1
|
Wang Z, Miao L, Chen Y, Peng H, Ni Z, Sun Q, Guo W. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J Genet Genomics 2023; 50:846-860. [PMID: 37611848 DOI: 10.1016/j.jgg.2023.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Bread wheat provides an essential fraction of the daily calorific intake for humanity. Due to its huge and complex genome, progress in studying on the wheat genome is substantially trailed behind those of the other two major crops, rice and maize, for at least a decade. With rapid advances in genome assembling and reduced cost of high-throughput sequencing, emerging de novo genome assemblies of wheat and whole-genome sequencing data are leading to a paradigm shift in wheat research. Here, we review recent progress in dissecting the complex genome and germplasm evolution of wheat since the release of the first high-quality wheat genome. New insights have been gained in the evolution of wheat germplasm during domestication and modern breeding progress, genomic variations at multiple scales contributing to the diversity of wheat germplasm, and complex transcriptional and epigenetic regulations of functional genes in polyploid wheat. Genomics databases and bioinformatics tools meeting the urgent needs of wheat genomics research are also summarized. The ever-increasing omics data, along with advanced tools and well-structured databases, are expected to accelerate deciphering the germplasm and gene resources in wheat for future breeding advances.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Saripalli G, Adhikari L, Amos C, Kibriya A, Ahmed HI, Heuberger M, Raupp J, Athiyannan N, Wicker T, Abrouk M, Wallace S, Hosseinirad S, Chhuneja P, Livesay J, Rawat N, Krattinger SG, Poland J, Tiwari V. Integration of genetic and genomics resources in einkorn wheat enables precision mapping of important traits. Commun Biol 2023; 6:835. [PMID: 37573415 PMCID: PMC10423216 DOI: 10.1038/s42003-023-05189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023] Open
Abstract
Einkorn wheat (Triticum monococcum) is an ancient grain crop and a close relative of the diploid progenitor (T. urartu) of polyploid wheat. It is the only diploid wheat species having both domesticated and wild forms and therefore provides an excellent system to identify domestication genes and genes for traits of interest to utilize in wheat improvement. Here, we leverage genomic advancements for einkorn wheat using an einkorn reference genome assembly combined with skim-sequencing of a large genetic population of 812 recombinant inbred lines (RILs) developed from a cross between a wild and a domesticated T. monococcum accession. We identify 15,919 crossover breakpoints delimited to a median and average interval of 114 Kbp and 219 Kbp, respectively. This high-resolution mapping resource enables us to perform fine-scale mapping of one qualitative (red coleoptile) and one quantitative (spikelet number per spike) trait, resulting in the identification of small physical intervals (400 Kb to 700 Kb) with a limited number of candidate genes. Furthermore, an important domestication locus for brittle rachis is also identified on chromosome 7A. This resource presents an exciting route to perform trait discovery in diploid wheat for agronomically important traits and their further deployment in einkorn as well as tetraploid pasta wheat and hexaploid bread wheat cultivars.
Collapse
Affiliation(s)
- Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cameron Amos
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ashraf Kibriya
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sydney Wallace
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Seyedali Hosseinirad
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Janelle Livesay
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Vijay Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA.
| |
Collapse
|
3
|
Ahmed HI, Heuberger M, Schoen A, Koo DH, Quiroz-Chavez J, Adhikari L, Raupp J, Cauet S, Rodde N, Cravero C, Callot C, Lazo GR, Kathiresan N, Sharma PK, Moot I, Yadav IS, Singh L, Saripalli G, Rawat N, Datla R, Athiyannan N, Ramirez-Gonzalez RH, Uauy C, Wicker T, Tiwari VK, Abrouk M, Poland J, Krattinger SG. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature 2023; 620:830-838. [PMID: 37532937 PMCID: PMC10447253 DOI: 10.1038/s41586-023-06389-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.
Collapse
Affiliation(s)
- Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Adam Schoen
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Nathalie Rodde
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Charlotte Cravero
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Gerard R Lazo
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, USA
| | - Nagarajan Kathiresan
- KAUST Supercomputing Core Lab (KSL), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ian Moot
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Inderjit Singh Yadav
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Yadav IS, Singh N, Wu S, Raupp J, Wilson DL, Rawat N, Gill BS, Poland J, Tiwari VK. Exploring genetic diversity of wild and related tetraploid wheat species Triticum turgidum and Triticum timopheevii. J Adv Res 2023; 48:47-60. [PMID: 36084813 PMCID: PMC10248793 DOI: 10.1016/j.jare.2022.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION The domestication bottleneck has reduced genetic diversity inwheat, necessitating the use of wild relatives in breeding programs. Wild tetraploid wheat are widely used in the breeding programs but with morphological characters, it is difficult to distinguish these, resulting in misclassification/mislabeling or duplication of accessions in the Gene bank. OBJECTIVES The study aims to exploreGenotyping by sequencing (GBS) to characterize wild and domesticated tetraploid wheat accessions to generate a core set of accessions to be used in the breeding program. METHODS TASSEL-GBS pipeline was used for SNP discovery, fastStructure was used to determine the population structure and PowerCore was used to generate a core sets. Nucleotide diversity matrices of Nie's and F-statistics (FST) index were used to determine the center of genetic diversity. RESULTS We found 65 % and 47 % duplicated accessions in Triticum timopheevii and T. turgidum respectively. Genome-wide nucleotide diversity and FST scan uncovered a lower intra and higher inter-species differentiation. Distinct FST regions were identified in genomic regions belonging to domestication genes: non-brittle rachis (Btr1) and vernalization (VRN-1).Our results suggest that Israel, Jordan, Syria, and Lebanonas the hub of genetic diversity of wild emmer;Turkey, and Georgia for T. durum; and Iraq, Azerbaijan, and Armenia for theT. timopheevii. Identified core set accessions preserved more than 93 % of the available genetic diversity. Genome wide association study (GWAS) indicated the potential chromosomal segment for resistance to leaf rust in T. timopheevii. CONCLUSION The present study explored the potential of GBS technology in data reduction while maintaining the significant genetic diversity of the species. Wild germplasm showed more differentiation than domesticated accessions, indicating the availability of sufficient diversity for crop improvement. With reduced complexity, the core set preserves the genetic diversity of the gene bank collections and will aid in a more robust characterization of wild germplasm.
Collapse
Affiliation(s)
- Inderjit S. Yadav
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | | | - Shuangye Wu
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Jon Raupp
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Duane L. Wilson
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Nidhi Rawat
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Bikram S. Gill
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Jesse Poland
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Vijay K. Tiwari
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
5
|
Khalid A, Hameed A, Tahir MF. Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Front Nutr 2023; 10:1053196. [PMID: 36908903 PMCID: PMC9998918 DOI: 10.3389/fnut.2023.1053196] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/26/2023] [Indexed: 03/14/2023] Open
Abstract
Wheat (Triticum aestivum L.) belonging to one of the most diverse and substantial families, Poaceae, is the principal cereal crop for the majority of the world's population. This cereal is polyploidy in nature and domestically grown worldwide. Wheat is the source of approximately half of the food calories consumed worldwide and is rich in proteins (gluten), minerals (Cu, Mg, Zn, P, and Fe), vitamins (B-group and E), riboflavin, niacin, thiamine, and dietary fiber. Wheat seed-storage proteins represent an important source of food and energy and play a major role in the determination of bread-making quality. The two groups of wheat grain proteins, i.e., gliadins and glutenins, have been widely studied using SDS-PAGE and other techniques. Sustainable production with little input of chemicals along with high nutritional quality for its precise ultimate uses in the human diet are major focus areas for wheat improvement. An expansion in the hereditary base of wheat varieties must be considered in the wheat breeding program. It may be accomplished in several ways, such as the use of plant genetic resources, comprising wild relatives and landraces, germplasm-assisted breeding through advanced genomic tools, and the application of modern methods, such as genome editing. In this review, we critically focus on phytochemical composition, reproduction growth, types, quality, seed storage protein, and recent challenges in wheat breeding and discuss possible ways forward to combat those issues.
Collapse
Affiliation(s)
- Anam Khalid
- Department of Biochemistry, University of Jhang, Jhang, Pakistan
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | | |
Collapse
|
6
|
Peleg Z, Abbo S, Gopher A. When half is more than the whole: Wheat domestication syndrome reconsidered. Evol Appl 2022; 15:2002-2009. [PMID: 36540632 PMCID: PMC9753826 DOI: 10.1111/eva.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Two opposing models currently dominate Near Eastern plant domestication research. The core area-one event model depicts a knowledge-based, conscious, geographically centered, rapid single-event domestication, while the protracted-autonomous model emphasizes a noncentered, millennia-long process based on unconscious dynamics. The latter model relies, in part, on quantitative depictions of diachronic changes (in archaeological remains) in proportions of spikelet shattering to nonshattering, towards full dominance of the nonshattering (domesticated) phenotypes in cultivated cereal populations. Recent wild wheat genome assembly suggests that shattering and nonshattering spikelets may originate from the same (individual) genotype. Therefore, their proportions among archaeobotanical assemblages cannot reliably describe the presumed protracted-selection dynamics underlying wheat domestication. This calls for a reappraisal of the "domestication syndrome" concept associated with cereal domestication.
Collapse
Affiliation(s)
- Zvi Peleg
- Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| | - Shahal Abbo
- Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| | - Avi Gopher
- Sonia and Marco Nadler Institute of ArchaeologyTel‐Aviv UniversityRamat AvivIsrael
| |
Collapse
|
7
|
Pourkheirandish M, Komatsuda T. Grain Disarticulation in Wild Wheat and Barley. PLANT & CELL PHYSIOLOGY 2022; 63:1584-1591. [PMID: 35765920 PMCID: PMC9680857 DOI: 10.1093/pcp/pcac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 05/26/2023]
Abstract
Our industrial-scale crop monocultures, which are necessary to provide grain for large-scale food and feed production, are highly vulnerable to biotic and abiotic stresses. Crop wild relatives have adapted to harsh environmental conditions over millennia; thus, they are an important source of genetic variation and crop diversification. Despite several examples where significant yield increases have been achieved through the introgression of genomic regions from wild relatives, more detailed understanding of the differences between wild and cultivated species for favorable and unfavorable traits is still required to harness these valuable resources. Recently, as an alternative to the introgression of beneficial alleles from the wild into domesticated species, a radical suggestion is to domesticate wild relatives to generate new crops. A first and critical step for the domestication of cereal wild relatives would be to prevent grain disarticulation from the inflorescence at maturity. Discovering the molecular mechanisms and understanding the network of interactions behind grain retention/disarticulation would enable the implementation of approaches to select for this character in targeted species. Brittle rachis 1 and Brittle rachis 2 are major genes responsible for grain disarticulation in the wild progenitors of wheat and barley that were the target of mutations during domestication. These two genes are only found in the Triticeae tribe and are hypothesized to have evolved by a duplication followed by neo-functionalization. Current knowledge gaps include the molecular mechanisms controlling grain retention in cereals and the genomic consequences of strong selection for this essential character.
Collapse
Affiliation(s)
| | - Takao Komatsuda
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| |
Collapse
|
8
|
Gohar S, Sajjad M, Zulfiqar S, Liu J, Wu J, Rahman MU. Domestication of newly evolved hexaploid wheat—A journey of wild grass to cultivated wheat. Front Genet 2022; 13:1022931. [PMID: 36263418 PMCID: PMC9574122 DOI: 10.3389/fgene.2022.1022931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Domestication of wheat started with the dawn of human civilization. Since then, improvement in various traits including resistance to diseases, insect pests, saline and drought stresses, grain yield, and quality were improved through selections by early farmers and then planned hybridization after the discovery of Mendel’s laws. In the 1950s, genetic variability was created using mutagens followed by the selection of superior mutants. Over the last 3 decades, research was focused on developing superior hybrids, initiating marker-assisted selection and targeted breeding, and developing genetically modified wheat to improve the grain yield, tolerance to drought, salinity, terminal heat and herbicide, and nutritive quality. Acceptability of genetically modified wheat by the end-user remained a major hurdle in releasing into the environment. Since the beginning of the 21st century, changing environmental conditions proved detrimental to achieving sustainability in wheat production particularly in developing countries. It is suggested that high-tech phenotyping assays and genomic procedures together with speed breeding procedures will be instrumental in achieving food security beyond 2050.
Collapse
Affiliation(s)
- Sasha Gohar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Jiajun Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- *Correspondence: Jiajie Wu, ; Mehboob-ur- Rahman,
| | - Mehboob-ur- Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- *Correspondence: Jiajie Wu, ; Mehboob-ur- Rahman,
| |
Collapse
|
9
|
Akagi T, Jung K, Masuda K, Shimizu KK. Polyploidy before and after domestication of crop species. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102255. [PMID: 35870416 DOI: 10.1016/j.pbi.2022.102255] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in the genomics of polyploid species answer some of the long-standing questions about the role of polyploidy in crop species. Here, we summarize the current literature to reexamine scenarios in which polyploidy played a role both before and after domestication. The prevalence of polyploidy can help to explain environmental robustness in agroecosystems. This review also clarifies the molecular basis of some agriculturally advantageous traits of polyploid crops, including yield increments in polyploid cotton via subfunctionalization, modification of a separated sexuality to selfing in polyploid persimmon via neofunctionalization, and transition to a selfing system via nonfunctionalization combined with epistatic interaction between duplicated S-loci. The rapid progress in genomics and genetics is discussed along with how this will facilitate functional studies of understudied polyploid crop species.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| | - Katharina Jung
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland
| | - Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 244-0813 Totsuka-ward, Yokohama, Japan.
| |
Collapse
|
10
|
Jiang C, Lei M, Guo Y, Gao G, Shi L, Jin Y, Cai Y, Himmelbach A, Zhou S, He Q, Yao X, Kan J, Haberer G, Duan F, Li L, Liu J, Zhang J, Spannagl M, Liu C, Stein N, Feng Z, Mascher M, Yang P. A reference-guided TILLING by amplicon-sequencing platform supports forward and reverse genetics in barley. PLANT COMMUNICATIONS 2022; 3:100317. [PMID: 35605197 PMCID: PMC9284286 DOI: 10.1016/j.xplc.2022.100317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 05/26/2023]
Abstract
Barley is a diploid species with a genome smaller than those of other members of the Triticeae tribe, making it an attractive model for genetic studies in Triticeae crops. The recent development of barley genomics has created a need for a high-throughput platform to identify genetically uniform mutants for gene function investigations. In this study, we report an ethyl methanesulfonate (EMS)-mutagenized population consisting of 8525 M3 lines in the barley landrace "Hatiexi" (HTX), which we complement with a high-quality de novo assembly of a reference genome for this genotype. The mutation rate within the population ranged from 1.51 to 4.09 mutations per megabase, depending on the treatment dosage of EMS and the mutation discrimination platform used for genotype analysis. We implemented a three-dimensional DNA pooling strategy combined with multiplexed amplicon sequencing to create a highly efficient and cost-effective TILLING (targeting induced locus lesion in genomes) platform in barley. Mutations were successfully identified from 72 mixed amplicons within a DNA pool containing 64 individual mutants and from 56 mixed amplicons within a pool containing 144 individuals. We discovered abundant allelic mutants for dozens of genes, including the barley Green Revolution contributor gene Brassinosteroid insensitive 1 (BRI1). As a proof of concept, we rapidly determined the causal gene responsible for a chlorotic mutant by following the MutMap strategy, demonstrating the value of this resource to support forward and reverse genetic studies in barley.
Collapse
Affiliation(s)
- Congcong Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miaomiao Lei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yu Guo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Guangqi Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijie Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yanlong Jin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Cai
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Shenghui Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuefeng Yao
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jinhong Kan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Georg Haberer
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manuel Spannagl
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Chunming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Zongyun Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany.
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
11
|
Vavilova VY, Konopatskaia ID, Blinov AG, Kondratenko EY, Kruchinina YV, Goncharov NP. Genetic Variability of Btr1 Genes in Tetraploid Wheat Species and Aegilops speltoides Tausch. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Cross A, Li JB, Waugh R, Golicz AA, Pourkheirandish M. Grain dispersal mechanism in cereals arose from a genome duplication followed by changes in spatial expression of genes involved in pollen development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1263-1277. [PMID: 35192007 PMCID: PMC9033732 DOI: 10.1007/s00122-022-04029-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/04/2022] [Indexed: 05/31/2023]
Abstract
KEY MESSAGE Grain disarticulation in wild progenitor of wheat and barley evolved through a local duplication event followed by neo-functionalization resulting from changes in location of gene expression. One of the most critical events in the process of cereal domestication was the loss of the natural mode of grain dispersal. Grain dispersal in barley is controlled by two major genes, Btr1 and Btr2, which affect the thickness of cell walls around the disarticulation zone. The barley genome also encodes Btr1-like and Btr2-like genes, which have been shown to be the ancestral copies. While Btr and Btr-like genes are non-redundant, the biological function of Btr-like genes is unknown. We explored the potential biological role of the Btr-like genes by surveying their expression profile across 212 publicly available transcriptome datasets representing diverse organs, developmental stages and stress conditions. We found that Btr1-like and Btr2-like are expressed exclusively in immature anther samples throughout Prophase I of meiosis within the meiocyte. The similar and restricted expression profile of these two genes suggests they are involved in a common biological function. Further analysis revealed 141 genes co-expressed with Btr1-like and 122 genes co-expressed with Btr2-like, with 105 genes in common, supporting Btr-like genes involvement in a shared molecular pathway. We hypothesize that the Btr-like genes play a crucial role in pollen development by facilitating the formation of the callose wall around the meiocyte or in the secretion of callase by the tapetum. Our data suggest that Btr genes retained an ancestral function in cell wall modification and gained a new role in grain dispersal due to changes in their spatial expression becoming spike specific after gene duplication.
Collapse
Affiliation(s)
- Arthur Cross
- Faculty of Veterinary and Agriculture, The University of Melbourne, Parkville, 3010, Australia
| | - John B Li
- Faculty of Veterinary and Agriculture, The University of Melbourne, Parkville, 3010, Australia
| | - Robbie Waugh
- Division of Plant Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Agnieszka A Golicz
- Faculty of Veterinary and Agriculture, The University of Melbourne, Parkville, 3010, Australia.
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Gießen, Gießen, Germany.
| | | |
Collapse
|
13
|
Bokore FE, Cuthbert RD, Knox RE, Campbell HL, Meyer B, N'Diaye A, Pozniak CJ, DePauw R. Main effect and epistatic QTL affecting spike shattering and association with plant height revealed in two spring wheat (Triticum aestivum L.) populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1143-1162. [PMID: 35306567 PMCID: PMC9033718 DOI: 10.1007/s00122-021-03980-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/18/2021] [Indexed: 05/26/2023]
Abstract
A major QTL on chromosome arm 4BS was associated with reduced spike shattering and reduced plant height in coupling phase, and a second major QTL associated with reduced spike shattering was detected on chromosome arm 5AL in the same wheat variety Carberry. Spike shattering can cause severe grain yield loss in wheat. Development of cultivars with reduced shattering but having easy mechanical threshability is the target of wheat breeding programs. This study was conducted to determine quantitative trait loci (QTL) associated with shattering resistance, and epistasis among QTL in the populations Carberry/AC Cadillac and Carberry/Thatcher. Response of the populations to spike shattering was evaluated near Swift Current, SK, in four to five environments. Plant height data recorded in different locations and years were used to determine the relationship of the trait with spike shattering. Each population was genotyped and mapped with the wheat 90 K Illumina iSelect SNP array. Main effect QTL were analyzed by MapQTL 6, and epistatic interactions between main effect QTL were determined by QTLNetwork 2.0. Correlations between height and shattering ranged from 0.15 to 0.49. Carberry contributed two major QTL associated with spike shattering on chromosome arms 4BS and 5AL, detected in both populations. Carberry also contributed two minor QTL on 7AS and 7AL. AC Cadillac contributed five minor QTL on 1AL, 2DL, 3AL, 3DL and 7DS. Nine epistatic QTL interactions were identified, out of which the most consistent and synergistic interaction, that reduced the expression of shattering, occurred between 4BS and 5AL QTL. The 4BS QTL was consistently associated with reduced shattering and reduced plant height in the coupling phase. The present findings shed light on the inheritance of shattering resistance and provide genetic markers for manipulating the trait to develop wheat cultivars.
Collapse
Affiliation(s)
- Firdissa E Bokore
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, P.O. Box 1030, Swift Current, SK, S9H 3X2, Canada.
| | - Richard D Cuthbert
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, P.O. Box 1030, Swift Current, SK, S9H 3X2, Canada.
| | - Ron E Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, P.O. Box 1030, Swift Current, SK, S9H 3X2, Canada
| | - Heather L Campbell
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, P.O. Box 1030, Swift Current, SK, S9H 3X2, Canada
| | - Brad Meyer
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, P.O. Box 1030, Swift Current, SK, S9H 3X2, Canada
| | - Amidou N'Diaye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Curtis J Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Ron DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
14
|
Adhikari L, Raupp J, Wu S, Wilson D, Evers B, Koo DH, Singh N, Friebe B, Poland J. Genetic characterization and curation of diploid A-genome wheat species. PLANT PHYSIOLOGY 2022; 188:2101-2114. [PMID: 35134208 PMCID: PMC8968256 DOI: 10.1093/plphys/kiac006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
A-genome diploid wheats represent the earliest domesticated and cultivated wheat species in the Fertile Crescent and include the donor of the wheat A sub-genome. The A-genome species encompass the cultivated einkorn (Triticum monococcum L. subsp. monococcum), wild einkorn (T. monococcum L. subsp. aegilopoides (Link) Thell.), and Triticum urartu. We evaluated the collection of 930 accessions in the Wheat Genetics Resource Center (WGRC) using genotyping by sequencing and identified 13,860 curated single-nucleotide polymorphisms. Genomic analysis detected misclassified and genetically identical (>99%) accessions, with most of the identical accessions originating from the same or nearby locations. About 56% (n = 520) of the WGRC A-genome species collections were genetically identical, supporting the need for genomic characterization for effective curation and maintenance of these collections. Population structure analysis confirmed the morphology-based classifications of the accessions and reflected the species geographic distributions. We also showed that T. urartu is the closest A-genome diploid to the A-subgenome in common wheat (Triticum aestivum L.) through phylogenetic analysis. Population analysis within the wild einkorn group showed three genetically distinct clusters, which corresponded with wild einkorn races α, β, and γ described previously. The T. monococcum genome-wide FST scan identified candidate genomic regions harboring a domestication selection signature at the Non-brittle rachis 1 (Btr1) locus on the short arm of chromosome 3Am at ∼70 Mb. We established an A-genome core set (79 accessions) based on allelic diversity, geographical distribution, and available phenotypic data. The individual species core set maintained at least 79% of allelic variants in the A-genome collection and constituted a valuable genetic resource to improve wheat and domesticated einkorn in breeding programs.
Collapse
Affiliation(s)
- Laxman Adhikari
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - John Raupp
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Shuangye Wu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Duane Wilson
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Byron Evers
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Dal-Hoe Koo
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Narinder Singh
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Bernd Friebe
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66502, USA
- Wheat Genetic Resource Center (WGRC), Kansas State University, Manhattan, Kansas 66502, USA
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
15
|
Badaeva ED, Konovalov FA, Knüpffer H, Fricano A, Ruban AS, Kehel Z, Zoshchuk SA, Surzhikov SA, Neumann K, Graner A, Hammer K, Filatenko A, Bogaard A, Jones G, Özkan H, Kilian B. Genetic diversity, distribution and domestication history of the neglected GGA tA t genepool of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:755-776. [PMID: 34283259 PMCID: PMC8942905 DOI: 10.1007/s00122-021-03912-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 05/03/2023]
Abstract
We present a comprehensive survey of cytogenetic and genomic diversity of the GGAtAt genepool of wheat, thereby unlocking these plant genetic resources for wheat improvement. Wheat yields are stagnating around the world and new sources of genes for resistance or tolerances to abiotic traits are required. In this context, the tetraploid wheat wild relatives are among the key candidates for wheat improvement. Despite its potential huge value for wheat breeding, the tetraploid GGAtAt genepool is largely neglected. Understanding the population structure, native distribution range, intraspecific variation of the entire tetraploid GGAtAt genepool and its domestication history would further its use for wheat improvement. The paper provides the first comprehensive survey of genomic and cytogenetic diversity sampling the full breadth and depth of the tetraploid GGAtAt genepool. According to the results obtained, the extant GGAtAt genepool consists of three distinct lineages. We provide detailed insights into the cytogenetic composition of GGAtAt wheats, revealed group- and population-specific markers and show that chromosomal rearrangements play an important role in intraspecific diversity of T. araraticum. The origin and domestication history of the GGAtAt lineages is discussed in the context of state-of-the-art archaeobotanical finds. We shed new light on the complex evolutionary history of the GGAtAt wheat genepool and provide the basis for an increased use of the GGAtAt wheat genepool for wheat improvement. The findings have implications for our understanding of the origins of agriculture in southwest Asia.
Collapse
Affiliation(s)
- Ekaterina D Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Fedor A Konovalov
- Independent Clinical Bioinformatics Laboratory, Moscow, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Helmut Knüpffer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Agostino Fricano
- Council for Agricultural Research and Economics - Research Centre for Genomics & Bioinformatics, Fiorenzuola d'Arda (PC), Italy
| | - Alevtina S Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Zakaria Kehel
- International Center for the Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Svyatoslav A Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Karl Hammer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Anna Filatenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Independent Researcher, St. Petersburg, Russia
| | | | - Glynis Jones
- Department of Archaeology, University of Sheffield, Sheffield, UK
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Global Crop Diversity Trust, Bonn, Germany
| |
Collapse
|
16
|
Improvement and Re-Evolution of Tetraploid Wheat for Global Environmental Challenge and Diversity Consumption Demand. Int J Mol Sci 2022; 23:ijms23042206. [PMID: 35216323 PMCID: PMC8878472 DOI: 10.3390/ijms23042206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Allotetraploid durum wheat is the second most widely cultivated wheat, following hexaploid bread wheat, and is one of the major protein and calorie sources of the human diet. However, durum wheat is encountered with a severe grain yield bottleneck due to the erosion of genetic diversity stemming from long-term domestication and especially modern breeding programs. The improvement of yield and grain quality of durum wheat is crucial when confronted with the increasing global population, changing climate environments, and the non-ignorable increasing incidence of wheat-related disorders. This review summarized the domestication and evolution process and discussed the durum wheat re-evolution attempts performed by global researchers using diploid einkorn, tetraploid emmer wheat, hexaploid wheat (particularly the D-subgenome), etc. In addition, the re-evolution of durum wheat would be promoted by the genetic enrichment process, which could diversify allelic combinations through enhancing chromosome recombination (pentaploid hybridization or pairing of homologous chromosomes gene Ph mutant line induced homoeologous recombination) and environmental adaptability via alien introgressive genes (wide cross or distant hybridization followed by embryo rescue), and modifying target genes or traits by molecular approaches, such as CRISPR/Cas9 or RNA interference (RNAi). A brief discussion of the future perspectives for exploring germplasm for the modern improvement and re-evolution of durum wheat is included.
Collapse
|
17
|
Altendorf KR, DeHaan LR, Larson SR, Anderson JA. QTL for seed shattering and threshability in intermediate wheatgrass align closely with well-studied orthologs from wheat, barley, and rice. THE PLANT GENOME 2021; 14:e20145. [PMID: 34626160 DOI: 10.1002/tpg2.20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Perennial grain crops have the potential to improve agricultural sustainability but few existing species produce sufficient grain yield to be economically viable. The outcrossing, allohexaploid, and perennial forage species intermediate wheatgrass (IWG) [Thinopyrum intermedium (Host) Barkworth & D. R. Dewey] has shown promise in undergoing direct domestication as a perennial grain crop using phenotypic and genomic selection. However, decades of selection will be required to achieve yields on par with annual small-grain crops. Marker-aided selection could accelerate progress if important genomic regions associated with domestication were identified. Here we use the IWG nested association mapping (NAM) population, with 1,168 F1 progeny across 10 families to dissect the genetic control of brittle rachis, floret shattering, and threshability. We used a genome-wide association study (GWAS) with 8,003 single nucleotide polymorphism (SNP) markers and linkage mapping-both within-family and combined across families-with a robust phenotypic dataset collected from four unique year-by-location combinations. A total of 29 quantitative trait loci (QTL) using GWAS and 20 using the combined linkage analysis were detected, and most large-effect QTL were in common across the two analysis methods. We reveal that the genetic control of these traits in IWG is complex, with significant QTL across multiple chromosomes, sometimes within and across homoeologous groups and effects that vary depending on the family. In some cases, these QTL align within 216 bp to 31 Mbp of BLAST hits for known domestication genes in related species and may serve as precise targets of selection and directions for further study to advance the domestication of IWG.
Collapse
Affiliation(s)
- Kayla R Altendorf
- USDA-ARS Forage Seed and Cereal Research Unit, Prosser, WA, 99350, USA
| | | | - Steve R Larson
- USDA-ARS Forage & Range Research Lab, Logan, UT, 84322, USA
| | - James A Anderson
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
18
|
Abrouk M, Athiyannan N, Müller T, Pailles Y, Stritt C, Roulin AC, Chu C, Liu S, Morita T, Handa H, Poland J, Keller B, Krattinger SG. Population genomics and haplotype analysis in spelt and bread wheat identifies a gene regulating glume color. Commun Biol 2021; 4:375. [PMID: 33742098 PMCID: PMC7979816 DOI: 10.1038/s42003-021-01908-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/25/2021] [Indexed: 01/25/2023] Open
Abstract
The cloning of agriculturally important genes is often complicated by haplotype variation across crop cultivars. Access to pan-genome information greatly facilitates the assessment of structural variations and rapid candidate gene identification. Here, we identified the red glume 1 (Rg-B1) gene using association genetics and haplotype analyses in ten reference grade wheat genomes. Glume color is an important trait to characterize wheat cultivars. Red glumes are frequent among Central European spelt, a dominant wheat subspecies in Europe before the 20th century. We used genotyping-by-sequencing to characterize a global diversity panel of 267 spelt accessions, which provided evidence for two independent introductions of spelt into Europe. A single region at the Rg-B1 locus on chromosome 1BS was associated with glume color in the diversity panel. Haplotype comparisons across ten high-quality wheat genomes revealed a MYB transcription factor as candidate gene. We found extensive haplotype variation across the ten cultivars, with a particular group of MYB alleles that was conserved in red glume wheat cultivars. Genetic mapping and transient infiltration experiments allowed us to validate this particular MYB transcription factor variants. Our study demonstrates the value of multiple high-quality genomes to rapidly resolve copy number and haplotype variations in regions controlling agriculturally important traits.
Collapse
Affiliation(s)
- Michael Abrouk
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Naveenkumar Athiyannan
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Thomas Müller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Yveline Pailles
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christoph Stritt
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | | | - Shuyu Liu
- Texas A&M AgriLife Research, Amarillo, TX, USA
| | - Takumi Morita
- Department of Agricultural and Life Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Hirokazu Handa
- Laboratory of Plant Breeding, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Simon G Krattinger
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
19
|
Nave M, Taş M, Raupp J, Tiwari VK, Ozkan H, Poland J, Hale I, Komatsuda T, Distelfeld A. The Independent Domestication of Timopheev's Wheat: Insights from Haplotype Analysis of the Brittle rachis 1 ( BTR1-A) Gene. Genes (Basel) 2021; 12:genes12030338. [PMID: 33668927 PMCID: PMC7996576 DOI: 10.3390/genes12030338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 01/19/2023] Open
Abstract
Triticum turgidum and T. timopheevii are two tetraploid wheat species sharing T. urartu as a common ancestor, and domesticated accessions from both of these allopolyploids exhibit nonbrittle rachis (i.e., nonshattering spikes). We previously described the loss-of-function mutations in the Brittle Rachis 1 genes BTR1-A and BTR1-B in the A and B subgenomes, respectively, that are responsible for this most visible domestication trait in T. turgidum. Resequencing of a large panel of wild and domesticated T. turgidum accessions subsequently led to the identification of the two progenitor haplotypes of the btr1-A and btr1-B domesticated alleles. Here, we extended the haplotype analysis to other T. turgidum subspecies and to the BTR1 homologues in the related T. timopheevii species. Our results showed that all the domesticated wheat subspecies within T. turgidum share common BTR1-A and BTR1-B haplotypes, confirming their common origin. In T. timopheevii, however, we identified a novel loss-of-function btr1-A allele underlying a partially brittle spike phenotype. This novel recessive allele appeared fixed within the pool of domesticated Timopheev’s wheat but was also carried by one wild timopheevii accession exhibiting partial brittleness. The promoter region for BTR1-B could not be amplified in any T. timopheevii accessions with any T. turgidum primer combination, exemplifying the gene-level distance between the two species. Altogether, our results support the concept of independent domestication processes for the two polyploid, wheat-related species.
Collapse
Affiliation(s)
- Moran Nave
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences and the Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mihriban Taş
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana 01250, Turkey; (M.T.); (H.O.)
| | - John Raupp
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (J.P.)
| | - Vijay K. Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA;
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana 01250, Turkey; (M.T.); (H.O.)
| | - Jesse Poland
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (J.P.)
| | - Iago Hale
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824, USA;
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8518, Japan;
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Assaf Distelfeld
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences and the Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-(0)4-8288328
| |
Collapse
|
20
|
Zeng X, Chen G, Wang L, Tagiri A, Kikuchi S, Sassa H, Komatsuda T. The unique disarticulation layer formed in the rachis of Aegilops longissima probably results from the spatial co-expression of Btr1 and Btr2. ANNALS OF BOTANY 2021; 127:297-304. [PMID: 32766735 PMCID: PMC7872126 DOI: 10.1093/aob/mcaa147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS The brittle rachis trait is a feature of many wild grasses, particularly within the tribe Triticeae. Wild Hordeum and Triticum species form a disarticulation layer above the rachis node, resulting in the production of wedge-type dispersal units. In Aegilops longissima, only one or two of the nodes in the central portion of its rachis are brittle. In Triticeae species, the formation of a disarticulation layer above the rachis node requires the co-transcription of the two dominant and complementary genes Btr1 and Btr2. This study aims to establish whether homologues of Btr1 and/or Btr2 underlie the unusual brittle rachis phenotype observed in Ae. longissima. METHODS Scanning electron microscopy was used to examine the disarticulation surfaces. Quantitative RT-PCR and RNA in situ hybridization experiments were used to identify gene expression in the immature inflorescence. KEY RESULTS Analysis based on scanning electron microscopy was able to demonstrate that the disarticulation surfaces formed in the Ae. longissima rachis are morphologically indistinguishable from those formed in the rachises of wild Hordeum and Triticum species. RNA in situ hybridization showed that in the immature Ae. longissima inflorescence, the intensity of Btr1 transcription varied from high at the rachis base to low at its apex, while that of Btr2 was limited to the nodes in the central to distal portion of the rachis. CONCLUSIONS The disarticulation pattern shown by Ae. longissima results from the limitation of Btr1 and Btr2 co-expression to nodes lying in the centre of the rachis.
Collapse
Affiliation(s)
- Xiaoxue Zeng
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Gang Chen
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Lei Wang
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Akemi Tagiri
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Takao Komatsuda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
21
|
Kellogg EA. The rachis cannot hold, plants fall apart. A commentary on: 'The unique disarticulation layer formed in the rachis of Aegilops longissima likely results from the spatial co-expression of Btr1 and Btr2'. ANNALS OF BOTANY 2021; 127:vi-vii. [PMID: 33336239 PMCID: PMC7872103 DOI: 10.1093/aob/mcaa194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This article comments on: Xiaoxue Zeng, Gang Chen, Lei Wang, Akemi Tagiri, Shinji Kikuchi, Hidenori Sassa and Takao Komatsuda, The unique disarticulation layer formed in the rachis of Aegilops longissima probably results from the spatial co-expression of Btr1 and Btr2, Annals of Botany, Volume 127, Issue 3, 16 February 2021, Pages 297–304, https://doi.org/10.1093/aob/mcaa147
Collapse
|
22
|
Zeng X, Tagiri A, Kikuchi S, Sassa H, Komatsuda T. The Ectopic Expression of Btr2 in Aegilops tauschii Switches the Disarticulation Layer From Above to Below the Rachis Node. FRONTIERS IN PLANT SCIENCE 2020; 11:582622. [PMID: 33240300 PMCID: PMC7680762 DOI: 10.3389/fpls.2020.582622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 05/31/2023]
Abstract
Seed dispersal among wild species belonging to the tribe Triticeae is typically achieved by the formation of a brittle rachis. The trait relies on the development of a disarticulation layer, most frequently above the rachis node (resulting in wedge type dispersal units), but in some species below the rachis node (resulting in barrel type dispersal units). The genes responsible for the former type are the complementary pair Btr1 and Btr2, while the genetic basis of the latter type has yet to be determined. Aegilops tauschii forms barrel type dispersal units and previous study showed this species lacked an intact copy of Btr1. Here it has been demonstrated that Ae. tauschii carries two of Btr2; and that Btr2 transcript is present in a region below the rachis node where the abscission zone forms. The implication is that in this species, the Btr2 product is involved in the formation of barrel type dispersal units.
Collapse
Affiliation(s)
- Xiaoxue Zeng
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Akemi Tagiri
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Takao Komatsuda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
23
|
Triticum population sequencing provides insights into wheat adaptation. Nat Genet 2020; 52:1412-1422. [PMID: 33106631 DOI: 10.1038/s41588-020-00722-w] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Bread wheat expanded its habitat from a core area of the Fertile Crescent to global environments within ~10,000 years. The genetic mechanisms of this remarkable evolutionary success are not well understood. By whole-genome sequencing of populations from 25 subspecies within the genera Triticum and Aegilops, we identified composite introgression from wild populations contributing to a substantial portion (4-32%) of the bread wheat genome, which increased the genetic diversity of bread wheat and allowed its divergent adaptation. Meanwhile, convergent adaptation to human selection showed 2- to 16-fold enrichment relative to random expectation-a certain set of genes were repeatedly selected in Triticum species despite their drastic differences in ploidy levels and growing zones, indicating the important role of evolutionary constraints in shaping the adaptive landscape of bread wheat. These results showed the genetic necessities of wheat as a global crop and provided new perspectives on transferring adaptive success across species for crop improvement.
Collapse
|
24
|
Vavilova V, Konopatskaia I, Blinov A, Kondratenko EY, Kruchinina YV, Goncharov NP. Genetic variability of spelt factor gene in Triticum and Aegilops species. BMC PLANT BIOLOGY 2020; 20:310. [PMID: 33050874 PMCID: PMC7556929 DOI: 10.1186/s12870-020-02536-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Threshability, rachis fragility and spike shape are critical traits for the domestication and evolution of wheat, determining the crop yield and efficiency of the harvest. Spelt factor gene Q controls a wide range of domestication-related traits in polyploid wheats, including those mentioned above. The main goal of the present study was to characterise the Q gene for uninvestigated accessions of wheats, including four endemics, and Aegilops accessions, and to analyze the species evolution based on differences in Q gene sequences. RESULTS We have studied the spike morphology for 15 accessions of wheat species, including four endemics, namely Triticum macha, T. tibetanum, T. aestivum ssp. petropavlovskyi and T. spelta ssp. yunnanense, and 24 Aegilops accessions, which are donors of B and D genomes for polyploid wheat. The Q-5A, q-5D and q-5S genes were investigated, and a novel allele of the Q-5A gene was found in accessions of T. tibetanum (KU510 and KU515). This allele was similar to the Q allele of T. aestivum cv. Chinese Spring but had an insertion 161 bp in length within exon 5. This insertion led to a frameshift and premature stop codon formation. Thus, the T. tibetanum have spelt spikes, which is probably determined by the gene Tg, rather than Q. We determined the variability within the q-5D genes among hexaploid wheat and their D genome donor Aegilops tauschii. Moreover, we studied the accessions C21-5129, KU-2074, and K-1100 of Ae. tauschii ssp. strangulata, which could be involved in the origin of hexaploid wheats. CONCLUSIONS The variability and phylogenetic relationships of the Q gene sequences studied allowed us to clarify the relationships between species of the genus Triticum and to predict the donor of the D genome among the Ae. tauschii accessions. Ae. tauschii ssp. strangulata accessions C21-5129, KU-2074 and K-1100 are the most interesting among the analysed accessions, since their partial sequence of q-5D is identical to the q-5D of T. aestivum cv. Chinese Spring. This result indicates that the donor is Ae. tauschii ssp. strangulata but not Ae. tauschii ssp. tauschii. Our analysis allowed us to clarify the phylogenetic relationships in the genus Triticum.
Collapse
Affiliation(s)
- Valeriya Vavilova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation.
| | - Irina Konopatskaia
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Alexandr Blinov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | | | | | | |
Collapse
|
25
|
Zeng X, Mishina K, Jia J, Distelfeld A, Maughan PJ, Kikuchi S, Sassa H, Komatsuda T. The Brittle Rachis Trait in Species Belonging to the Triticeae and Its Controlling Genes Btr1 and Btr2. FRONTIERS IN PLANT SCIENCE 2020; 11:1000. [PMID: 32793251 PMCID: PMC7387508 DOI: 10.3389/fpls.2020.01000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 05/31/2023]
Abstract
In many non-cultivated angiosperm species, seed dispersal is facilitated by the shattering of the seed head at maturity; in the Triticeae tribe, to which several of the world's most important cereals belong, shattering takes the form of a disarticulation of the rachis. The products of the genes Btr1 and Btr2 are both required for disarticulation to occur above the rachis nodes within the genera Hordeum (barley) and Triticum/Aegilops (wheat). Here, it has been shown that both Btr1 and Btr2 are specific to the Triticeae tribe, although likely paralogs (Btr1-like and Btr2-like) are carried by the family Poaceae including Triticeae. Aegilops tauschii (the donor of the bread wheat D genome) lacks a copy of Btr1 and disarticulation in this species occurs below, rather than above the rachis node; thus, the product of Btr1 appears to be required for disarticulation to occur above the rachis node.
Collapse
Affiliation(s)
- Xiaoxue Zeng
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Kohei Mishina
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Juqing Jia
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Assaf Distelfeld
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Peter Jeff Maughan
- Department of Plant & Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Takao Komatsuda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
26
|
Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB. Global Role of Crop Genomics in the Face of Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:922. [PMID: 32765541 PMCID: PMC7378793 DOI: 10.3389/fpls.2020.00922] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/05/2020] [Indexed: 05/05/2023]
Abstract
The development of climate change resilient crops is necessary if we are to meet the challenge of feeding the growing world's population. We must be able to increase food production despite the projected decrease in arable land and unpredictable environmental conditions. This review summarizes the technological and conceptual advances that have the potential to transform plant breeding, help overcome the challenges of climate change, and initiate the next plant breeding revolution. Recent developments in genomics in combination with high-throughput and precision phenotyping facilitate the identification of genes controlling critical agronomic traits. The discovery of these genes can now be paired with genome editing techniques to rapidly develop climate change resilient crops, including plants with better biotic and abiotic stress tolerance and enhanced nutritional value. Utilizing the genetic potential of crop wild relatives (CWRs) enables the domestication of new species and the generation of synthetic polyploids. The high-quality crop plant genome assemblies and annotations provide new, exciting research targets, including long non-coding RNAs (lncRNAs) and cis-regulatory regions. Metagenomic studies give insights into plant-microbiome interactions and guide selection of optimal soils for plant cultivation. Together, all these advances will allow breeders to produce improved, resilient crops in relatively short timeframes meeting the demands of the growing population and changing climate.
Collapse
Affiliation(s)
| | | | | | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
Vavilova VY, Konopatskaia ID, Blinov AG, Goncharov NP. Evolution of Btr1-А Gene in Diploid Wheat Species of the Genus Triticum L. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Hensel G. Genetic transformation of Triticeae cereals – Summary of almost three-decade's development. Biotechnol Adv 2020; 40:107484. [DOI: 10.1016/j.biotechadv.2019.107484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/23/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
|
29
|
Sakuma S, Schnurbusch T. Of floral fortune: tinkering with the grain yield potential of cereal crops. THE NEW PHYTOLOGIST 2020; 225:1873-1882. [PMID: 31509613 DOI: 10.1111/nph.16189] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/28/2019] [Indexed: 05/19/2023]
Abstract
Enhancing the yield potential and stability of small-grain cereals, such as wheat (Triticum sp.), rice (Oryza sativa), and barley (Hordeum vulgare), is a priority for global food security. Over the last several decades, plant breeders have increased grain yield mainly by increasing the number of grains produced in each inflorescence. This trait is determined by the number of spikelets per spike and the number of fertile florets per spikelet. Recent genetic and genomic advances in cereal grass species have identified the molecular determinants of grain number and facilitated the exchange of information across genera. In this review, we focus on the genetic basis of inflorescence architecture in Triticeae crops, highlighting recent insights that have helped to improve grain yield by, for example, reducing the preprogrammed abortion of floral organs. The accumulating information on inflorescence development can be harnessed to enhance grain yield by comparative trait reconstruction and rational design to boost the yield potential of grain crops.
Collapse
Affiliation(s)
- Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
30
|
Abdelrahman M, Burritt DJ, Gupta A, Tsujimoto H, Tran LSP. Heat stress effects on source-sink relationships and metabolome dynamics in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:543-554. [PMID: 31232445 DOI: 10.1093/jxb/erz296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/11/2019] [Indexed: 05/21/2023]
Abstract
Crops such as wheat (Triticum spp.) are predicted to face more frequent exposures to heat stress as a result of climate change. Increasing the yield and sustainability of yield under such stressful conditions has long been a major target of wheat breeding, and this goal is becoming increasingly urgent as the global population increases. Exposure of wheat plants in their reproductive or grain-filling stage to high temperature affects the duration and rate of grain filling, and hence has a negative impact on wheat productivity. Therefore, understanding the plasticity of the response to heat stress that exists between wheat genotypes, especially in source-sink relationships at the reproductive and grain-filling stages, is critical for the selection of germplasm that can maintain high yields under heat stress. A broad understanding of metabolic dynamics and the relationships between metabolism and heat tolerance is required in order to achieve this goal. Here, we review the current literature concerning the effects of heat stress on sink-source relationships in a wide range of wheat genotypes, and highlight the current metabolomic approaches that are used to investigate high temperature responses in wheat.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Quang Trung, Da Nang, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi Yokohama, Japan
| |
Collapse
|
31
|
Nave M, Avni R, Çakır E, Portnoy V, Sela H, Pourkheirandish M, Ozkan H, Hale I, Komatsuda T, Dvorak J, Distelfeld A. Wheat domestication in light of haplotype analyses of the Brittle rachis 1 genes (BTR1-A and BTR1-B). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:193-199. [PMID: 31203884 DOI: 10.1016/j.plantsci.2019.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Wheat domestication was a milestone in the rise of agrarian societies in the Fertile Crescent. As opposed to the freely dispersing seeds of its tetraploid progenitor wild emmer, the hallmark trait of domesticated wheat is intact, harvestable spikes. During domestication, wheat acquired recessive loss-of-function mutations in the Brittle Rachis 1 genes, both in the A genome (BTR1-A) and B genome (BTR1-B). In this study, we probe the geographical provenances of these mutations via haplotype analyses of a collection of wild and domesticated accessions. Our results show that the precursor of the domesticated haplotype of BTR1-A was detected in 32% of the wild accessions gathered throughout the Levant, from central Israel to central Turkey. In contrast, the precursor of the domesticated haplotype of BTR1-B, which carries a distinct 11 bp deletion in the promoter region, was found in only 10% of the tested wild accessions, all from the Southern Levant. Moreover, we identified of a single wild emmer accession in Southern Levant that carries the progenitor haplotypes for both BTR1-A and BTR1-B genes. These observations suggest that at least part of the emmer domestication process occurred in Southern Levant, contrary to the widely held view that the northern part of the Fertile Crescent was the center of wheat domestication.
Collapse
Affiliation(s)
- Moran Nave
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Raz Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Esra Çakır
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Vitaly Portnoy
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Hanan Sela
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Mohammad Pourkheirandish
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Iago Hale
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences, Tsukuba, Japan; Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Assaf Distelfeld
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
32
|
Zhao Y, Xie P, Guan P, Wang Y, Li Y, Yu K, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Xie C, Peng H. Btr1-A Induces Grain Shattering and Affects Spike Morphology and Yield-Related Traits in Wheat. PLANT & CELL PHYSIOLOGY 2019; 60:1342-1353. [PMID: 30994893 DOI: 10.1093/pcp/pcz050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Spike brittleness represents an important domestication trait in crops. Although the brittle rachis of wild wheat was cloned, however, the molecular mechanism underlying spike brittleness is yet to be elucidated. Here, we identified a single dominant brittle rachis gene Br-Ab on chromosome arm 3AbS using an F2 population of diploid wheat and designated Btr1-Ab. Sequence analysis of the Btr1-A gene in 40 diploid wheat accessions, 80 tetraploid wheat accessions and 38 hexaploid wheat accessions showed that two independent mutations (Ala119Thr for diploid and Gly97* for polyploids) in the Btr1-A coding region resulting in the nonbrittle rachis allele. Overexpression of Btr1-Ab in nonbrittle hexaploid wheat led to brittle rachis in transgenic plants. RNA-Seq analysis revealed that Btr1-A represses the expression of cell wall biosynthesis genes during wheat rachis development. In addition, we found that Btr1-A can modify spike morphology and reduce threshability, grain size and thousand grain weight in transgenic wheat. These results demonstrated that Btr1-A reduces cell wall synthesis in rachis nodes, resulting in natural spikelet shattering, and that the transition from Btr1-A to btr1-A during wheat domestication had profound effects on evolution of spike morphology and yield-related traits.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
- These authors contributed equally to this work
| | - Peng Xie
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
- These authors contributed equally to this work
| | - Panfeng Guan
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
- These authors contributed equally to this work
| | - Yongfa Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Yinghui Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Kuohai Yu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Chaojie Xie
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|