1
|
Chen J, Cui H, Li Z, Yu H, Yu Q, Li X. Increase in IAA levels by EPSPS copy number variation relates to fitness advantage in Eleusine indica. PEST MANAGEMENT SCIENCE 2025; 81:2742-2750. [PMID: 39868503 DOI: 10.1002/ps.8637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Long-term use of chemical weed control has led to some weedy species evolving herbicide resistance traits with fitness advantage. Our previous studies revealed glyphosate resistance in an Eleusine indica population due to copy number variation of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) comes with fitness advantage under non-competitive conditions. Here, transcriptomics and targeted metabolomics were used to investigate physiological basis associated with the fitness advantage. RESULTS Relative copy number of EPSPS gene and plant dry weight of the glyphosate-resistant (R) population was 88.3- and 1.2- times, respectively, higher than that in the wild type (WT) plants that were isolated from within the R population. Seven genes were screened to be relevant to fitness growth trait by RNA-seq. The level of aromatic amino acids Tryptophan (Trp), Phenylalanine (Phe) and Tyrosine (Tyr), products in the shikimate pathway catalyzed by EPSPS, was 1.2-times higher in R compared to the WT plants. The metabolites associated with Trp metabolism indole-3-acetic acid (IAA), 3-indolepropionic acid (IPA), indole-3-acetamide (IAM) in the R plants were 2.0-, 1.8- and 1.4- times higher than that in the WT plants, respectively. CONCLUSION All the results indicate that fitness advantage in the studied R E. indica population may be caused by higher IAA production due to over-expression of the EPSPS gene and pleiotropically by elevated carbon metabolism. The findings in this research can provide reference information for control strategies to the glyphosate-resistant E. indica. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingchao Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiling Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyan Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Ravet K, Sparks CD, Dixon AL, Küpper A, Westra EP, Pettinga DJ, Tranel PJ, Felix J, Morishita DW, Jha P, Kniss A, Stahlman PW, Neve P, Patterson EL, Westra P, Gaines TA. Genomic-based epidemiology reveals independent origins and gene flow of glyphosate resistance in Bassia scoparia populations across North America. Mol Ecol 2021; 30:5343-5359. [PMID: 34614274 PMCID: PMC9297870 DOI: 10.1111/mec.16215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 08/26/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Genomic-based epidemiology can provide insight into the origins and spread of herbicide resistance mechanisms in weeds. We used kochia (Bassia scoparia) populations resistant to the herbicide glyphosate from across western North America to test the alternative hypotheses that (i) a single EPSPS gene duplication event occurred initially in the Central Great Plains and then subsequently spread to all other geographical areas now exhibiting glyphosate-resistant kochia populations or that (ii) gene duplication occurred multiple times in independent events in a case of parallel evolution. We used qPCR markers previously developed for measuring the structure of the EPSPS tandem duplication to investigate whether all glyphosate-resistant individuals had the same EPSPS repeat structure. We also investigated population structure using simple sequence repeat markers to determine the relatedness of kochia populations from across the Central Great Plains, Northern Plains and the Pacific Northwest. We found that the original EPSPS duplication genotype was predominant in the Central Great Plains where glyphosate resistance was first reported. We identified two additional EPSPS duplication genotypes, one having geographical associations with the Northern Plains and the other with the Pacific Northwest. The EPSPS duplication genotype from the Pacific Northwest seems likely to represent a second, independent evolutionary origin of a resistance allele. We found evidence of gene flow across populations and a general lack of population structure. The results support at least two independent evolutionary origins of glyphosate resistance in kochia, followed by substantial and mostly geographically localized gene flow to spread the resistance alleles into diverse genetic backgrounds.
Collapse
Affiliation(s)
- Karl Ravet
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Present address:
Department of Soil and Crop SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Crystal D. Sparks
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Andrea L. Dixon
- Rothamsted ResearchWest Common HarpendenHertfordshireUK
- Center for Outcomes Research and EpidemiologyCollege of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Anita Küpper
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Crop Science DivisionWeed ControlBayer AGFrankfurt am MainGermany
| | - Eric P. Westra
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Dean J. Pettinga
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | | | - Joel Felix
- Oregon State University, Malheur Experiment StationOntarioORUSA
| | - Don W. Morishita
- Kimberly Research and Extension CenterUniversity of IdahoKimberlyIdahoUSA
| | - Prashant Jha
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Andrew Kniss
- Department of Plant SciencesUniversity of WyomingLaramieWyomingUSA
| | | | - Paul Neve
- Rothamsted ResearchWest Common HarpendenHertfordshireUK
- Department of Plant & Environmental SciencesUniversity of CopenhagenTaastrupDenmark
| | - Eric L. Patterson
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Philip Westra
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Todd A. Gaines
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
3
|
Benakashani F, Gonzalez-Andujar JL, Soltani E. Differences in Germination of ACCase-Resistant Biotypes Containing Isoleucine-1781-Leucine Mutation and Susceptible Biotypes of Wild Oat (Avena sterilis ssp. ludoviciana). PLANTS 2021; 10:plants10112350. [PMID: 34834713 PMCID: PMC8620882 DOI: 10.3390/plants10112350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Herbicide resistance can affect seed germination and the optimal conditions required for seed germination, which in turn may impose a fitness cost in resistant populations. Winter wild oat [Avena sterilis L. ssp. ludoviciana (Durieu) Gillet and Magne] is a serious weed in cereal fields. In this study, the molecular basis of resistance to an ACCase herbicide, clodinafop-propargyl, in four A. ludoviciana biotypes was assessed. Germination differences between susceptible (S) and ACCase-resistant biotypes (WR1, WR2, WR3, WR4) and the effect of Isoleucine-1781-Leucine mutation on germination were also investigated through germination models. The results indicated that WR1 and WR4 were very highly resistant (RI > 214.22) to clodinafop-propargyl-contained Isoleucine to Leucine amino acid substitution. However, Isoleucine-1781-Leucine mutation was not detected in other very highly resistant biotypes. Germination studies indicated that resistant biotypes (in particular WR1 and WR4) had higher base water potentials than the susceptible one. This shows that resistant biotypes need more soil water to initiate their germination. However, the hydrotime constant for germination was higher in resistant biotypes than in the susceptible one in most cases, showing faster germination in susceptible biotypes. ACCase-resistant biotypes containing the Isoleucine-1781-Leucine mutation had lower seed weight but used more seed reserve to produce seedlings. Hence, integrated management practices such as stale seedbed and implementing it at the right time could be used to take advantage of the differential soil water requirement and relatively late germination characteristics of ACCase-resistant biotypes.
Collapse
Affiliation(s)
- Fatemeh Benakashani
- Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Pakdasht 3391653755, Iran; (F.B.); (E.S.)
| | - Jose L. Gonzalez-Andujar
- Department of Crop Protection, Instituto de Agricultura Sostenible (CSIC), 14004 Córdoba, Spain
- Correspondence:
| | - Elias Soltani
- Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Pakdasht 3391653755, Iran; (F.B.); (E.S.)
| |
Collapse
|
4
|
Kochia (Bassia scoparia) harvest date impacts nutrient composition, in vitro degradability, and feed value more than pre-harvest herbicide treatment or herbicide resistance traits. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Lim CA, Jha P, Kumar V, Dyer AT. Effect of EPSPS gene copy number and glyphosate selection on fitness of glyphosate-resistant Bassia scoparia in the field. Sci Rep 2021; 11:16083. [PMID: 34373526 PMCID: PMC8352990 DOI: 10.1038/s41598-021-95517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
The widespread evolution of glyphosate-resistant (GR) Bassia scoparia in the U.S. Great Plains poses a serious threat to the long-term sustainability of GR sugar beet. Glyphosate resistance in B. scoparia is due to an increase in the EPSPS (5-enolpyruvyl-shikimate-3-phosphate) gene copy number. The variation in EPSPS gene copies among individuals from within a single GR B. scoparia population indicated a differential response to glyphosate selection. With the continued use of glyphosate in GR sugar beet, the effect of increasing glyphosate rates (applied as single or sequential applications) on the fitness of GR B. scoparia individuals with variable EPSPS gene copies was tested under field conditions. The variation in EPSPS gene copy number and total glyphosate rate (single or sequential applications) did not influence any of the reproductive traits of GR B. scoparia, except seed production. Sequential applications of glyphosate with a total rate of 2214 g ae ha-1 or higher prevented seed production in B. scoparia plants with 2-4 (low levels of resistance) and 5-6 (moderate levels of resistance) EPSPS gene copies. Timely sequential applications of glyphosate (full recommended rates) can potentially slow down the evolution of GR B. scoparia with low to moderate levels of resistance (2-6 EPSPS gene copies), but any survivors (highly-resistant individuals with ≥ 8 EPSPS gene copies) need to be mechanically removed before flowering from GR sugar beet fields. This research warrants the need to adopt ecologically based, multi-tactic strategies to reduce exposure of B. scoparia to glyphosate in GR sugar beet.
Collapse
Affiliation(s)
- Charlemagne Ajoc Lim
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Prashant Jha
- Department of Agronomy, Iowa State University, Ames, IA, USA.
| | - Vipan Kumar
- Agricultural Research Center, Kansas State University, Hays, KS, USA
| | - Alan T Dyer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
6
|
Cockerton HM, Kaundun SS, Nguyen L, Hutchings SJ, Dale RP, Howell A, Neve P. Fitness Cost Associated With Enhanced EPSPS Gene Copy Number and Glyphosate Resistance in an Amaranthus tuberculatus Population. FRONTIERS IN PLANT SCIENCE 2021; 12:651381. [PMID: 34267768 PMCID: PMC8276266 DOI: 10.3389/fpls.2021.651381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
The evolution of resistance to pesticides in agricultural systems provides an opportunity to study the fitness costs and benefits of novel adaptive traits. Here, we studied a population of Amaranthus tuberculatus (common waterhemp), which has evolved resistance to glyphosate. The growth and fitness of seed families with contrasting levels of glyphosate resistance was assessed in the absence of glyphosate to determine their ability to compete for resources under intra- and interspecific competition. We identified a positive correlation between the level of glyphosate resistance and gene copy number for the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) glyphosate target, thus identifying gene amplification as the mechanism of resistance within the population. Resistant A. tuberculatus plants were found to have a lower competitive response when compared to the susceptible phenotypes with 2.76 glyphosate resistant plants being required to have an equal competitive effect as a single susceptible plant. A growth trade-off was associated with the gene amplification mechanism under intra-phenotypic competition where 20 extra gene copies were associated with a 26.5 % reduction in dry biomass. Interestingly, this growth trade-off was mitigated when assessed under interspecific competition from maize.
Collapse
Affiliation(s)
- Helen M. Cockerton
- NIAB EMR, Kent, United Kingdom
- Warwick Crop Centre, The University of Warwick Wellesbourne, Warwick, United Kingdom
| | - Shiv S. Kaundun
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | | | - Sarah Jane Hutchings
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Richard P. Dale
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Anushka Howell
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Paul Neve
- Warwick Crop Centre, The University of Warwick Wellesbourne, Warwick, United Kingdom
- Rothamsted Research, Harpenden, United Kingdom
- Department of Plant and Environmental Sciences, University of Copenhagen, Tåstrup, Denmark
| |
Collapse
|
7
|
Beres ZT, Owen MDK, Snow AA. No evidence for early fitness penalty in glyphosate-resistant biotypes of Conyza canadensis: Common garden experiments in the absence of glyphosate. Ecol Evol 2019; 9:13678-13689. [PMID: 31938474 PMCID: PMC6953693 DOI: 10.1002/ece3.5741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 11/05/2022] Open
Abstract
Strong selection from herbicides has led to the rapid evolution of herbicide-resistant weeds, greatly complicating weed management efforts worldwide. In particular, overreliance on glyphosate, the active ingredient in RoundUp®, has spurred the evolution of resistance to this herbicide in ≥40 species. Previously, we reported that Conyza canadensis (horseweed) has evolved extreme resistance to glyphosate, surviving at 40× the original 1× effective dosage. Here, we tested for underlying fitness effects of glyphosate resistance to better understand whether resistance could persist indefinitely in this self-pollinating, annual weed. We sampled seeds from a single maternal plant ("biotype") at each of 26 horseweed populations in Iowa, representing nine susceptible biotypes (S), eight with low-level resistance (LR), and nine with extreme resistance (ER). In 2016 and 2017, we compared early growth rates and bolting dates of these biotypes in common garden experiments at two sites near Ames, Iowa. Nested ANOVAs showed that, as a group, ER biotypes attained similar or larger rosette size after 6 weeks compared to S or LR biotypes, which were similar to each other in size. Also, ER biotypes bolted 1-2 weeks earlier than S or LR biotypes. These fitness-related traits also varied among biotypes within the same resistance category, and time to bolting was inversely correlated with rosette size across all biotypes. Disease symptoms affected 40% of all plants in 2016 and 78% in 2017, so we did not attempt to measure lifetime fecundity. In both years, the frequency of disease symptoms was greatest in S biotypes and similar in LR versus ER biotypes. Overall, our findings indicate there are no early growth penalty and possibly no lifetime fitness penalty associated with glyphosate resistance, including extremely strong resistance. We conclude that glyphosate resistance is likely to persist in horseweed populations, with or without continued selection pressure from exposure to glyphosate.
Collapse
Affiliation(s)
- Zachery T. Beres
- Department of Evolution, Ecology, and Organismal BiologyOhio State UniversityColumbusOHUSA
| | | | - Allison A. Snow
- Department of Evolution, Ecology, and Organismal BiologyOhio State UniversityColumbusOHUSA
| |
Collapse
|
8
|
Fitness of Herbicide-Resistant Weeds: Current Knowledge and Implications for Management. PLANTS 2019; 8:plants8110469. [PMID: 31683943 PMCID: PMC6918315 DOI: 10.3390/plants8110469] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Abstract
Herbicide resistance is the ultimate evidence of the extraordinary capacity of weeds to evolve under stressful conditions. Despite the extraordinary plant fitness advantage endowed by herbicide resistance mutations in agroecosystems under herbicide selection, resistance mutations are predicted to exhibit an adaptation cost (i.e., fitness cost), relative to the susceptible wild-type, in herbicide untreated conditions. Fitness costs associated with herbicide resistance mutations are not universal and their expression depends on the particular mutation, genetic background, dominance of the fitness cost, and environmental conditions. The detrimental effects of herbicide resistance mutations on plant fitness may arise as a direct impact on fitness-related traits and/or coevolution with changes in other life history traits that ultimately may lead to fitness costs under particular ecological conditions. This brings the idea that a “lower adaptive value” of herbicide resistance mutations represents an opportunity for the design of resistance management practices that could minimize the evolution of herbicide resistance. It is evident that the challenge for weed management practices aiming to control, minimize, or even reverse the frequency of resistance mutations in the agricultural landscape is to “create” those agroecological conditions that could expose, exploit, and exacerbate those life history and/or fitness traits affecting the evolution of herbicide resistance mutations. Ideally, resistance management should implement a wide range of cultural practices leading to environmentally mediated fitness costs associated with herbicide resistance mutations.
Collapse
|
9
|
Ghanizadeh H, Harrington KC. Fitness costs associated with multiple resistance to dicamba and atrazine in Chenopodium album. PLANTA 2019; 249:787-797. [PMID: 30406410 DOI: 10.1007/s00425-018-3040-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
Detrimental pleiotropic effects of resistance mutation(s) were observed for multiple-resistant phenotypes (resistant to both atrazine and dicamba). The multiple-resistant phenotypes had lower growth rates and less capacity for vegetative growth compared to the phenotypes only resistant to atrazine. The fitness costs that are conferred by herbicide resistance alleles can affect the rate of herbicide resistance evolution within populations. We evaluated the direct fitness costs involved with multiple resistance to dicamba and atrazine (R1 and R2) in Chenopodium album by comparing the performance of multiple-resistant phenotypes to those phenotypes that were only resistant to atrazine (S1 and S2). The R1 and R2 phenotypes were consistently shorter and produced less dry matter than the S1 and S2 phenotypes. The R1 and R2 phenotypes were shown to have lower relative growth rates (RGR) and net assimilation rates (NAR) than the S1 and S2 phenotypes at an early stage of growth. However, there was no significant difference in RGR between the R1 and R2 and, S1 and S2 phenotypes at a later stage of growth, though the R1 and R2 phenotypes still had a lower NAR at this later stage. Further investigations using a neighbouring crop competition approach showed that the R1 and R2 phenotypes were weaker competitors, and exhibited significantly less capacity for vegetative growth compared to the S1 and S2 phenotypes during competition. Overall, the results of this study revealed multiple- resistance to atrazine and dicamba endowed a significant fitness penalty to C. album, and it is possible that the frequency of multiple-resistant individuals would gradually decline once selection pressure from herbicides was discontinued.
Collapse
Affiliation(s)
- Hossein Ghanizadeh
- School of Agriculture and Environment (PN 433), Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
| | - Kerry C Harrington
- School of Agriculture and Environment (PN 433), Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
10
|
Dyer WE. Stress-induced evolution of herbicide resistance and related pleiotropic effects. PEST MANAGEMENT SCIENCE 2018; 74:1759-1768. [PMID: 29688592 DOI: 10.1002/ps.5043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 05/11/2023]
Abstract
Herbicide-resistant weeds, especially those with resistance to multiple herbicides, represent a growing worldwide threat to agriculture and food security. Natural selection for resistant genotypes may act on standing genetic variation, or on a genetic and physiological background that is fundamentally altered because of stress responses to sublethal herbicide exposure. Stress-induced changes include DNA mutations, epigenetic alterations, transcriptional remodeling, and protein modifications, all of which can lead to herbicide resistance and a wide range of pleiotropic effects. Resistance selected in this manner is termed systemic acquired herbicide resistance, and the associated pleiotropic effects are manifested as a suite of constitutive transcriptional and post-translational changes related to biotic and abiotic stress adaptation, representing the evolutionary signature of selection. This phenotype is being investigated in two multiple herbicide-resistant populations of the hexaploid, self-pollinating weedy monocot Avena fatua that display such changes as well as constitutive reductions in certain heat shock proteins and their transcripts, which are well known as global regulators of diverse stress adaptation pathways. Herbicide-resistant populations of most weedy plant species exhibit pleiotropic effects, and their association with resistance genes presents a fertile area of investigation. This review proposes that more detailed studies of resistant A. fatua and other species through the lens of plant evolution under stress will inform improved resistant weed prevention and management strategies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- William Edward Dyer
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
11
|
Cousens RD, Fournier-Level A. Herbicide resistance costs: what are we actually measuring and why? PEST MANAGEMENT SCIENCE 2018; 74:1539-1546. [PMID: 29205805 DOI: 10.1002/ps.4819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 05/12/2023]
Abstract
Despite the considerable research efforts invested over the years to measure the fitness costs of herbicide resistance, these have rarely been used to inform a predictive theory about the fate of resistance once the herbicide is discontinued. One reason for this may be the reductive focus on relative fitness of two genotypes as a single measure of differential performance. Although the extent of variation in relative fitness between resistant and susceptible plants has not been assessed consistently, we know enough about plant physiology and ecology not to reduce it to a single fixed value. Research must therefore consider carefully the relevance of the experimental environment, the life stage and the choice of metric when measuring fitness-related traits. The reason most often given for measuring the cost of resistance, prediction of the impacts of management options on population dynamics, cannot be addressed using arbitrary components of fitness or a fixed value of relative fitness. To inform management options, the measurement of traits that capture the relevant processes and the main causes of their variation are required. With an emphasis on the benefit of field experiments measured over multiple time points and seasons, we highlight examples of studies that have made significant advances in this direction. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Roger D Cousens
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | | |
Collapse
|
12
|
Patterson EL, Pettinga DJ, Ravet K, Neve P, Gaines TA. Glyphosate Resistance and EPSPS Gene Duplication: Convergent Evolution in Multiple Plant Species. J Hered 2018; 109:117-125. [PMID: 29040588 DOI: 10.1093/jhered/esx087] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
One of the increasingly widespread mechanisms of resistance to the herbicide glyphosate is copy number variation (CNV) of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. EPSPS gene duplication has been reported in 8 weed species, ranging from 3 to 5 extra copies to more than 150 extra copies. In the case of Palmer amaranth (Amaranthus palmeri), a section of >300 kb containing EPSPS and many other genes has been replicated and inserted at new loci throughout the genome, resulting in significant increase in total genome size. The replicated sequence contains several classes of mobile genetic elements including helitrons, raising the intriguing possibility of extra-chromosomal replication of the EPSPS-containing sequence. In kochia (Kochia scoparia), from 3 to more than 10 extra EPSPS copies are arranged as a tandem gene duplication at one locus. In the remaining 6 weed species that exhibit EPSPS gene duplication, little is known about the underlying mechanisms of gene duplication or their entire sequence. There is mounting evidence that adaptive gene amplification is an important mode of evolution in the face of intense human-mediated selection pressure. The convergent evolution of CNVs for glyphosate resistance in weeds, through at least 2 different mechanisms, may be indicative of a more general importance for this mechanism of adaptation in plants. CNVs warrant further investigation across plant functional genomics for adaptation to biotic and abiotic stresses, particularly for adaptive evolution on rapid time scales.
Collapse
Affiliation(s)
- Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Dean J Pettinga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Karl Ravet
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| | - Paul Neve
- Rothamsted Research, Biointeractions and Crop Protection Department, West Common, Harpenden, Hertfordshire, UK
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins
| |
Collapse
|