit development.
Collapse
Affiliation(s)
- Jian Guo
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ke Cao
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yong Li
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Qi Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gengrui Zhu
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Changwen Chen
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinwei Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liping Guan
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Tiyu Ding
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lirong Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Lirong Wang,
| |
Collapse
|