1
|
Rao X, Liu W. A Guide to Metabolic Network Modeling for Plant Biology. PLANTS (BASEL, SWITZERLAND) 2025; 14:484. [PMID: 39943046 PMCID: PMC11820892 DOI: 10.3390/plants14030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Plants produce a diverse array of compounds that play crucial roles in growth, in development, and in responses to abiotic and biotic stresses. Understanding the fluxes within metabolic pathways is essential for guiding strategies aimed at directing metabolism for crop improvement and the plant natural product industry. Over the past decade, metabolic network modeling has emerged as a predominant tool for the integration, quantification, and prediction of the spatial and temporal distribution of metabolic flows. In this review, we present the primary methods for constructing mathematical models of metabolic systems and highlight recent achievements in plant metabolism using metabolic modeling. Furthermore, we discuss current challenges in applying network flux analysis in plants and explore the potential use of machine learning technologies in plant metabolic modeling. The practical application of mathematical modeling is expected to provide significant insights into the structure and regulation of plant metabolic networks.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, China
| |
Collapse
|
2
|
Wendering P, Andreou GM, Laitinen RAE, Nikoloski Z. Metabolic modeling identifies determinants of thermal growth responses in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025. [PMID: 39856022 DOI: 10.1111/nph.20420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Temperature is a critical environmental factor affecting nearly all plant processes, including growth, development, and yield. Yet, despite decades of research, we lack the ability to predict plant performance at different temperatures, limiting the development of climate-resilient crops. Further, there is a pressing need to bridge the gap between the prediction of physiological and molecular traits to improve our understanding and manipulation of plant temperature responses. Here, we developed the first enzyme-constrained model of Arabidopsis thaliana's metabolism, facilitating predictions of growth-related phenotypes at different temperatures. We showed that the model can be employed for in silico identification of genes that affect plant growth at suboptimal growth temperature. Using mutant lines, we validated the genes predicted to affect plant growth, demonstrating the potential of metabolic modeling in accurately predicting plant thermal responses. The temperature-dependent enzyme-constrained metabolic model provides a template that can be used for developing sophisticated strategies to engineer climate-resilient crops.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Gregory M Andreou
- Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, Helsinki, 00790, Finland
| | - Roosa A E Laitinen
- Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, Helsinki, 00790, Finland
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
3
|
Sampaio M, Rocha M, Dias O. A diel multi-tissue genome-scale metabolic model of Vitis vinifera. PLoS Comput Biol 2024; 20:e1012506. [PMID: 39388487 PMCID: PMC11495577 DOI: 10.1371/journal.pcbi.1012506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/22/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Vitis vinifera, also known as grapevine, is widely cultivated and commercialized, particularly to produce wine. As wine quality is directly linked to fruit quality, studying grapevine metabolism is important to understand the processes underlying grape composition. Genome-scale metabolic models (GSMMs) have been used for the study of plant metabolism and advances have been made, allowing the integration of omics datasets with GSMMs. On the other hand, Machine learning (ML) has been used to analyze and integrate omics data, and while the combination of ML with GSMMs has shown promising results, it is still scarcely used to study plants. Here, the first GSSM of V. vinifera was reconstructed and validated, comprising 7199 genes, 5399 reactions, and 5141 metabolites across 8 compartments. Tissue-specific models for the stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases. The potential of combining ML with GSMMs was explored by using ML to analyze the fluxomics data generated by green and mature grape GSMMs and provide insights regarding the metabolism of grapes at different developmental stages. Therefore, the models developed in this work are useful tools to explore different aspects of grapevine metabolism and understand the factors influencing grape quality.
Collapse
Affiliation(s)
- Marta Sampaio
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Miguel Rocha
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, Braga, Portugal
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
| | - Oscar Dias
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, Braga, Portugal
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Yu J, Wang X, Yuan Q, Shi J, Cai J, Li Z, Ma H. Elucidating the impact of in vitro cultivation on Nicotiana tabacum metabolism through combined in silico modeling and multiomics analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1281348. [PMID: 38023876 PMCID: PMC10655011 DOI: 10.3389/fpls.2023.1281348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The systematical characterization and understanding of the metabolic behaviors are the basis of the efficient plant metabolic engineering and synthetic biology. Genome-scale metabolic networks (GSMNs) are indispensable tools for the comprehensive characterization of overall metabolic profile. Here we first constructed a GSMN of tobacco, which is one of the most widely used plant chassis, and then combined the tobacco GSMN and multiomics analysis to systematically elucidate the impact of in-vitro cultivation on the tobacco metabolic network. In-vitro cultivation is a widely used technique for plant cultivation, not only in the field of basic research but also for the rapid propagation of valuable horticultural and pharmaceutical plants. However, the systemic effects of in-vitro cultivation on overall plant metabolism could easily be overlooked and are still poorly understood. We found that in-vitro tobacco showed slower growth, less biomass and suppressed photosynthesis than soil-grown tobacco. Many changes of metabolites and metabolic pathways between in-vitro and soil-grown tobacco plants were identified, which notably revealed a significant increase of the amino acids content under in-vitro condition. The in silico investigation showed that in-vitro tobacco downregulated photosynthesis and primary carbon metabolism, while significantly upregulated the GS/GOGAT cycle, as well as producing more energy and less NADH/NADPH to acclimate in-vitro growth demands. Altogether, the combination of experimental and in silico analyses offers an unprecedented view of tobacco metabolism, with valuable insights into the impact of in-vitro cultivation, enabling more efficient utilization of in-vitro techniques for plant propagation and metabolic engineering.
Collapse
Affiliation(s)
- Jing Yu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaowei Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qianqian Yuan
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiaxin Shi
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jingyi Cai
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhichao Li
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
5
|
Saadat NP, van Aalst M, Brand A, Ebenhöh O, Tissier A, Matuszyńska AB. Shifts in carbon partitioning by photosynthetic activity increase terpenoid synthesis in glandular trichomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1716-1728. [PMID: 37337787 DOI: 10.1111/tpj.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Several commercially important secondary metabolites are produced and accumulated in high amounts by glandular trichomes, giving the prospect of using them as metabolic cell factories. Due to extremely high metabolic fluxes through glandular trichomes, previous research focused on how such flows are achieved. The question regarding their bioenergetics became even more interesting with the discovery of photosynthetic activity in some glandular trichomes. Despite recent advances, how primary metabolism contributes to the high metabolic fluxes in glandular trichomes is still not fully elucidated. Using computational methods and available multi-omics data, we first developed a quantitative framework to investigate the possible role of photosynthetic energy supply in terpenoid production and next tested experimentally the simulation-driven hypothesis. With this work, we provide the first reconstruction of specialised metabolism in Type-VI photosynthetic glandular trichomes of Solanum lycopersicum. Our model predicted that increasing light intensities results in a shift of carbon partitioning from catabolic to anabolic reactions driven by the energy availability of the cell. Moreover, we show the benefit of shifting between isoprenoid pathways under different light regimes, leading to a production of different classes of terpenes. Our computational predictions were confirmed in vivo, demonstrating a significant increase in production of monoterpenoids while the sesquiterpenes remained unchanged under higher light intensities. The outcomes of this research provide quantitative measures to assess the beneficial role of chloroplast in glandular trichomes for enhanced production of secondary metabolites and can guide the design of new experiments that aim at modulating terpenoid production.
Collapse
Affiliation(s)
- Nima P Saadat
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Marvin van Aalst
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Alejandro Brand
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Oliver Ebenhöh
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Alain Tissier
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Anna B Matuszyńska
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
6
|
Wendering P, Nikoloski Z. Toward mechanistic modeling and rational engineering of plant respiration. PLANT PHYSIOLOGY 2023; 191:2150-2166. [PMID: 36721968 PMCID: PMC10069892 DOI: 10.1093/plphys/kiad054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Plant respiration not only provides energy to support all cellular processes, including biomass production, but also plays a major role in the global carbon cycle. Therefore, modulation of plant respiration can be used to both increase the plant yield and mitigate the effects of global climate change. Mechanistic modeling of plant respiration at sufficient biochemical detail can provide key insights for rational engineering of this process. Yet, despite its importance, plant respiration has attracted considerably less modeling effort in comparison to photosynthesis. In this update review, we highlight the advances made in modeling of plant respiration, emphasizing the gradual but important change from phenomenological to models based on first principles. We also provide a detailed account of the existing resources that can contribute to resolving the challenges in modeling plant respiration. These resources point at tangible improvements in the representation of cellular processes that contribute to CO2 evolution and consideration of kinetic properties of underlying enzymes to facilitate mechanistic modeling. The update review emphasizes the need to couple biochemical models of respiration with models of acclimation and adaptation of respiration for their effective usage in guiding breeding efforts and improving terrestrial biosphere models tailored to future climate scenarios.
Collapse
Affiliation(s)
- Philipp Wendering
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Sampaio M, Rocha M, Dias O. Exploring synergies between plant metabolic modelling and machine learning. Comput Struct Biotechnol J 2022; 20:1885-1900. [PMID: 35521559 PMCID: PMC9052043 DOI: 10.1016/j.csbj.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022] Open
|
8
|
Yang J, Zhu Q, Chai J, Xu F, Ding Y, Zhu Q, Lu Z, Khoo KS, Bian X, Wang S, Show PL. Development of environmentally friendly biological algicide and biochemical analysis of inhibitory effect of diatom Skeletonema costatum. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Chowdhury NB, Schroeder WL, Sarkar D, Amiour N, Quilleré I, Hirel B, Maranas CD, Saha R. Dissecting the metabolic reprogramming of maize root under nitrogen-deficient stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:275-291. [PMID: 34554248 DOI: 10.1093/jxb/erab435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The growth and development of maize (Zea mays L.) largely depends on its nutrient uptake through the root. Hence, studying its growth, response, and associated metabolic reprogramming to stress conditions is becoming an important research direction. A genome-scale metabolic model (GSM) for the maize root was developed to study its metabolic reprogramming under nitrogen stress conditions. The model was reconstructed based on the available information from KEGG, UniProt, and MaizeCyc. Transcriptomics data derived from the roots of hydroponically grown maize plants were used to incorporate regulatory constraints in the model and simulate nitrogen-non-limiting (N+) and nitrogen-deficient (N-) condition. Model-predicted flux-sum variability analysis achieved 70% accuracy compared with the experimental change of metabolite levels. In addition to predicting important metabolic reprogramming in central carbon, fatty acid, amino acid, and other secondary metabolism, maize root GSM predicted several metabolites (l-methionine, l-asparagine, l-lysine, cholesterol, and l-pipecolate) playing a regulatory role in the root biomass growth. Furthermore, this study revealed eight phosphatidylcholine and phosphatidylglycerol metabolites which, even though not coupled with biomass production, played a key role in the increased biomass production under N-deficient conditions. Overall, the omics-integrated GSM provides a promising tool to facilitate stress condition analysis for maize root and engineer better stress-tolerant maize genotypes.
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Wheaton L Schroeder
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Debolina Sarkar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Nardjis Amiour
- Institut National de Recherche pour l'Agriculure, l'Alimentation et l'Envionnement (INRAE), Centre de Versailles-Grignon, Versailles cedex, France
| | - Isabelle Quilleré
- Institut National de Recherche pour l'Agriculure, l'Alimentation et l'Envionnement (INRAE), Centre de Versailles-Grignon, Versailles cedex, France
| | - Bertrand Hirel
- Institut National de Recherche pour l'Agriculure, l'Alimentation et l'Envionnement (INRAE), Centre de Versailles-Grignon, Versailles cedex, France
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Root and Rhizobiome Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
10
|
Shameer S, Wang Y, Bota P, Ratcliffe RG, Long SP, Sweetlove LJ. A hybrid kinetic and constraint-based model of leaf metabolism allows predictions of metabolic fluxes in different environments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:295-313. [PMID: 34699645 DOI: 10.1111/tpj.15551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
While flux balance analysis (FBA) provides a framework for predicting steady-state leaf metabolic network fluxes, it does not readily capture the response to environmental variables without being coupled to other modelling formulations. To address this, we coupled an FBA model of 903 reactions of soybean (Glycine max) leaf metabolism with e-photosynthesis, a dynamic model that captures the kinetics of 126 reactions of photosynthesis and associated chloroplast carbon metabolism. Successful coupling was achieved in an iterative formulation in which fluxes from e-photosynthesis were used to constrain the FBA model and then, in turn, fluxes computed from the FBA model used to update parameters in e-photosynthesis. This process was repeated until common fluxes in the two models converged. Coupling did not hamper the ability of the kinetic module to accurately predict the carbon assimilation rate, photosystem II electron flux, and starch accumulation of field-grown soybean at two CO2 concentrations. The coupled model also allowed accurate predictions of additional parameters such as nocturnal respiration, as well as analysis of the effect of light intensity and elevated CO2 on leaf metabolism. Predictions included an unexpected decrease in the rate of export of sucrose from the leaf at high light, due to altered starch-sucrose partitioning, and altered daytime flux modes in the tricarboxylic acid cycle at elevated CO2 . Mitochondrial fluxes were notably different between growing and mature leaves, with greater anaplerotic, tricarboxylic acid cycle and mitochondrial ATP synthase fluxes predicted in the former, primarily to provide carbon skeletons and energy for protein synthesis.
Collapse
Affiliation(s)
- Sanu Shameer
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Yu Wang
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pedro Bota
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stephen P Long
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
11
|
GPRuler: Metabolic gene-protein-reaction rules automatic reconstruction. PLoS Comput Biol 2021; 17:e1009550. [PMID: 34748537 PMCID: PMC8601613 DOI: 10.1371/journal.pcbi.1009550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/18/2021] [Accepted: 10/11/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic network models are increasingly being used in health care and industry. As a consequence, many tools have been released to automate their reconstruction process de novo. In order to enable gene deletion simulations and integration of gene expression data, these networks must include gene-protein-reaction (GPR) rules, which describe with a Boolean logic relationships between the gene products (e.g., enzyme isoforms or subunits) associated with the catalysis of a given reaction. Nevertheless, the reconstruction of GPRs still remains a largely manual and time consuming process. Aiming at fully automating the reconstruction process of GPRs for any organism, we propose the open-source python-based framework GPRuler. By mining text and data from 9 different biological databases, GPRuler can reconstruct GPRs starting either from just the name of the target organism or from an existing metabolic model. The performance of the developed tool is evaluated at small-scale level for a manually curated metabolic model, and at genome-scale level for three metabolic models related to Homo sapiens and Saccharomyces cerevisiae organisms. By exploiting these models as benchmarks, the proposed tool shown its ability to reproduce the original GPR rules with a high level of accuracy. In all the tested scenarios, after a manual investigation of the mismatches between the rules proposed by GPRuler and the original ones, the proposed approach revealed to be in many cases more accurate than the original models. By complementing existing tools for metabolic network reconstruction with the possibility to reconstruct GPRs quickly and with a few resources, GPRuler paves the way to the study of context-specific metabolic networks, representing the active portion of the complete network in given conditions, for organisms of industrial or biomedical interest that have not been characterized metabolically yet.
Collapse
|
12
|
Characterization of effects of genetic variants via genome-scale metabolic modelling. Cell Mol Life Sci 2021; 78:5123-5138. [PMID: 33950314 PMCID: PMC8254712 DOI: 10.1007/s00018-021-03844-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Genome-scale metabolic networks for model plants and crops in combination with approaches from the constraint-based modelling framework have been used to predict metabolic traits and design metabolic engineering strategies for their manipulation. With the advances in technologies to generate large-scale genotyping data from natural diversity panels and other populations, genome-wide association and genomic selection have emerged as statistical approaches to determine genetic variants associated with and predictive of traits. Here, we review recent advances in constraint-based approaches that integrate genetic variants in genome-scale metabolic models to characterize their effects on reaction fluxes. Since some of these approaches have been applied in organisms other than plants, we provide a critical assessment of their applicability particularly in crops. In addition, we further dissect the inferred effects of genetic variants with respect to reaction rate constants, abundances of enzymes, and concentrations of metabolites, as main determinants of reaction fluxes and relate them with their combined effects on complex traits, like growth. Through this systematic review, we also provide a roadmap for future research to increase the predictive power of statistical approaches by coupling them with mechanistic models of metabolism.
Collapse
|
13
|
Environment-coupled models of leaf metabolism. Biochem Soc Trans 2021; 49:119-129. [PMID: 33492365 PMCID: PMC7925006 DOI: 10.1042/bst20200059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
The plant leaf is the main site of photosynthesis. This process converts light energy and inorganic nutrients into chemical energy and organic building blocks for the biosynthesis and maintenance of cellular components and to support the growth of the rest of the plant. The leaf is also the site of gas–water exchange and due to its large surface, it is particularly vulnerable to pathogen attacks. Therefore, the leaf's performance and metabolic modes are inherently determined by its interaction with the environment. Mathematical models of plant metabolism have been successfully applied to study various aspects of photosynthesis, carbon and nitrogen assimilation and metabolism, aided suggesting metabolic intervention strategies for optimized leaf performance, and gave us insights into evolutionary drivers of plant metabolism in various environments. With the increasing pressure to improve agricultural performance in current and future climates, these models have become important tools to improve our understanding of plant–environment interactions and to propel plant breeders efforts. This overview article reviews applications of large-scale metabolic models of leaf metabolism to study plant–environment interactions by means of flux-balance analysis. The presented studies are organized in two ways — by the way the environment interactions are modelled — via external constraints or data-integration and by the studied environmental interactions — abiotic or biotic.
Collapse
|
14
|
Tay IYY, Odang KB, Cheung CYM. Metabolic Modeling of the C 3-CAM Continuum Revealed the Establishment of a Starch/Sugar-Malate Cycle in CAM Evolution. FRONTIERS IN PLANT SCIENCE 2021; 11:573197. [PMID: 33584741 PMCID: PMC7874232 DOI: 10.3389/fpls.2020.573197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/17/2020] [Indexed: 05/11/2023]
Abstract
The evolution of Crassulacean acid metabolism (CAM) is thought to be along a C3-CAM continuum including multiple variations of CAM such as CAM cycling and CAM idling. Here, we applied large-scale constraint-based modeling to investigate the metabolism and energetics of plants operating in C3, CAM, CAM cycling, and CAM idling. Our modeling results suggested that CAM cycling and CAM idling could be potential evolutionary intermediates in CAM evolution by establishing a starch/sugar-malate cycle. Our model analysis showed that by varying CO2 exchange during the light period, as a proxy of stomatal conductance, there exists a C3-CAM continuum with gradual metabolic changes, supporting the notion that evolution of CAM from C3 could occur solely through incremental changes in metabolic fluxes. Along the C3-CAM continuum, our model predicted changes in metabolic fluxes not only through the starch/sugar-malate cycle that is involved in CAM photosynthetic CO2 fixation but also other metabolic processes including the mitochondrial electron transport chain and the tricarboxylate acid cycle at night. These predictions could guide engineering efforts in introducing CAM into C3 crops for improved water use efficiency.
Collapse
|
15
|
Daloso DDM, Williams TCR. Current Challenges in Plant Systems Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:155-170. [DOI: 10.1007/978-3-030-80352-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Correa SM, Alseekh S, Atehortúa L, Brotman Y, Ríos-Estepa R, Fernie AR, Nikoloski Z. Model-assisted identification of metabolic engineering strategies for Jatropha curcas lipid pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:76-95. [PMID: 33001507 DOI: 10.1111/tpj.14906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Efficient approaches to increase plant lipid production are necessary to meet current industrial demands for this important resource. While Jatropha curcas cell culture can be used for in vitro lipid production, scaling up the system for industrial applications requires an understanding of how growth conditions affect lipid metabolism and yield. Here we present a bottom-up metabolic reconstruction of J. curcas supported with labeling experiments and biomass characterization under three growth conditions. We show that the metabolic model can accurately predict growth and distribution of fluxes in cell cultures and use these findings to pinpoint energy expenditures that affect lipid biosynthesis and metabolism. In addition, by using constraint-based modeling approaches we identify network reactions whose joint manipulation optimizes lipid production. The proposed model and computational analyses provide a stepping stone for future rational optimization of other agronomically relevant traits in J. curcas.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Saleh Alseekh
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Lucía Atehortúa
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Zoran Nikoloski
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
- Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
17
|
Correa SM, Fernie AR, Nikoloski Z, Brotman Y. Towards model-driven characterization and manipulation of plant lipid metabolism. Prog Lipid Res 2020; 80:101051. [PMID: 32640289 DOI: 10.1016/j.plipres.2020.101051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel; Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modelling Group, Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
18
|
Shaw R, Cheung CYM. Multi-tissue to whole plant metabolic modelling. Cell Mol Life Sci 2020; 77:489-495. [PMID: 31748916 PMCID: PMC11104929 DOI: 10.1007/s00018-019-03384-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Genome-scale metabolic models have been successfully applied to study the metabolism of multiple plant species in the past decade. While most existing genome-scale modelling studies have focussed on studying the metabolic behaviour of individual plant metabolic systems, there is an increasing focus on combining models of multiple tissues or organs to produce multi-tissue models that allow the investigation of metabolic interactions between tissues and organs. Multi-tissue metabolic models were constructed for multiple plants including Arabidopsis, barley, soybean and Setaria. These models were applied to study various aspects of plant physiology including the division of labour between organs, source and sink tissue relationship, growth of different tissues and organs and charge and proton balancing. In this review, we outline the process of constructing multi-tissue genome-scale metabolic models, discuss the strengths and challenges in using multi-tissue models, review the current status of plant multi-tissue and whole plant metabolic models and explore the approaches for integrating genome-scale metabolic models into multi-scale plant models.
Collapse
Affiliation(s)
- Rahul Shaw
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | | |
Collapse
|