1
|
Supikova K, Žukauskaitė A, Kosinova A, Pěnčík A, De Diego N, Spíchal L, Fellner M, Skorepova K, Gruz J. Sulfonation of IAA in Urtica eliminates its DR5 auxin activity. PLANT CELL REPORTS 2024; 44:8. [PMID: 39704813 PMCID: PMC11662057 DOI: 10.1007/s00299-024-03399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
KEY MESSAGE N-Sulfonated IAA was discovered as a novel auxin metabolite in Urtica where it is biosynthesized de novo utilizing inorganic sulfate. It showed no auxin activity in DR5::GUS assay, implying possible inactivation/storage mechanism. A novel auxin derivative, N-sulfoindole-3-acetic acid (IAA-N-SO3H, SIAA), was discovered in stinging nettle (Urtica dioica) among 116 sulfonated metabolites putatively identified by a semi-targeted UHPLC-QqTOF-MS analysis of 23 plant/algae/fungi species. These sulfometabolites were detected based on the presence of a neutral loss of sulfur trioxide, as indicated by the m/z difference of 79.9568 Da in the MS2 spectra. The structure of newly discovered SIAA was confirmed by synthesizing its standard and comparing retention time, m/z and MS2 spectrum with those of SIAA found in Urtica. To study its natural occurrence, 73 species in total were further analyzed by UHPLC-QqTOF-MS or targeted UHPLC-MS/MS method with a limit of detection of 244 fmol/g dry weight. However, SIAA was only detected in Urtica at a concentration of 13.906 ± 9.603 nmol/g dry weight. Its concentration was > 30 times higher than that of indole-3-acetic acid (IAA), and the SIAA/IAA ratio was further increased under different light conditions, especially in continuous blue light. In addition to SIAA, structurally similar metabolites, N-sulfoindole-3-lactic acid, 4-(sulfooxy)phenyllactic acid and 4-(sulfooxy)phenylacetic acid, were detected in Urtica for the first time. SIAA was biosynthesized from inorganic sulfate in seedlings, as confirmed by the incorporation of exogenous 34S-ammonium sulfate (1 mM and 10 mM). SIAA exhibited no auxin activity, as demonstrated by both the Arabidopsis DR5::GUS assay and the Arabidopsis phenotype analysis. Sulfonation of IAA may therefore be a mechanism for IAA deactivation and/or storage in Urtica, similar to sulfonation of the jasmonates in Arabidopsis.
Collapse
Affiliation(s)
- Klara Supikova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Andrea Kosinova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Martin Fellner
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Katerina Skorepova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Jiri Gruz
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Jasso-Robles FI, Aucique-Perez CE, Zeljković SĆ, Saiz-Fernández I, Klimeš P, De Diego N. The loss-of-function of AtNATA2 enhances AtADC2-dependent putrescine biosynthesis and priming, improving growth and salinity tolerance in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14603. [PMID: 39489618 DOI: 10.1111/ppl.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Putrescine (Put) is a promising small molecule-based biostimulant to enhance plant growth and resilience, though its mode of action remains unclear. This study investigated the Put priming effect on Arabidopsis mutant lines (Atadc1, Atadc2, Atnata1, and Atnata2) under control conditions and salinity to understand its role in regulating plant growth. The Atadc2 mutant, characterized by reduced endogenous Put levels, showed insensitivity to Put priming without growth enhancement, which was linked to significant imbalances in nitrogen metabolism, including a high Gln/Glu ratio. Contrarily, the Atnata2 mutant exhibited significant growth improvement and upregulated AtADC2 expression, particularly under Put priming, highlighting these genes' involvement in regulating plant development. Put priming enhanced plant growth by inducing the accumulation of specific polyamines (free, acetylated, conjugated, or bound form) and improving light-harvesting efficiency, particularly in the Atnata2 line. Our findings suggest that AtNATA2 may negatively regulate Put synthesis and accumulation via AtADC2 in the chloroplast, impacting light harvesting in photosystem II (PSII). Furthermore, the Atadc2 mutant line exhibited upregulated AtADC1 but reduced AcPut levels, pointing to a cross-regulation among these genes. The regulation by AtNATA2 on AtADC2 and AtADC2 on AtADC1 could be crucial for plant growth and overall stress tolerance by interacting with polyamine catabolism, which shapes the plant metabolic profile under different growth conditions. Understanding the regulatory mechanisms involving crosstalk between AtADC and AtNATA genes in polyamine metabolism and the connection with certain SMBBs like Put can lead to more effective agricultural practices, improving plant growth, nitrogen uptake, and resilience under challenging conditions.
Collapse
Affiliation(s)
| | | | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Iñigo Saiz-Fernández
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Klimeš
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
3
|
Vrobel O, Ćavar Zeljković S, Dehner J, Spíchal L, De Diego N, Tarkowski P. Multi-class plant hormone HILIC-MS/MS analysis coupled with high-throughput phenotyping to investigate plant-environment interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:818-832. [PMID: 39222478 DOI: 10.1111/tpj.17010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Plant hormones are chemical signals governing almost every aspect of a plant's life cycle and responses to environmental cues. They are enmeshed within complex signaling networks that can only be deciphered by using broad-scale analytical methods to capture information about several plant hormone classes simultaneously. Methods used for this purpose are all based on reversed-phase (RP) liquid chromatography and mass spectrometric detection. Hydrophilic interaction chromatography (HILIC) is an alternative chromatographic method that performs well in analyses of biological samples. We therefore developed and validated a HILIC method for broad-scale plant hormone analysis including a rapid sample preparation procedure; moreover, derivatization or fractionation is not required. The method enables plant hormone screening focused on polar and moderately polar analytes including cytokinins, auxins, jasmonates, abscisic acid and its metabolites, salicylates, indoleamines (melatonin), and 1-aminocyclopropane-1-carboxylic acid (ACC), for a total of 45 analytes. Importantly, the major pitfalls of ACC analysis have been addressed. Furthermore, HILIC provides orthogonal selectivity to conventional RP methods and displays greater sensitivity, resulting in lower limits of quantification. However, it is less robust, so procedures to increase its reproducibility were established. The method's potential is demonstrated in a case study by employing an approach combining hormonal analysis with phenomics to examine responses of three Arabidopsis ecotypes toward three abiotic stress treatments: salinity, low nutrient availability, and their combination. The case study showcases the value of the simultaneous determination of several plant hormone classes coupled with phenomics data when unraveling processes involving complex cross-talk under diverse plant-environment interactions.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, Olomouc, CZ-779 00, Czechia
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, Olomouc, CZ-779 00, Czechia
| | - Jan Dehner
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, Olomouc, CZ-779 00, Czechia
| |
Collapse
|
4
|
Ćavar Zeljković S, De Diego N, Drašar L, Nisler J, Havlíček L, Spíchal L, Tarkowski P. Comprehensive LC-MS/MS analysis of nitrogen-related plant metabolites. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5390-5411. [PMID: 38526483 PMCID: PMC11389842 DOI: 10.1093/jxb/erae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/23/2024] [Indexed: 03/26/2024]
Abstract
We have developed and validated a novel LC-MS/MS method for simultaneously analyzing amino acids, biogenic amines, and their acetylated and methylated derivatives in plants. This method involves a one-step extraction of 2-5 mg of lyophilized plant material followed by fractionation of different biogenic amine forms, and exploits an efficient combination of hydrophilic interaction liquid chromatography (HILIC), reversed phase (RP) chromatography with pre-column derivatization, and tandem mass spectrometry (MS). This approach enables high-throughput processing of plant samples, significantly reducing the time needed for analysis and its cost. We also present a new synthetic route for deuterium-labeled polyamines. The LC-MS/MS method was rigorously validated by quantifying levels of nitrogen-related metabolites in seedlings of seven plant species, including Arabidopsis, maize, and barley, all of which are commonly used model organisms in plant science research. Our results revealed substantial variations in the abundance of these metabolites between species, developmental stages, and growth conditions, particularly for the acetylated and methylated derivatives and the various polyamine fractions. However, the biological relevance of these plant metabolites is currently unclear. Overall, this work contributes significantly to plant science by providing a powerful analytical tool and setting the stage for future investigations into the functions of these nitrogen-related metabolites in plants.
Collapse
Affiliation(s)
- Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Lukáš Drašar
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - Jaroslav Nisler
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Libor Havlíček
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| |
Collapse
|
5
|
Nisler J, Klimeš P, Končitíková R, Kadlecová A, Voller J, Chalaki M, Karampelias M, Murvanidze N, Werbrouck SPO, Kopečný D, Havlíček L, De Diego N, Briozzo P, Moréra S, Zalabák D, Spíchal L. Cytokinin oxidase/dehydrogenase inhibitors: progress towards agricultural practice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4873-4890. [PMID: 38776394 DOI: 10.1093/jxb/erae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Cytokinin oxidase/dehydrogenase (CKX) inhibitors reduce the degradation of cytokinins in plants and thereby may improve the efficiency of agriculture and plant tissue culture-based practices. Here, we report a synthesis and structure-activity relationship study of novel urea derivatives concerning their CKX inhibitory activity. The most active compounds showed sub-nanomolar IC50 values with maize ZmCKX1, the lowest value yet documented. Other CKX isoforms of maize and Arabidopsis were also inhibited very effectively. The binding mode of four compounds was characterized based on high-resolution crystal complex structures. Using the soil nematode Caenorhabditis elegans, and human skin fibroblasts, key CKX inhibitors with low toxicity were identified. These compounds enhanced the shoot regeneration of Lobelia, Drosera, and Plectranthus, as well as the growth of Arabidopsis and Brassica napus. At the same time, a key compound (identified as 82) activated a cytokinin primary response gene, ARR5:GUS, and a cytokinin sensor, TCSv2:GUS, without activating the Arabidopsis cytokinin receptors AHK3 and AHK4. This strongly implies that the effect of compound 82 is due to the up-regulation of cytokinin signalling. Overall, this study identifies highly effective and easily prepared CKX inhibitors with a low risk of environmental toxicity for further investigation of their potential in agriculture and biotechnology.
Collapse
Affiliation(s)
- Jaroslav Nisler
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Pavel Klimeš
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Radka Končitíková
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Alena Kadlecová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Jiří Voller
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Mahfam Chalaki
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ-128 43 Prague 2, Czech Republic
| | - Michael Karampelias
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02 Prague 6, Czech Republic
| | - Nino Murvanidze
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Stefaan P O Werbrouck
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Libor Havlíček
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Route de Saint-Cyr, F-78026 Versailles, France
| | - Solange Moréra
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - David Zalabák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
6
|
Wu L, Shao H, Li J, Chen C, Hu N, Yang B, Weng H, Xiang L, Ye D. Noninvasive Abiotic Stress Phenotyping of Vascular Plant in Each Vegetative Organ View. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0180. [PMID: 38779576 PMCID: PMC11109595 DOI: 10.34133/plantphenomics.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/29/2024] [Indexed: 05/25/2024]
Abstract
The last decades have witnessed a rapid development of noninvasive plant phenotyping, capable of detecting plant stress scale levels from the subcellular to the whole population scale. However, even with such a broad range, most phenotyping objects are often just concerned with leaves. This review offers a unique perspective of noninvasive plant stress phenotyping from a multi-organ view. First, plant sensing and responding to abiotic stress from the diverse vegetative organs (leaves, stems, and roots) and the interplays between these vital components are analyzed. Then, the corresponding noninvasive optical phenotyping techniques are also provided, which can prompt the practical implementation of appropriate noninvasive phenotyping techniques for each organ. Furthermore, we explore methods for analyzing compound stress situations, as field conditions frequently encompass multiple abiotic stressors. Thus, our work goes beyond the conventional approach of focusing solely on individual plant organs. The novel insights of the multi-organ, noninvasive phenotyping study provide a reference for testing hypotheses concerning the intricate dynamics of plant stress responses, as well as the potential interactive effects among various stressors.
Collapse
Affiliation(s)
- Libin Wu
- College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Agricultural Information Sensing Technology, College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Han Shao
- College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Artificial Intelligence in Agriculture, School of Future Technology,
Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayi Li
- College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Agricultural Information Sensing Technology, College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chen Chen
- College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Agricultural Information Sensing Technology, College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Nana Hu
- College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Artificial Intelligence in Agriculture, School of Future Technology,
Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Biyun Yang
- College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Agricultural Information Sensing Technology, College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Haiyong Weng
- College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Agricultural Information Sensing Technology, College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lirong Xiang
- Department of Biological and Agricultural Engineering,
North Carolina State University, Raleigh, NC 27606, USA
| | - Dapeng Ye
- College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Agricultural Information Sensing Technology, College of Mechanical and Electrical Engineering,
Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
7
|
Ľuptáková E, Vigouroux A, Končitíková R, Kopečná M, Zalabák D, Novák O, Salcedo Sarmiento S, Ćavar Zeljković S, Kopečný DJ, von Schwartzenberg K, Strnad M, Spíchal L, De Diego N, Kopečný D, Moréra S. Plant nucleoside N-ribohydrolases: riboside binding and role in nitrogen storage mobilization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1432-1452. [PMID: 38044809 DOI: 10.1111/tpj.16572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as β-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.
Collapse
Affiliation(s)
- Eva Ľuptáková
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Armelle Vigouroux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, F-91198, France
| | - Radka Končitíková
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Martina Kopečná
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - David Zalabák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 11, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 11, Olomouc, CZ-78371, Czech Republic
| | - Sara Salcedo Sarmiento
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371, Olomouc, Czech Republic
| | - David Jaroslav Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Klaus von Schwartzenberg
- Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 11, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Solange Moréra
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, F-91198, France
| |
Collapse
|
8
|
Coatsworth P, Cotur Y, Naik A, Asfour T, Collins ASP, Olenik S, Zhou Z, Gonzalez-Macia L, Chao DY, Bozkurt T, Güder F. Time-resolved chemical monitoring of whole plant roots with printed electrochemical sensors and machine learning. SCIENCE ADVANCES 2024; 10:eadj6315. [PMID: 38295162 PMCID: PMC10830104 DOI: 10.1126/sciadv.adj6315] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Traditional single-point measurements fail to capture dynamic chemical responses of plants, which are complex, nonequilibrium biological systems. We report TETRIS (time-resolved electrochemical technology for plant root environment in situ chemical sensing), a real-time chemical phenotyping system for continuously monitoring chemical signals in the often-neglected plant root environment. TETRIS consisted of low-cost, highly scalable screen-printed electrochemical sensors for monitoring concentrations of salt, pH, and H2O2 in the root environment of whole plants, where multiplexing allowed for parallel sensing operation. TETRIS was used to measure ion uptake in tomato, kale, and rice and detected differences between nutrient and heavy metal ion uptake. Modulation of ion uptake with ion channel blocker LaCl3 was monitored by TETRIS and machine learning used to predict ion uptake. TETRIS has the potential to overcome the urgent "bottleneck" in high-throughput screening in producing high-yielding plant varieties with improved resistance against stress.
Collapse
Affiliation(s)
- Philip Coatsworth
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Yasin Cotur
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Atharv Naik
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Tarek Asfour
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Alex Silva-Pinto Collins
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Selin Olenik
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Zihao Zhou
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Laura Gonzalez-Macia
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Dai-Yin Chao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tolga Bozkurt
- Imperial College London, Department of Life Sciences, Royal School of Mines, SW7 2AZ London, UK
| | - Firat Güder
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| |
Collapse
|
9
|
Jeong SM, Noh TK, Kim DS. Herbicide Bioassay Using a Multi-Well Plate and Plant Spectral Image Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:919. [PMID: 38339634 PMCID: PMC10856836 DOI: 10.3390/s24030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
A spectral image analysis has the potential to replace traditional approaches for assessing plant responses to different types of stresses, including herbicides, through non-destructive and high-throughput screening (HTS). Therefore, this study was conducted to develop a rapid bioassay method using a multi-well plate and spectral image analysis for the diagnosis of herbicide activity and modes of action. Crabgrass (Digitaria ciliaris), as a model weed, was cultivated in multi-well plates and subsequently treated with six herbicides (paraquat, tiafenacil, penoxsulam, isoxaflutole, glufosinate, and glyphosate) with different modes of action when the crabgrass reached the 1-leaf stage, using only a quarter of the recommended dose. To detect the plant's response to herbicides, plant spectral images were acquired after herbicide treatment using RGB, infrared (IR) thermal, and chlorophyll fluorescence (CF) sensors and analyzed for diagnosing herbicide efficacy and modes of action. A principal component analysis (PCA), using all spectral data, successfully distinguished herbicides and clustered depending on their modes of action. The performed experiments showed that the multi-well plate assay combined with a spectral image analysis can be successfully applied for herbicide bioassays. In addition, the use of spectral image sensors, especially CF images, would facilitate HTS by enabling the rapid observation of herbicide responses at as early as 3 h after herbicide treatment.
Collapse
Affiliation(s)
| | | | - Do-Soon Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; (S.-M.J.); (T.-K.N.)
| |
Collapse
|
10
|
Janakiraman N, Anne Wincy J, Johnson M, Beatriz Herminia Ducati A, Eduardo de Oliveira Soares C, Saraiva de Alencar Beltrão C, Coutinho H. Chromatographic analysis of selected phytosterols from Cyathea and their characterization by in silico docking to potential therapeutic targets. Curr Res Toxicol 2023; 5:100115. [PMID: 37575338 PMCID: PMC10415621 DOI: 10.1016/j.crtox.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Separation and quantification of lupeol, stigmasterol and swertiamarin in ethanolic extracts of selected Cyathea species have been developed using HPTLC and an attempt is made to explore the biopotential of phytochemicals against various proteins by computational analysis. Compounds were separated using the specific mobile phase and the developed plates were sprayed with respective spraying reagents. The 3D structure of the receptor proteins viz., 1VSN, 5BNQ, 6HN8, 7DN4 and 3TJU, and the 3D SDF structures of ligands like lupeol, stigmasterol and swertiamarin were retrieved from the Protein Data Bank (PDB) and NCBI-Pub Chem Compound database respectively. The Argus 4.0.1 is computer generated drug design screening software is employed to analyze the binding affinity of test compounds against the selected proteins in the form of E-values versus potential drug targets. The docking result was saved and visualized using Discovery Studio Visualizer. The terpenoid band with Rf value 0.79 depicted the presence of lupeol in C. gigantea (0.04%) and C. crinita (0.02%). The steroid band with Rf value 0.41 confirmed the presence of stigmasterol with varied frequency viz., C. nilgirensis (0.33%), C. gigantea (0.29%) and C. crinita (0.52%). Lupeol, stigmasterol and swertiamarin showed the interaction against the studied proteins viz., 1VSN, 5BNQ, 6HN8, 7DN4, 3TJU with varied energy values and interacting residues. The results of the virtual screening and molecular docking analysis suggest that the phytochemical compounds of Cyathea species viz., lupeol and stigmasterol were identified as possible lead molecules to fight against cancer and cytotoxicity.
Collapse
Affiliation(s)
- N. Janakiraman
- Centre for Plant Biotechnology, Department of Botany, St. Xavier’s College (Autonomous), Palayamkottai - 627 002, Tamil Nadu, India
- Department of Botany, The Madura College (Autonomous), Madurai 625 011, Tamil Nadu, India
| | - J. Anne Wincy
- Department of Computer Science, Sarah Tucker College (Autonomous), Perumalpuram - 627 007, Tirunelveli, Tamil Nadu, India
| | - M. Johnson
- Centre for Plant Biotechnology, Department of Botany, St. Xavier’s College (Autonomous), Palayamkottai - 627 002, Tamil Nadu, India
| | | | | | | | - H.D.M. Coutinho
- Coordinator of the Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), 63105-000, Crato (CE), Brazil
| |
Collapse
|
11
|
De Diego N, Spíchal L. Presence and future of plant phenotyping approaches in biostimulant research and development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5199-5212. [PMID: 35770872 PMCID: PMC9440437 DOI: 10.1093/jxb/erac275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/20/2022] [Indexed: 06/01/2023]
Abstract
Commercial interest in biostimulants as a tool for sustainable green economics and agriculture concepts is on a steep rise, being followed by increasing demand to employ efficient scientific methods to develop new products and understand their mechanisms of action. Biostimulants represent a highly diverse group of agents derived from various natural sources. Regardless of their nutrition content and composition, they are classified by their ability to improve crop performance through enhanced nutrient use efficiency, abiotic stress tolerance, and quality of crops. Numerous reports have described modern, non-invasive sensor-based phenotyping methods in plant research. This review focuses on applying phenotyping approaches in biostimulant research and development, and maps the evolution of interaction of these two intensively growing domains. How phenotyping served to identify new biostimulants, the description of their biological activity, and the mechanism/mode of action are summarized. Special attention is dedicated to the indoor high-throughput methods using model plants suitable for biostimulant screening and developmental pipelines, and high-precision approaches used to determine biostimulant activity. The need for a complex method of testing biostimulants as multicomponent products through integrating other -omic approaches followed by advanced statistical/mathematical tools is emphasized.
Collapse
Affiliation(s)
- Nuria De Diego
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů, Olomouc, Czech Republic
| | | |
Collapse
|
12
|
Roitsch T, Himanen K, Chawade A, Jaakola L, Nehe A, Alexandersson E. Functional phenomics for improved climate resilience in Nordic agriculture. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5111-5127. [PMID: 35727101 PMCID: PMC9440434 DOI: 10.1093/jxb/erac246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/06/2022] [Indexed: 05/26/2023]
Abstract
The five Nordic countries span the most northern region for field cultivation in the world. This presents challenges per se, with short growing seasons, long days, and a need for frost tolerance. Climate change has additionally increased risks for micro-droughts and water logging, as well as pathogens and pests expanding northwards. Thus, Nordic agriculture demands crops that are adapted to the specific Nordic growth conditions and future climate scenarios. A focus on crop varieties and traits important to Nordic agriculture, including the unique resource of nutritious wild crops, can meet these needs. In fact, with a future longer growing season due to climate change, the region could contribute proportionally more to global agricultural production. This also applies to other northern regions, including the Arctic. To address current growth conditions, mitigate impacts of climate change, and meet market demands, the adaptive capacity of crops that both perform well in northern latitudes and are more climate resilient has to be increased, and better crop management systems need to be built. This requires functional phenomics approaches that integrate versatile high-throughput phenotyping, physiology, and bioinformatics. This review stresses key target traits, the opportunities of latitudinal studies, and infrastructure needs for phenotyping to support Nordic agriculture.
Collapse
Affiliation(s)
- Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Kristiina Himanen
- National Plant Phenotyping Infrastructure, HiLIFE, University of Helsinki, Finland
- Organismal and Evolutionary Biology Research Program, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Laura Jaakola
- Climate laboratory Holt, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Ajit Nehe
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | |
Collapse
|
13
|
Savvides AM, Velez‐Ramirez AI, Fotopoulos V. Challenging the water stress index concept: Thermographic assessment of Arabidopsis transpiration. PHYSIOLOGIA PLANTARUM 2022; 174:e13762. [PMID: 36281841 PMCID: PMC9542539 DOI: 10.1111/ppl.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 05/31/2023]
Abstract
Water stress may greatly limit plant functionality and growth. Stomatal closure and consequently reduced transpiration are considered as early and sensitive plant responses to drought and salinity stress. An important consequence of stomatal closure under water stress is the rise of leaf temperature (Tleaf ), yet Tleaf is not only fluctuating with stomatal closure. It is regulated by several plant parameters and environmental factors. Thermal imaging and different stress indices, incorporating actual leaf/crop temperature and reference temperatures, were developed in previous studies toward normalizing for effects unassociated to water stress on Tleaf , aiming at a more efficient water stress assessment. The concept of stress indices has not been extensively studied on the model plant Arabidopsis thaliana. Therefore, the aim of this study was to examine the different indices employed in previous studies in assessing rosette transpiration rate (E) in Arabidopsis plants grown under two different light environments and subjected to salinity. After salinity imposition, E was gravimetrically quantified, and thermal imaging was employed to quantify rosette (Trosette ) and artificial reference temperature (Twet, Tdry ). Trosette and several water stress indices were tested for their relation to E. Among the microclimatic growth conditions tested, RWSI1 ([Trosette - Twet ]/[Tdry - Twet ]) and RWSI2 ([Tdry - Trosette ]/[Tdry - Twet ]) were well linearly-related to E, irrespective of the light environment, while the sole use of either Twet or Tdry in different combinations with Trosette returned less accurate results. This study provides evidence that selected combinations of Trosette , Tdry , and Twet can be utilized to assess E under water stress irrespective of the light environment.
Collapse
Affiliation(s)
- Andreas M. Savvides
- Department of Agricultural Sciences, Biotechnology and Food ScienceCyprus University of TechnologyLimassolCyprus
| | - Aaron I. Velez‐Ramirez
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónMexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónMexico
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food ScienceCyprus University of TechnologyLimassolCyprus
| |
Collapse
|
14
|
Li J, Evon P, Ballas S, Trinh HK, Xu L, Van Poucke C, Van Droogenbroeck B, Motti P, Mangelinckx S, Ramirez A, Van Gerrewey T, Geelen D. Sunflower Bark Extract as a Biostimulant Suppresses Reactive Oxygen Species in Salt-Stressed Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:837441. [PMID: 35845677 PMCID: PMC9285015 DOI: 10.3389/fpls.2022.837441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
A survey of plant-based wastes identified sunflower (Helianthus annuus) bark extract (SBE), produced via twin-screw extrusion, as a potential biostimulant. The addition of SBE to Arabidopsis (Arabidopsis thaliana) seedlings cultured in vitro showed a dose-dependent response, with high concentrations causing severe growth inhibition. However, when priming seeds with SBE, a small but significant increase in leaf area was observed at a dose of 0.5 g of lyophilized powder per liter. This optimal concentration of SBE in the culturing medium alleviated the growth inhibition caused by 100 mM NaCl. The recovery in shoot growth was accompanied by a pronounced increase in photosynthetic pigment levels and a stabilization of osmotic homeostasis. SBE-primed leaf discs also showed a similar protective effect. SBE mitigated salt stress by reducing the production of reactive oxygen species (ROS) (e.g., hydrogen peroxide) by about 30% and developing more expanded true leaves. This reduction in ROS levels was due to the presence of antioxidative agents in SBE and by activating ROS-eliminating enzymes. Polyphenols, carbohydrates, proteins, and other bioactive compounds detected in SBE may have contributed to the cellular redox homeostasis in salt-stressed plants, thus promoting early leaf development by relieving shoot apical meristem arrest. Sunflower stalks from which SBE is prepared can therefore potentially be valorized as a source to produce biostimulants for improving salt stress tolerance in crops.
Collapse
Affiliation(s)
- Jing Li
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle, Université de Toulouse, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques (ENSIACET), Toulouse, France
| | | | - Hoang Khai Trinh
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Biotechnology Research and Development Institute (BiRDI), Can Tho University, Can Tho, Vietnam
| | - Lin Xu
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Christof Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | | | - Pierfrancesco Motti
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Aldana Ramirez
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thijs Van Gerrewey
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Priming with Small Molecule-Based Biostimulants to Improve Abiotic Stress Tolerance in Arabidopsis thaliana. PLANTS 2022; 11:plants11101287. [PMID: 35631712 PMCID: PMC9144751 DOI: 10.3390/plants11101287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022]
Abstract
Biostimulants became a hotspot in the fight to alleviate the consequences of abiotic stresses in crops. Due to their complex nature, it is challenging to obtain stable and reproducible final products and more challenging to define their mechanism of action. As an alternative, small molecule-based biostimulants, such as polyamines have promoted plant growth and improved stress tolerance. However, profound research about their mechanisms of action is still missing. To go further, we tested the effect of putrescine (Put) and its precursor ornithine (Orn) and degradation product 1,3-diaminopropane (DAP) at two different concentrations (0.1 and 1 mM) as a seed priming on in vitro Arabidopsis seedlings grown under optimal growth conditions, osmotic or salt stress. None of the primings affected the growth of the seedlings in optimal conditions but altered the metabolism of the plants. Under stress conditions, almost all primed plants grew better and improved their greenness. Only Orn-primed plants showed different plant responses. Interestingly, the metabolic analysis revealed the implication of the N- acetylornithine and Orn and polyamine conjugation as the leading player regulating growth and development under control and stress conditions. We corroborated polyamines as very powerful small molecule-based biostimulants to alleviate the adverse abiotic stress effects.
Collapse
|
16
|
Role of LOC_Os01g68450, Containing DUF2358, in Salt Tolerance Is Mediated via Adaptation of Absorbed Light Energy Dissipation. PLANTS 2022; 11:plants11091233. [PMID: 35567234 PMCID: PMC9105198 DOI: 10.3390/plants11091233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Salt stress affects plant growth and productivity. In this study we determined the roles of eight genes involved in photosynthesis, using gene co-expression network analysis, under salt-stress conditions using Arabidopsis knockout mutants. The green area of the leaves was minimum in the at1g65230 mutant line. Rice LOC_Os01g68450, a homolog of at1g65230, was ectopically expressed in the at1g65230 mutant line to generate revertant lines. Under salt stress, the revertant lines exhibited significantly higher net photosynthesis rates than the at1g65230 mutant line. Moreover, the operating efficiency of photosystem II (PSII) and electron transport rate of the revertant lines were higher than those of the wild type and at1g65230 mutant line after 10 days of exposure to salt stress. After this period, the protein PsbD–the component of PSII–decreased in all lines tested without significant difference among them. However, the chlorophyll a and b, carotenoid, and anthocyanin contents of revertant lines were higher than those of the mutant line. Furthermore, lower maximum chlorophyll fluorescence was detected in the revertant lines. This suggests that LOC_Os01g68450 expression contributed to the salt tolerance phenotype by modifying the energy dissipation process and led to the ability to maintain photosynthesis under salt stress conditions.
Collapse
|
17
|
Armanhi JSL, de Souza RSC, Biazotti BB, Yassitepe JEDCT, Arruda P. Modulating Drought Stress Response of Maize by a Synthetic Bacterial Community. Front Microbiol 2021; 12:747541. [PMID: 34745050 PMCID: PMC8566980 DOI: 10.3389/fmicb.2021.747541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023] Open
Abstract
Plant perception and responses to environmental stresses are known to encompass a complex set of mechanisms in which the microbiome is involved. Knowledge about plant physiological responses is therefore critical for understanding the contribution of the microbiome to plant resilience. However, as plant growth is a dynamic process, a major hurdle is to find appropriate tools to effectively measure temporal variations of different plant physiological parameters. Here, we used a non-invasive real-time phenotyping platform in a one-to-one (plant–sensors) set up to investigate the impact of a synthetic community (SynCom) harboring plant-beneficial bacteria on the physiology and response of three commercial maize hybrids to drought stress (DS). SynCom inoculation significantly reduced yield loss and modulated vital physiological traits. SynCom-inoculated plants displayed lower leaf temperature, reduced turgor loss under severe DS and a faster recovery upon rehydration, likely as a result of sap flow modulation and better water usage. Microbiome profiling revealed that SynCom bacterial members were able to robustly colonize mature plants and recruit soil/seed-borne beneficial microbes. The high-resolution temporal data allowed us to record instant plant responses to daily environmental fluctuations, thus revealing the impact of the microbiome in modulating maize physiology, resilience to drought, and crop productivity.
Collapse
Affiliation(s)
- Jaderson Silveira Leite Armanhi
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.,Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.,Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Bárbara Bort Biazotti
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.,Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.,Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.,Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.,Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
18
|
Wang T, Weiss A, Ha Y, You L. Predicting plasmid persistence in microbial communities by coarse-grained modeling. Bioessays 2021; 43:e2100084. [PMID: 34278591 DOI: 10.1002/bies.202100084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/08/2022]
Abstract
Plasmids are a major type of mobile genetic elements (MGEs) that mediate horizontal gene transfer. The stable maintenance of plasmids plays a critical role in the functions and survival for microbial populations. However, predicting and controlling plasmid persistence and abundance in complex microbial communities remain challenging. Computationally, this challenge arises from the combinatorial explosion associated with the conventional modeling framework. Recently, a plasmid-centric framework (PCF) has been developed to overcome this computational bottleneck. This framework enables the derivation of a simple metric, the persistence potential, to predict plasmid persistence and abundance. Here, we discuss how PCF can be extended to account for plasmid interactions. We also discuss how such model-guided predictions of plasmid fates can benefit from the development of new experimental tools and data-driven computational methods.
Collapse
Affiliation(s)
- Teng Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Andrea Weiss
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Yuanchi Ha
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
19
|
Sorrentino M, De Diego N, Ugena L, Spíchal L, Lucini L, Miras-Moreno B, Zhang L, Rouphael Y, Colla G, Panzarová K. Seed Priming With Protein Hydrolysates Improves Arabidopsis Growth and Stress Tolerance to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:626301. [PMID: 34168660 PMCID: PMC8218911 DOI: 10.3389/fpls.2021.626301] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/14/2021] [Indexed: 05/11/2023]
Abstract
The use of plant biostimulants contributes to more sustainable and environmentally friendly farming techniques and offers a sustainable alternative to mitigate the adverse effects of stress. Protein hydrolysate-based biostimulants have been described to promote plant growth and reduce the negative effect of abiotic stresses in different crops. However, limited information is available about their mechanism of action, how plants perceive their application, and which metabolic pathways are activating. Here we used a multi-trait high-throughput screening approach based on simple RGB imaging and combined with untargeted metabolomics to screen and unravel the mode of action/mechanism of protein hydrolysates in Arabidopsis plants grown in optimal and in salt-stress conditions (0, 75, or 150 mM NaCl). Eleven protein hydrolysates from different protein sources were used as priming agents in Arabidopsis seeds in three different concentrations (0.001, 0.01, or 0.1 μl ml-1). Growth and development-related traits as early seedling establishment, growth response under stress and photosynthetic performance of the plants were dynamically scored throughout and at the end of the growth period. To effectively classify the functional properties of the 11 products a Plant Biostimulant Characterization (PBC) index was used, which helped to characterize the activity of a protein hydrolysate based on its ability to promote plant growth and mitigate stress, and to categorize the products as plant growth promoters, growth inhibitors and/or stress alleviator. Out of 11 products, two were identified as highly effective growth regulators and stress alleviators because they showed a PBC index always above 0.51. Using the untargeted metabolomics approach, we showed that plants primed with these best performing biostimulants had reduced contents of stress-related molecules (such as flavonoids and terpenoids, and some degradation/conjugation compounds of phytohormones such as cytokinins, auxins, gibberellins, etc.), which alleviated the salt stress response-related growth inhibition.
Collapse
Affiliation(s)
- Mirella Sorrentino
- PSI (Photon Systems Instruments), spol. s r.o., Drásov, Czechia
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Nuria De Diego
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Olomouc, Czechia
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Lukáš Spíchal
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Olomouc, Czechia
| | - Luigi Lucini
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Klára Panzarová
- PSI (Photon Systems Instruments), spol. s r.o., Drásov, Czechia
| |
Collapse
|
20
|
Drought-Tolerance Gene Identification Using Genome Comparison and Co-Expression Network Analysis of Chromosome Substitution Lines in Rice. Genes (Basel) 2020; 11:genes11101197. [PMID: 33066648 PMCID: PMC7602393 DOI: 10.3390/genes11101197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/02/2022] Open
Abstract
Drought stress limits plant growth and productivity. It triggers many responses by inducing changes in plant morphology and physiology. KDML105 rice is a key rice variety in Thailand and is normally grown in the northeastern part of the country. The chromosome segment substitution lines (CSSLs) were developed by transferring putative drought tolerance loci (QTLs) on chromosome 1, 3, 4, 8, or 9 into the KDML105 rice genome. CSSL104 is a drought-tolerant line with higher net photosynthesis and leaf water potential than KDML105 rice. The analysis of CSSL104 gene regulation identified the loci associated with these traits via gene co-expression network analysis. Most of the predicted genes are involved in the photosynthesis process. These genes are also conserved in Arabidopsis thaliana. Seven genes encoding chloroplast proteins were selected for further analysis through characterization of Arabidopsis tagged mutants. The response of these mutants to drought stress was analyzed daily for seven days after treatment by scoring green tissue areas via the PlantScreen™ XYZ system. Mutation of these genes affected green areas of the plant and stability index under drought stress, suggesting their involvement in drought tolerance.
Collapse
|
21
|
Performances Evaluation of a Low-Cost Platform for High-Resolution Plant Phenotyping. SENSORS 2020; 20:s20113150. [PMID: 32498361 PMCID: PMC7308841 DOI: 10.3390/s20113150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/28/2022]
Abstract
This study aims to test the performances of a low-cost and automatic phenotyping platform, consisting of a Red-Green-Blue (RGB) commercial camera scanning objects on rotating plates and the reconstruction of main plant phenotypic traits via the structure for motion approach (SfM). The precision of this platform was tested in relation to three-dimensional (3D) models generated from images of potted maize, tomato and olive tree, acquired at a different frequency (steps of 4°, 8° and 12°) and quality (4.88, 6.52 and 9.77 µm/pixel). Plant and organs heights, angles and areas were extracted from the 3D models generated for each combination of these factors. Coefficient of determination (R2), relative Root Mean Square Error (rRMSE) and Akaike Information Criterion (AIC) were used as goodness-of-fit indexes to compare the simulated to the observed data. The results indicated that while the best performances in reproducing plant traits were obtained using 90 images at 4.88 µm/pixel (R2 = 0.81, rRMSE = 9.49% and AIC = 35.78), this corresponded to an unviable processing time (from 2.46 h to 28.25 h for herbaceous plants and olive trees, respectively). Conversely, 30 images at 4.88 µm/pixel resulted in a good compromise between a reliable reconstruction of considered traits (R2 = 0.72, rRMSE = 11.92% and AIC = 42.59) and processing time (from 0.50 h to 2.05 h for herbaceous plants and olive trees, respectively). In any case, the results pointed out that this input combination may vary based on the trait under analysis, which can be more or less demanding in terms of input images and time according to the complexity of its shape (R2 = 0.83, rRSME = 10.15% and AIC = 38.78). These findings highlight the reliability of the developed low-cost platform for plant phenotyping, further indicating the best combination of factors to speed up the acquisition and elaboration process, at the same time minimizing the bias between observed and simulated data.
Collapse
|
22
|
Humplík JF, Dostál J, Ugena L, Spíchal L, De Diego N, Vencálek O, Fürst T. Bayesian approach for analysis of time-to-event data in plant biology. PLANT METHODS 2020; 16:14. [PMID: 32063998 PMCID: PMC7011251 DOI: 10.1186/s13007-020-0554-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/16/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Plants, like all living organisms, metamorphose their bodies during their lifetime. All the developmental and growth events in a plant's life are connected to specific points in time, be it seed germination, seedling emergence, the appearance of the first leaf, heading, flowering, fruit ripening, wilting, or death. The onset of automated phenotyping methods has brought an explosion of such time-to-event data. Unfortunately, it has not been matched by an explosion of adequate data analysis methods. RESULTS AND DISCUSSION In this paper, we introduce the Bayesian approach towards time-to-event data in plant biology. As a model example, we use seedling emergence data of maize under control and stress conditions but the Bayesian approach is suitable for any time-to-event data (see the examples above). In the proposed framework, we are able to answer key questions regarding plant emergence such as these: (1) Do seedlings treated with compound A emerge earlier than the control seedlings? (2) What is the probability of compound A increasing seedling emergence by at least 5 percent? CONCLUSION Proper data analysis is a fundamental task of general interest in life sciences. Here, we present a novel method for the analysis of time-to-event data which is applicable to many plant developmental parameters measured in field or in laboratory conditions. In contrast to recent and classical approaches, our Bayesian computational method properly handles uncertainty in time-to-event data and it is capable to reliably answer questions that are difficult to address by classical methods.
Collapse
Affiliation(s)
- Jan F. Humplík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Jakub Dostál
- Department of Mathematical Analysis and Application of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 77900 Olomouc, Czech Republic
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Ondřej Vencálek
- Department of Mathematical Analysis and Application of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 77900 Olomouc, Czech Republic
| | - Tomáš Fürst
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Department of Mathematical Analysis and Application of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 77900 Olomouc, Czech Republic
| |
Collapse
|
23
|
Vlaminck L, Sang-Aram C, Botterman D, Uy CJC, Harper MK, Inzé D, Gheysen G, Depuydt S. Development of a novel and rapid phenotype-based screening method to assess rice seedling growth. PLANT METHODS 2020; 16:139. [PMID: 33072175 PMCID: PMC7560306 DOI: 10.1186/s13007-020-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/07/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Rice (Oryza sativa) is one of the most important model crops in plant research. Despite its considerable advantages, (phenotypic) bioassays for rice are not as well developed as for Arabidopsis thaliana. Here, we present a phenotype-based screening method to study shoot-related parameters of rice seedlings via an automated computer analysis. RESULTS The phenotype-based screening method was validated by testing several compounds in pharmacological experiments that interfered with hormone homeostasis, confirming that the assay was consistent with regard to the anticipated plant growth regulation and revealing the robustness of the set-up in terms of reproducibility. Moreover, abiotic stress tests using NaCl and DCMU, an electron transport blocker during the light dependent reactions of photosynthesis, confirmed the validity of the new method for a wide range of applications. Next, this method was used to screen the impact of semi-purified fractions of marine invertebrates on the initial stages of rice seedling growth. Certain fractions clearly stimulated growth, whereas others inhibited it, especially in the root, illustrating the possible applications of this novel, robust, and fast phenotype-based screening method for rice. CONCLUSIONS The validated phenotype-based and cost-efficient screening method allows a quick and proper analysis of shoot growth and requires only small volumes of compounds and media. As a result, this method could potentially be used for a whole range of applications, ranging from discovery of novel biostimulants, plant growth regulators, and plant growth-promoting bacteria to analysis of CRISPR knockouts, molecular plant breeding, genome-wide association, and phytotoxicity studies. The assay system described here can contribute to a better understanding of plant development in general.
Collapse
Affiliation(s)
- Lena Vlaminck
- Present Address: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985 South Korea
| | - Chananchida Sang-Aram
- Present Address: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985 South Korea
| | - Deborah Botterman
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985 South Korea
| | - Christine Jewel C. Uy
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985 South Korea
| | - Mary Kay Harper
- Department of Medical Chemistry, University of Utah, Salt Lake City, UT 84112 USA
| | - Dirk Inzé
- Present Address: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Stephen Depuydt
- Present Address: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985 South Korea
| |
Collapse
|
24
|
Bryksová M, Hybenová A, Hernándiz AE, Novák O, Pěnčík A, Spíchal L, De Diego N, Doležal K. Hormopriming to Mitigate Abiotic Stress Effects: A Case Study of N 9-Substituted Cytokinin Derivatives With a Fluorinated Carbohydrate Moiety. FRONTIERS IN PLANT SCIENCE 2020; 11:599228. [PMID: 33362831 PMCID: PMC7758400 DOI: 10.3389/fpls.2020.599228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/16/2020] [Indexed: 05/02/2023]
Abstract
Drought and salinity reduce seed germination, seedling emergence, and early seedling establishment, affect plant metabolism, and hence, reduce crop yield. Development of technologies that can increase plant tolerance of these challenging growth conditions is a major current interest among plant scientists and breeders. Seed priming has become established as one of the practical approaches that can alleviate the negative impact of many environmental stresses and improve the germination and overall performance of crops. Hormopriming using different plant growth regulators has been widely demonstrated as effective, but information about using cytokinins (CKs) as priming agents is limited to only a few studies using kinetin or 6-benzylaminopurine (BAP). Moreover, the mode of action of these compounds in improving seed and plant fitness through priming has not yet been studied. For many years, BAP has been one of the CKs most commonly applied exogenously to plants to delay senescence and reduce the impact of stress. However, rapid endogenous N 9-glucosylation of BAP can result in negative effects. This can be suppressed by hydroxylation of the benzyl ring or by appropriate N 9 purine substitution. Replacement of the 2' or 3' hydroxyl groups of a nucleoside with a fluorine atom has shown promising results in drug research and biochemistry as a means of enhancing biological activity and increasing chemical or metabolic stability. Here, we show that the application of this chemical modification in four new N 9-substituted CK derivatives with a fluorinated carbohydrate moiety improved the antisenescence properties of CKs. Besides, detailed phenotypical analysis of the growth and development of Arabidopsis plants primed with the new CK analogs over a broad concentration range and under various environmental conditions revealed that they improve growth regulation and antistress activity. Seed priming with, for example, 6-(3-hydroxybenzylamino)-2'-deoxy-2'-fluoro-9-(β)-D-arabinofuranosylpurine promoted plant growth under control conditions and alleviated the negative effects of the salt and osmotic stress. The mode of action of this hormopriming and its effect on plant metabolism were further analyzed through quantification of the endogenous levels of phytohormones such as CKs, auxins and abscisic acid, and the results are discussed.
Collapse
Affiliation(s)
- Magdaléna Bryksová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Andrea Hybenová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Alba E. Hernándiz
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
- *Correspondence: Nuria De Diego,
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| |
Collapse
|
25
|
Marchetti CF, Ugena L, Humplík JF, Polák M, Ćavar Zeljković S, Podlešáková K, Fürst T, De Diego N, Spíchal L. A Novel Image-Based Screening Method to Study Water-Deficit Response and Recovery of Barley Populations Using Canopy Dynamics Phenotyping and Simple Metabolite Profiling. FRONTIERS IN PLANT SCIENCE 2019; 10:1252. [PMID: 31681365 PMCID: PMC6804369 DOI: 10.3389/fpls.2019.01252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/09/2019] [Indexed: 05/25/2023]
Abstract
Plant phenotyping platforms offer automated, fast scoring of traits that simplify the selection of varieties that are more competitive under stress conditions. However, indoor phenotyping methods are frequently based on the analysis of plant growth in individual pots. We present a reproducible indoor phenotyping method for screening young barley populations under water stress conditions and after subsequent rewatering. The method is based on a simple read-out of data using RGB imaging, projected canopy height, as a useful feature for indirectly following the kinetics of growth and water loss in a population of barley. A total of 47 variables including 15 traits and 32 biochemical metabolites measured (morphometric parameters, chlorophyll fluorescence imaging, quantification of stress-related metabolites; amino acids and polyamines, and enzymatic activities) were used to validate the method. The study allowed the identification of metabolites related to water stress response and recovery. Specifically, we found that cadaverine (Cad), 1,3-aminopropane (DAP), tryptamine (Tryp), and tyramine (Tyra) were the major contributors to the water stress response, whereas Cad, DAP, and Tyra, but not Tryp, remained at higher levels in the stressed plants even after rewatering. In this work, we designed, optimized and validated a non-invasive image-based method for automated screening of potential water stress tolerance genotypes in barley populations. We demonstrated the applicability of the method using transgenic barley lines with different sensitivity to drought stress showing that combining canopy height and the metabolite profile we can discriminate tolerant from sensitive genotypes. We showed that the projected canopy height a sensitive trait that truly reflects other invasively studied morphological, physiological, and metabolic traits and that our presented methodological setup can be easily applicable for large-scale screenings in low-cost systems equipped with a simple RGB camera. We believe that our approach will contribute to accelerate the study and understanding of the plant water stress response and recovery capacity in crops, such as barley.
Collapse
Affiliation(s)
- Cintia F. Marchetti
- Department of Molecular Biology, Centre of the Region of Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jan F. Humplík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Michal Polák
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Sanja Ćavar Zeljković
- Department of Phytochemistry, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Olomouc, Czechia
| | - Kateřina Podlešáková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Tomáš Fürst
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
26
|
Abstract
Agricultural scientists face the dual challenge of breeding input-responsive, widely adoptable and climate-resilient varieties of crop plants and developing such varieties at a faster pace. Integrating the gains of genomics with modern-day phenomics will lead to increased breeding efficiency which in turn offers great promise to develop such varieties rapidly. Plant phenotyping techniques have impressively evolved during the last two decades. The low-cost, automated and semi-automated methods for data acquisition, storage and analysis are now available which allow precise quantitative analysis of plant structure and function; and genetic dissection of complex traits. Appropriate plant types can now be quickly developed that respond favorably to low input and resource-limited environments and address the challenges of subsistence agriculture. The present review focuses on the need of systematic, rapid, minimal invasive and low-cost plant phenotyping. It also discusses its evolution to modern day high throughput phenotyping (HTP), traits amenable to HTP, integration of HTP with genomics and the scope of utilizing these tools for crop improvement.
Collapse
|
27
|
Rouphael Y, Spíchal L, Panzarová K, Casa R, Colla G. High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or From Field to Lab? FRONTIERS IN PLANT SCIENCE 2018; 9:1197. [PMID: 30154818 PMCID: PMC6102389 DOI: 10.3389/fpls.2018.01197] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/26/2018] [Indexed: 05/18/2023]
Abstract
Plant biostimulants which include bioactive substances (humic acids, protein hydrolysates and seaweed extracts) and microorganisms (mycorrhizal fungi and plant growth promoting rhizobacteria of strains belonging to the genera Azospirillum, Azotobacter, and Rhizobium spp.) are gaining prominence in agricultural systems because of their potential for improving nutrient use efficiency, tolerance to abiotic stressors, and crop quality. Highly accurate non-destructive phenotyping techniques have attracted the interest of scientists and the biostimulant industry as an efficient means for elucidating the mode of biostimulant activity. High-throughput phenotyping technologies successfully employed in plant breeding and precision agriculture, could prove extremely useful in unraveling biostimulant-mediated modulation of key quantitative traits and would also facilitate the screening process for development of effective biostimulant products in controlled environments and field conditions. This perspective article provides an innovative discussion on how small, medium, and large high-throughput phenotyping platforms can accelerate efforts for screening numerous biostimulants and understanding their mode of action thanks to pioneering sensor and image-based phenotyping techniques. Potentiality and constraints of small-, medium-, and large-scale screening platforms are also discussed. Finally, the perspective addresses two screening approaches, "lab to field" and "field to lab," used, respectively, by small/medium and large companies for developing novel and effective second generation biostimulant products.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
- AgroBioChem, s.r.o., Bystročice, Czechia
| | | | - Raffaele Casa
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
28
|
Ugena L, Hýlová A, Podlešáková K, Humplík JF, Doležal K, Diego ND, Spíchal L. Characterization of Biostimulant Mode of Action Using Novel Multi-Trait High-Throughput Screening of Arabidopsis Germination and Rosette Growth. FRONTIERS IN PLANT SCIENCE 2018; 9:1327. [PMID: 30271419 PMCID: PMC6146039 DOI: 10.3389/fpls.2018.01327] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/23/2018] [Indexed: 05/02/2023]
Abstract
Environmental stresses have a significant effect on agricultural crop productivity worldwide. Exposure of seeds to abiotic stresses, such as salinity among others, results in lower seed viability, reduced germination, and poor seedling establishment. Alternative agronomic practices, e.g., the use of plant biostimulants, have attracted considerable interest from the scientific community and commercial enterprises. Biostimulants, i.e., products of biological origin (including bacteria, fungi, seaweeds, higher plants, or animals) have significant potential for (i) improving physiological processes in plants and (ii) stimulating germination, growth and stress tolerance. However, biostimulants are diverse, and can range from single compounds to complex matrices with different groups of bioactive components that have only been partly characterized. Due to the complex mixtures of biologically active compounds present in biostimulants, efficient methods for characterizing their potential mode of action are needed. In this study, we report the development of a novel complex approach to biological activity testing, based on multi-trait high-throughput screening (MTHTS) of Arabidopsis characteristics. These include the in vitro germination rate, early seedling establishment capacity, growth capacity under stress and stress response. The method is suitable for identifying new biostimulants and characterizing their mode of action. Representatives of compatible solutes such as amino acids and polyamines known to be present in many of the biostimulant irrespective of their origin, i.e., well-established biostimulants that enhance stress tolerance and crop productivity, were used for the assay optimization and validation. The selected compounds were applied through seed priming over a broad concentration range and the effect was investigated simultaneously under control, moderate stress and severe salt stress conditions. The new MTHTS approach represents a powerful tool in the field of biostimulant research and development and offers direct classification of the biostimulants mode of action into three categories: (1) plant growth promotors/inhibitors, (2) stress alleviators, and (3) combined action.
Collapse
Affiliation(s)
- Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Adéla Hýlová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Kateřina Podlešáková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jan F. Humplík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
- *Correspondence: Nuria De Diego,
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|