1
|
Liu Y, Xue L, Wang Z, Che X, Deng L, Xie W, Guo W. Comparative analysis of element and hormone content in zygotic embryos of Pinus elliottii and P. elliottii × P. caribaea. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154359. [PMID: 39332320 DOI: 10.1016/j.jplph.2024.154359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Somatic embryogenesis is a crucial method for achieving clonal forestry in conifers. Understanding the development of zygotic embryos is essential not only for enhancing the efficiency and quality of somatic embryogenesis, but also for advancing forestry breeding programs. This study investigated dynamic changes of element and hormone contents during ZE development of Pinus elliottii and its hybrid P. elliottii × P. caribaea. Significant differences in embryo development speed among different clones were observed. Elemental analysis was conducted using inductively coupled plasma mass spectrometry (ICP-MS) and identified 68 elements, including major, minor, and beneficial elements. In both species, the contents of potassium (K), calcium (Ca), iron (Fe), boron (B) and five beneficial elements decreased during early ZE development, while phosphorus (P) and copper (Cu) increased. Significantly higher levels of K, Ca and Fe at the initial stage, and sulfur (S) and nickel (Ni) decreased at later stages were detected in P. elliottii than in the hybrid. For the other elements, except for very few significant differences at certain stages, most differences between the two species did not reach a significant level. The contents of endogenous hormones were determined and different accumulation patterns were detected in most hormones between the two species, except abscisic acid (ABA) which simultaneously decreased with developments by stage 8. Significant differences were found in indole-3-acetic acid (IAA) contents at most stages between species, while higher levels of total cytokinin (CK) at each stage were detected in the hybrid in comparison with those in P. elliottii. As a result, lower IAA to CK ratios in the hybrid than in P. elliottii. Methyl jasmonate (JA-me) and gibberellin A3 (GA3) contents showed a similar pattern and exhibited an M-shaped fluctuation in the hybrid. Furthermore, JA-me, GA3, gibberellin A4 (GA4) and brassinolide (BR) showed significantly higher levels in the hybrid than in P. elliottii. K-means clustering and correlation analyses were used to explore relationships between elements and hormones during embryo development, revealing complex interplay in both species. These data indicate different requirement in element and hormone contents for embryogenesis and suggest species-specific media composition for each step in somatic embryogenesis. The findings provide insights into their developmental processes and informing future research and applications in somatic embryogenesis and forestry breeding.
Collapse
Affiliation(s)
- Yang Liu
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Lei Xue
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Zhe Wang
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Xiaoliang Che
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Leping Deng
- Taishan Hongling Seed Orchard, Taishan, Guangdong, 529200, China
| | - Wei Xie
- Taishan Hongling Seed Orchard, Taishan, Guangdong, 529200, China
| | - Wenbing Guo
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China.
| |
Collapse
|
2
|
Xu C, Guo H, Wang Z, Chen Y. Development and comparative analysis of initiation ability in large-scale Heuchera propagation using tissue culture versus cuttings. Sci Rep 2023; 13:14785. [PMID: 37679496 PMCID: PMC10484989 DOI: 10.1038/s41598-023-42001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
The Heuchera genus, a member of the Saxifragaceae family, encompasses a wide array of varieties and hybrids, serving both traditional medicinal and ornamental purposes. However, a significant knowledge gap persists in achieving efficient mass propagation of diverse Heuchera cultivars creating a substantial market void. To address this, our study focuses on expedited seedling regeneration by investigating leaf cutting and tissue culture techniques to offer novel insights to cultivators. Herein, we successfully rooted thirteen distinct cultivars from the Heuchera and Heucherella (Heuchera × Tiarella) genera through cutting. Moreover, in vitro culture experiments led to the successful induction of calli and shoots from petiole samples. Notably, variations in measured parameters were observed across cultivars in both cutting and tissue culture methodologies. When petiole explants were exposed to cytokinin 6-benzylaminopurine (BA) at concentrations of 0.5, 1.0, and 2.0 mg/L along with auxin α-naphthaleneacetic acid (NAA) at 0.5 mg/L, shoots were produced either directly or indirectly during the primary culture. Exposure to darkness and the application of 2,4-dichlorophenoxyacetic acid (2,4-D) did not promote shoot formation but were beneficial for callus stimulation. Interestingly, a negative correlation was observed between the ease of initiating cutting recovery and inducting tissue culture regeneration, suggesting that cultivars that easily regenerate through cutting might encounter difficulties during induction by tissue culture. In light of these findings, we devised a streamlined and effective protocol for rapid Heuchera propagation. This protocol involves micropropagation, directly acquiring adventitious shoots from primary cultures supplemented by cutting-based propagation methods.
Collapse
Affiliation(s)
- Chan Xu
- Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China
| | - Hang Guo
- Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China
| | - Zhijing Wang
- Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China
| | - Yuan Chen
- Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China.
| |
Collapse
|
3
|
Ohbayashi I, Sakamoto Y, Kuwae H, Kasahara H, Sugiyama M. Enhancement of shoot regeneration by treatment with inhibitors of auxin biosynthesis and transport during callus induction in tissue culture of Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:43-50. [PMID: 35800968 PMCID: PMC9200084 DOI: 10.5511/plantbiotechnology.21.1225a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/25/2021] [Indexed: 05/31/2023]
Abstract
In two-step culture systems for efficient shoot regeneration, explants are first cultured on auxin-rich callus-inducing medium (CIM), where cells are activated to proliferate and form calli containing root-apical meristem (RAM)-type stem cells and stem cell niche, and then cultured on cytokinin-rich shoot-inducing medium (SIM), where stem cells and stem cell niche of the shoot apical meristem (SAM) are established eventually leading to shoot regeneration. In the present study, we examined the effects of inhibitors of auxin biosynthesis and polar transport in the two-step shoot regeneration culture of Arabidopsis and found that, when they were applied during CIM culture, although callus growth was repressed, shoot regeneration in the subsequent SIM culture was significantly increased. The regeneration-stimulating effect of the auxin biosynthesis inhibitor was not linked with the reduction in the endogenous indole-3-acetic acid (IAA) level. Expression of the auxin-responsive reporter indicated that auxin response was more uniform and even stronger in the explants cultured on CIM with the inhibitors than in the control explants. These results suggested that the shoot regeneration competence of calli was enhanced somehow by the perturbation of the endogenous auxin dynamics, which we discuss in terms of the transformability between RAM and SAM stem cell niches.
Collapse
Affiliation(s)
- Iwai Ohbayashi
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan R.O.C
| | - Yuki Sakamoto
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo 112-0001, Japan
| | - Hitomi Kuwae
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo 112-0001, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Effects of Hormones and Epigenetic Regulation on the Callus and Adventitious Bud Induction of Fraxinus mandshurica Rupr. FORESTS 2020. [DOI: 10.3390/f11050590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fraxinus mandshurica Rupr. (hereafter “F. mandshurica”) is known as one of northeast China′s important, valuable hardwood timber species. However, tissue culture and micropropagation of the species are difficult and have low efficiency, limiting asexual propagation. In this manuscript, stem explants were utilized to establish an effective regeneration system through adventitious bud organogenesis. The factors influencing callus regeneration in vitro were determined, and callus regeneration technology was established. The mechanism of adventitious bud formation was analyzed. Thidiazuron (TDZ) played a crucial role in the formation of adventitious buds. Elevated concentrations of TDZ were beneficial to callus induction and low concentrations of 6-benzyladenine (BA) led to loose state callus formation. The order of callus induction rates for different explants was stem cotyledon (100%) > segment (98.54%) > hypocotyl (92.56%) > root (50.71%). The effects of exogenous addition of 6-BA and TDZ on the endogenous hormone content of plants during the regeneration of adventitious buds were also assessed, as well as the expression characteristics of genes related to the regeneration pathway. The comprehensive analysis results showed that the suitable medium for callus induction and adventitious bud differentiation was c12 medium (MSB5 + 30 g/L sucrose + 7 g/L Agar + 5 mg/L 6-BA + 8 mg/L TDZ + 2 mg/L glycine + 0.1 mg/L IBA + 5% coconut water). The induction rates of callus and adventitious buds were 99.15% and 33.33%. The addition of 2.4 mg/L of the DNA demethylation reagent 5-azacytidine (5-aza) and 0.15 mg/L of the histone deacetylase inhibitor trichostatin A (TSA) increased the rates of adventitious bud induction by 17.78% over the control. This further laid the foundation for large-scale cultivation of excellent varieties and genetic transformation techniques.
Collapse
|
5
|
Zeng RZ, Zhu J, Xu SY, Du GH, Guo HR, Chen J, Zhang ZS, Xie L. Unreduced Male Gamete Formation in Cymbidium and Its Use for Developing Sexual Polyploid Cultivars. FRONTIERS IN PLANT SCIENCE 2020; 11:558. [PMID: 32499802 PMCID: PMC7243674 DOI: 10.3389/fpls.2020.00558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/14/2020] [Indexed: 05/05/2023]
Abstract
Polyploidy plays an important role in crop improvement. Polyploid plants, particularly those produced through unreduced gametes (2n gametes), show increased organ size, improved buffering capacity for deleterious mutations, and enhanced heterozygosity and heterosis. Induced polyploidy has been widely used for improving floriculture crops, however, there are few reported sexual polyploid plants in the floriculture industry. This study evaluated nine cultivars of Cymbidium Swartz and discovered that 2n male gametes occurred in this important orchid. Depending on cultivars, 2n male gamete formation frequencies varied from 0.15 to 4.03%. Interspecific hybrids generally produced more 2n male gametes than traditional cultivars. To generate sexual polyploid plants, seven pairs of crosses were made, which produced five triploid and two tetraploid hybrids. Two triploid hybrids were evaluated for in vitro regeneration and growth characteristics. Compared to the diploid parents, the triploids were more easily regenerated through rhizomes or protocorms, and regenerated plants had improved survival rates after transplanting to the greenhouse. Furthermore, the sexual polyploid plants had more compact growth style, produced fragrant flowers, and demonstrated heterosis in plant growth. Through this study, a reliable protocol for selection of appropriate parents for 2n gamete production, ploidy level evaluation, in vitro culture of polyploid progenies, and development of new polyploid cultivars was established. Our study with Cymbidium suggests that the use of 2n gametes is a viable approach for improving floriculture crops.
Collapse
Affiliation(s)
- Rui-Zhen Zeng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jiao Zhu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shi-Ying Xu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Guo-Hui Du
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - He-Rong Guo
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jianjun Chen
- Environmental Horticulture Department, Mid-Florida Research and Education Center, Insititute of Food and Agrocultural Sciences (IFAS), University of Florida, Apopka, FL, United States
| | - Zhi-Sheng Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Li Xie
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
MicroRNAs and their targeted genes associated with phase changes of stem explants during tissue culture of tea plant. Sci Rep 2019; 9:20239. [PMID: 31882926 PMCID: PMC6934718 DOI: 10.1038/s41598-019-56686-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/13/2019] [Indexed: 11/08/2022] Open
Abstract
Elucidation of the molecular mechanism related to the dedifferentiation and redifferentiation during tissue culture will be useful for optimizing regeneration system of tea plant. In this study, an integrated sRNAome and transcriptome analyses were carried out during phase changes of the stem explant culture. Among 198 miRNAs and 8001 predicted target genes, 178 differentially expressed miRNAs and 4264 potential targets were screened out from explants, primary calli, as well as regenerated roots and shoots. According to KEGG analysis of the potential targets, pathway of "aminoacyl-tRNA biosynthesis", "proteasome" and "glutathione metabolism" was of great significance during the dedifferentiation, and pathway of "porphyrin and chlorophyll metabolism", "mRNA surveillance pathway", "nucleotide excision repair" was indispensable for redifferentiation of the calli. Expression pattern of 12 miRNAs, including csn-micR390e, csn-miR156b-5p, csn-miR157d-5p, csn-miR156, csn-miR166a-3p, csn-miR166e, csn-miR167d, csn-miR393c-3p, csn-miR394, csn-miR396a-3p, csn-miR396 and csn-miR396e-3p, was validated by qRT-PCR among 57 differentially expressed phase-specific miRNAs. Validation also confirmed that regulatory module of csn-miR167d/ERF3, csn-miR156/SPB1, csn-miR166a-3p/ATHB15, csn-miR396/AIP15A, csn-miR157d-5p/GST and csn-miR393c-3p/ATG18b might play important roles in regulating the phase changes during tissue culture of stem explants.
Collapse
|