1
|
Overeem R, Pel C, Tjou-Tam-Sin N, van de Bilt J, Gorkink-Smits P, Landman M, Bocsanczy AMB, Norman D, Bergsma-Vlami M. Virulence of Novel Ralstonia pseudosolanacearum (Phylotype I) Strains from Rose, Blueberry, and Mandevilla on Seed Potato. PLANT DISEASE 2023; 107:3718-3726. [PMID: 37467134 DOI: 10.1094/pdis-12-22-2931-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Potato (Solanum tuberosum L.) ranks fourth among the most important staple food in the world. Ralstonia solanacearum (phylotype [phy] IIB, sequevar [seq] 1 and 2), also known as R3B2, the causal agent of brown rot disease on potato, is extremely damaging, causing great economical losses to potato in temperate regions. It is thought that members of Ralstonia pseudosolanacearum (phy I) are not pathogenic at low temperatures and are usually found in warmer climates. R. pseudosolanacearum strain PD 7123 (seq 33) isolated from roses in the Netherlands, strain P824 (seq 13) isolated from blueberry, and strain P781 (seq 14) from mandevilla in Florida are phylogenetically closely related and could share the same host. The virulence and ability of these novel strains to multiply latently in potato in temperate regions is unknown. The objective of this work was to assess the virulence and presence of latent infections of the mentioned R. pseudosolanacearum strains on three commercial seed potato cultivars under warmer (28°C) and temperate (20°C) temperatures. At 28°C, all three R. pseudosolanacearum strains caused severe symptoms on all potato cultivars. Overall disease severity on potato was lower at 20°C than 28°C, but major differences in virulence of the three strains were observed at 42 days postinoculation (dpi) among potato cultivars. All asymptomatic potato plants and most of their daughter tubers had latent infections at 20°C. Altogether, these results show that the phy I strains from rose, blueberry, and mandevilla may pose a threat to potato production in temperate climates and the worldwide movement of seed potatoes.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Remco Overeem
- Netherlands Institute for Vectors, Invasive Plants, and Plant Health (NIVIP), Wageningen, the Netherlands
| | - Chiel Pel
- Netherlands Institute for Vectors, Invasive Plants, and Plant Health (NIVIP), Wageningen, the Netherlands
| | - Napoleon Tjou-Tam-Sin
- Netherlands Institute for Vectors, Invasive Plants, and Plant Health (NIVIP), Wageningen, the Netherlands
| | - Jeroen van de Bilt
- Netherlands Institute for Vectors, Invasive Plants, and Plant Health (NIVIP), Wageningen, the Netherlands
| | - Peggy Gorkink-Smits
- Netherlands Institute for Vectors, Invasive Plants, and Plant Health (NIVIP), Wageningen, the Netherlands
| | - Marco Landman
- Netherlands Institute for Vectors, Invasive Plants, and Plant Health (NIVIP), Wageningen, the Netherlands
| | - Ana Maria B Bocsanczy
- Department of Plant Pathology, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, U.S.A
| | - David Norman
- Department of Plant Pathology, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, U.S.A
| | - Maria Bergsma-Vlami
- Netherlands Institute for Vectors, Invasive Plants, and Plant Health (NIVIP), Wageningen, the Netherlands
| |
Collapse
|
2
|
Ha LT, Hung NM, Van Chon L. Decomposed and partial connectedness between economic globalization, non-renewable and renewable energy consumption in Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117061-117081. [PMID: 36701062 DOI: 10.1007/s11356-023-25158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In this study, we use a time-varying parameter vector autoregression (TVP-VAR) in conjunction with the extended joint connectedness approach to examine the influences of the economic globalization measured by foreign direct investment (FDI) as well as trade openness (TO), on renewable and non-renewable energy consumption, by characterizing the connectedness of these variables, from 1987 to 2020 in Vietnam. Our results demonstrate that abolishing the state monopoly in foreign trade influences the system-wide dynamic connectedness of trade openness, which peaked in 1989. Net total directional connectedness of FDI and energy consumption suggests that both the consumption of renewable and non-renewable energy consistently act as net contagion shock receivers, and FDI is a critical net transmitter the whole time. Trade openness behaves consistently as a critical net shock transmitter in 1989 but turned into an essential net receiver from 1990 to 2020. In a system with trade openness, the consumption of non-renewable energy consistently acts as a net contagion shock receiver, and renewable energy consumption is a critical net transmitter in the whole sample. Pairwise connectedness reveals that FDI consistently appears as a shock transmitter to renewable and non-renewable energy consumption. Trade openness could be either a transmitter or a receiver of shock from non-renewable energy, depending on the period, and is a net receiver of shocks from renewable energy consumption during our sample. The findings of this paper are critical for Vietnam's government to make a greater contribution to the expansion of global commerce and a sustainable environment.
Collapse
Affiliation(s)
- Le Thanh Ha
- National Economics University, 207 Giai Phong, Hanoi, Vietnam.
| | - Nguyen Manh Hung
- Toulouse School of Economics, INRAE, Universit ́e de Toulouse Capitole, Toulouse, France
| | - Le Van Chon
- Institute of Research in Economics, Environment and Data Science (IREEDS) and International University-VNU HCMC, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Vailleau F, Genin S. Ralstonia solanacearum: An Arsenal of Virulence Strategies and Prospects for Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:25-47. [PMID: 37506349 DOI: 10.1146/annurev-phyto-021622-104551] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The group of strains constituting the Ralstonia solanacearum species complex (RSSC) is a prominent model for the study of plant-pathogenic bacteria because of its impact on agriculture, owing to its wide host range, worldwide distribution, and long persistence in the environment. RSSC strains have led to numerous studies aimed at deciphering the molecular bases of virulence, and many biological functions and mechanisms have been described to contribute to host infection and pathogenesis. In this review, we put into perspective recent advances in our understanding of virulence in RSSC strains, both in terms of the inventory of functions that participate in this process and their evolutionary dynamics. We also present the different strategies that have been developed to combat these pathogenic strains through biological control, antimicrobial agents, plant genetics, or microbiota engineering.
Collapse
Affiliation(s)
- Fabienne Vailleau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| |
Collapse
|
4
|
Cellier G, Nordey T, Cortada L, Gauche M, Rasoamanana H, Yahiaoui N, Rébert E, Prior P, Chéron JJ, Poussier S, Pruvost O. Molecular Epidemiology of Ralstonia pseudosolanacearum Phylotype I Strains in the Southwest Indian Ocean Region and Their Relatedness to African Strains. PHYTOPATHOLOGY 2023; 113:423-435. [PMID: 36399027 DOI: 10.1094/phyto-09-22-0355-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The increasing requirement for developing tools enabling fine strain traceability responsible for epidemics is tightly linked with the need to understand factors shaping pathogen populations and their environmental interactions. Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is one of the most important plant diseases in tropical and subtropical regions. Sadly, little, outdated, or no information on its epidemiology is reported in the literature, although alarming outbreaks are regularly reported as disasters. A large set of phylotype I isolates (n = 2,608) was retrieved from diseased plants in fields across the Southwest Indian Ocean (SWIO) and Africa. This collection enabled further assessment of the epidemiological discriminating power of the previously published RS1-MLVA14 scheme. Thirteen markers were validated and characterized as not equally informative. Most had little infra-sequevar polymorphism, and their performance depended on the sequevar. Strong correlation was found with a previous multilocus sequence typing scheme. However, 2 to 3% of sequevars were not correctly assigned through endoglucanase gene sequence. Discriminant analysis of principal components (DAPC) revealed four groups with strong phylogenetic relatedness to sequevars 31, 33, and 18. Phylotype I-31 isolates were highly prevalent in the SWIO and Africa, but their dissemination pathways remain unclear. Tanzania and Mauritius showed the greatest diversity of RSSC strains, as the four DAPC groups were retrieved. Mauritius was the sole territory harboring a vast phylogenetic diversity and all DAPC groups. More research is still needed to understand the high prevalence of phylotype I-31 at such a large geographic scale.
Collapse
Affiliation(s)
- Gilles Cellier
- Anses, Plant Health Laboratory, Saint Pierre, Reunion Island
| | | | - Laura Cortada
- East Africa Hub, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Nematology Section, Department of Biology, Ghent University, Ghent, Belgium
| | - Mirana Gauche
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Hasina Rasoamanana
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Noura Yahiaoui
- Anses, Plant Health Laboratory, Saint Pierre, Reunion Island
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Emeline Rébert
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Philippe Prior
- INRAE, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint-Pierre, Reunion Island
| | - Jean Jacques Chéron
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Stéphane Poussier
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Olivier Pruvost
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| |
Collapse
|
5
|
Rasoamanana H, Ravelomanantsoa S, Nomenjanahary MV, Gauche MM, Prior P, Guérin F, Robène I, Pecrix Y, Poussier S. Bacteriocin Production Correlates with Epidemiological Prevalence of Phylotype I Sequevar 18 Ralstonia pseudosolanacearum in Madagascar. Appl Environ Microbiol 2023; 89:e0163222. [PMID: 36602304 PMCID: PMC9888187 DOI: 10.1128/aem.01632-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is a major threat to vegetable crops in Madagascar. For more effective disease management, surveys were carried out in the main vegetable production areas of the country, leading to the collection of 401 new RSSC isolates. Phylogenetic assignment of the isolates revealed a high prevalence of phylotype I sequevar 18. This result contrasts sharply with the epidemiological pattern of RSSC in neighboring islands, including Reunion Island, Comoros, Mayotte, Mauritius, Rodrigues, and the Seychelles, where phylotype I sequevar 31 is widespread. Molecular typing characterization of the Malagasy isolates allowed the identification of 96 haplotypes. Some are found in various plots located in different provinces, which suggests that they were probably disseminated via infected plant material. To find out a potential explanation for the observed epidemiological pattern, we examined the capacity of the Malagasy strains to produce bacteriocin. Interestingly, the highly prevalent genetic lineages I-18 produce bacteriocins that are active against all the genetic lineages present in the country. This work sheds light on the potential impact of bacteriocins in the epidemiology of Malagasy RSSC. IMPORTANCE Knowledge of the epidemiology of a plant pathogen is essential to develop effective control strategies. This study focuses on the epidemiological pattern of Ralstonia pseudosolanacearum phylotype I populations responsible for bacterial wilt in Madagascar. We identified, with the newly collected isolates in three provinces, four genetic lineages probably propagated via infected plant material in Madagascar. We revealed that the epidemiological situation in Madagascar contrasts with that of neighboring Indian Ocean islands. Interestingly, our study on the bacteriocin-producing capacity of Malagasy isolates revealed a correlation between the inhibitory activity of the producing strains and the observed epidemiology. These results suggested that the epidemiology of plant pathogens may be impacted by bacteriocin production.
Collapse
Affiliation(s)
- Hasina Rasoamanana
- University of Reunion Island, UMR PVBMT, Saint-Pierre, Reunion Island, France
| | | | | | | | | | - Fabien Guérin
- University of Reunion Island, UMR PVBMT, Saint-Pierre, Reunion Island, France
| | | | - Yann Pecrix
- CIRAD, UMR PVBMT, Saint-Pierre, Reunion Island, France
| | - Stéphane Poussier
- University of Reunion Island, UMR PVBMT, Saint-Pierre, Reunion Island, France
| |
Collapse
|
6
|
Tessema GL, Seid HE. Potato bacterial wilt in Ethiopia: history, current status, and future perspectives. PeerJ 2023; 11:e14661. [PMID: 36691487 PMCID: PMC9864131 DOI: 10.7717/peerj.14661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023] Open
Abstract
Background Potato is an essential food staple and a critical tuber crop for rural livelihoods in Ethiopia, where many pathogenic pests are threatening production. Bacterial wilt, also known as brown rot of potato, ranks among the diseases that most affect many potato farmers in Ethiopia and the disease losses dramatically threatening the vibrant potato sector even in the highlands of the country where it has been uncommon so far. Methodology To devise a strategy towards boosting potato productivity in Ethiopia where food insecurity is most prevalent, production constraints should be investigated and properly addressed. Hence, we have used existing reviews and reports on the subjects, such as textbooks, and proceeding and conference abstracts in Plant Protection Society of Ethiopia; Web of Science; Google Scholar; Research Gate and CIP's database to document most relevant information on the occurrence, distribution, and disease management of bacterial wilt in Ethiopia. Results Provision of comprehensive information on potato bacterial wilt occurrence, distribution, and management techniques are crucial for potato growers, researchers and stakeholders engaged on potato industry. In this review, we provided insights on the history, status, and future perspectives of potato bacterial wilt in Ethiopia. Conclusions Awareness of potato bacterial wilt and integrated disease management approaches could bring a fundamental impact to the farming community mostly to smallholder farmers in developing countries. This document compiled such imperative information targeting bacterial wilt management techniques to ensure food security.
Collapse
|
7
|
Sharma K, Iruegas-Bocardo F, Abdurahman A, Alcalá-Briseño RI, Garrett KA, Goss EM, Ngundo G, Kreuze J, Atieno E, Munguti F. Ralstonia Strains from Potato-Growing Regions of Kenya Reveal Two Phylotypes and Epidemic Clonality of Phylotype II Sequevar 1 Strains. PHYTOPATHOLOGY 2022; 112:2072-2083. [PMID: 35522048 DOI: 10.1094/phyto-11-21-0455-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial wilt, caused by the Ralstonia solanacearum species complex (RSSC), is the most destructive potato disease in Kenya. Studies were conducted to (i) determine the molecular diversity of RSSC strains associated with bacterial wilt of potato in Kenya, (ii) generate an RSSC distribution map for epidemiological inference, and (iii) determine whether phylotype II sequevar 1 strains exhibit epidemic clonality. Surveys were conducted in 2018 and 2019, in which tubers from wilting potato plants and stem samples of potential alternative hosts were collected for pathogen isolation. The pathogen was phylotyped by multiplex PCR and 536 RSSC strains typed at a sequevar level. Two RSSC phylotypes were identified, phylotype II (98.4%, n = 506 [sequevar 1 (n = 505) and sequevar 2 (n = 1)]) and phylotype I (1.6%, n = 30 [sequevar 13 (n = 9) and a new sequevar (n = 21)]). The phylotype II sequevar 1 strains were haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. The TRST scheme identified 51 TRST profiles within the phylotype II sequevar 1 strains with a modest diversity index (HGDI = 0.87), confirming the epidemic clonality of RSSC phylotype II sequevar 1 strains in Kenya. A minimum spanning tree and mapping of the TRST profiles revealed that TRST27 '8-5-12-7-5' is the primary founder of the clonal complex of RSSC phylotype II sequevar 1 and is widely distributed via latently infected seed tubers. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kalpana Sharma
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers and Bananas (RTB), Centro Internacional de la Papa, Nairobi, Kenya, Lima, Peru
- International Potato Center (CIP), Sub-Saharan Africa Regional Office, Nairobi, Kenya
| | | | - Abdulwahab Abdurahman
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers and Bananas (RTB), Centro Internacional de la Papa, Nairobi, Kenya, Lima, Peru
- International Potato Center (CIP), Sub-Saharan Africa Regional Office, Nairobi, Kenya
| | - Ricardo I Alcalá-Briseño
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
- Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
| | - Karen A Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
- Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - George Ngundo
- Kenya Plant Health Inspectorate Service (KEPHIS), Plant Quarantine and Biosecurity Station (PQBS), Nairobi, Kenya
| | - Jan Kreuze
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers and Bananas (RTB), Centro Internacional de la Papa, Nairobi, Kenya, Lima, Peru
- International Potato Center (CIP), Crop and Systems Sciences Division, Lima, Peru
| | - Elly Atieno
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers and Bananas (RTB), Centro Internacional de la Papa, Nairobi, Kenya, Lima, Peru
- International Potato Center (CIP), Sub-Saharan Africa Regional Office, Nairobi, Kenya
| | - Florence Munguti
- Kenya Plant Health Inspectorate Service (KEPHIS), Plant Quarantine and Biosecurity Station (PQBS), Nairobi, Kenya
| |
Collapse
|
8
|
Zhou X, Wang Y, Li C, Xu Y, Su X, Yang T, Zhang X. Differential Expression Pattern of Pathogenicity-Related Genes of Ralstonia pseudosolanacearum YQ Responding to Tissue Debris of Casuarina equisetifolia. PHYTOPATHOLOGY 2021; 111:1918-1926. [PMID: 33822646 DOI: 10.1094/phyto-11-20-0490-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ralstonia solanacearum species complex (RSSC) contains a group of destructive plant pathogenic bacteria, causing bacterial wilt of >200 species of crops and trees, such as Casuarina equisetifolia, worldwide. RSSC can survive in the soil environment for a long time and start infection after activation by host plants. This study conducted a transcriptome analysis on the expression pattern of the pathogenicity-related genes of a new isolated RSSC strain YQ (Ralstonia pseudosolanacearum phylotype I-16) in response to C. equisetifolia cladophyll (a branch of a stem that resembles and functions as a leaf) and root debris under in vitro culture. The cladophyll debris induced more genes up-regulated than the root debris, including pathogenicity-related genes involved in motility, effectors, type III secretion systems, quorum sensing, and plant cell wall degradation. Besides, many differentially expressed genes were related to transcriptional regulator such as cyclic dimeric guanosine monophosphate. Moreover, the cultures with cladophyll debris induced a faster wilting in bioassays, and the cell swimming was enhanced by cladophyll exudate. C. equisetifolia cladophylls could activate the expression of pathogenicity-related genes of strain YQ and accelerate infection. Our findings suggest that litterfall management in C. equisetifolia forests, or even other plantations, should receive attention to prevent the induction of bacterial wilt disease caused by RSSC.
Collapse
Affiliation(s)
- Xiang Zhou
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Yue Wang
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Chuqiao Li
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Yuanyou Xu
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Xiu Su
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Tian Yang
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Xinqi Zhang
- Collaborative Innovation Center of Zhejiang Green Pesticide, National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| |
Collapse
|
9
|
Does Foreign Direct Investment Influence Renewable Energy Consumption? Empirical Evidence from South Asian Countries. ENERGIES 2021. [DOI: 10.3390/en14123470] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In selected South Asian countries, the study intends to investigate the relationship between urban population (UP), carbon dioxide (CO2), trade openness (TO), gross domestic product (GDP), foreign direct investment (FDI), and renewable energy (RE). Fully modified ordinary least square (FMOLS) and dynamic ordinary least square (DOLS) models for estimation were used in the study, which covered yearly data from 1990 to 2019. We used Levin–Lin–Chu, Im–Pesaran–Shin, and Fisher PP tests for the stationarity of the variables. The outcomes of the panel cointegration approach looked at whether there was a long-run equilibrium nexus between selected variables in Pakistan, Bangladesh, India, and Sri Lanka. The FMOLS approach was also used to assess the relationship, and the results suggest that there is a significant and negative nexus between FDI and renewable energy in south Asian nations. The study’s findings reveal a strong and favorable relationship between GDP and renewable energy use. In South Asian nations (Sri Lanka, Pakistan, India, and Bangladesh), the FMOLS and DOLS findings are nearly identical, but the authors used the DOLS model for robustification. According to the findings, policymakers in South Asian economies (Sri Lanka, Pakistan, India, and Bangladesh) should view GDP and FDI as fundamental policy instruments for environmental sustainability. To reduce reliance on hazardous energy sources, the government should also reassure financial sectors to participate in renewable energy.
Collapse
|
10
|
Husni AAA, Ismail SI, Jaafar NM, Zulperi D. Current Classification of the Bacillus pumilus Group Species, the Rubber-Pathogenic Bacteria Causing Trunk Bulges Disease in Malaysia as Assessed by MLSA and Multi rep-PCR Approaches. THE PLANT PATHOLOGY JOURNAL 2021; 37:243-257. [PMID: 34111914 PMCID: PMC8200583 DOI: 10.5423/ppj.oa.02.2021.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Bacillus pumilus is the causal agent of trunk bulges disease affecting rubber and rubberwood quality and yield production. In this study, B. pumilus and other closely related species were included in B. pumilus group, as they shared over 99.5% similarity from 16S rRNA analysis. Multilocus sequence analysis (MLSA) of five housekeeping genes and repetitive elements-based polymerase chain reaction (rep-PCR) using REP, ERIC, and BOX primers conducted to analyze the diversity and systematic relationships of 20 isolates of B. pumilus group from four rubber tree plantations in Peninsular Malaysia (Serdang, Tanah Merah, Baling, and Rawang). Multi rep-PCR results revealed the genetic profiling among the B. pumilus group isolates, while MLSA results showed 98-100% similarity across the 20 isolates of B. pumilus group species. These 20 isolates, formerly established as B. pumilus, were found not to be grouped with B. pumilus. However, being distributed within distinctive groups of the B. pumilus group comprising of two clusters, A and B. Cluster A contained of 17 isolates close to B. altitudinis, whereas Cluster B consisted of three isolates attributed to B. safensis. This is the first MLSA and rep-PCR study on B. pumilus group, which provides an in-depth understanding of the diversity of these rubber-pathogenic isolates in Malaysia.
Collapse
Affiliation(s)
- Ainur Ainiah Azman Husni
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Siti Izera Ismail
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Noraini Md. Jaafar
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Dzarifah Zulperi
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Laboratory of Sustainable Resources Management, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Trotereau A, Boyer C, Bornard I, Pécheur MJB, Schouler C, Torres-Barceló C. High genomic diversity of novel phages infecting the plant pathogen Ralstonia solanacearum, isolated in Mauritius and Reunion islands. Sci Rep 2021; 11:5382. [PMID: 33686106 PMCID: PMC7940629 DOI: 10.1038/s41598-021-84305-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/11/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is among the most important plant diseases worldwide, severely affecting a high number of crops and ornamental plants in tropical regions. Only a limited number of phages infecting R. solanacearum have been isolated over the years, despite the importance of this bacterium and the associated plant disease. The antibacterial effect or morphological traits of these R. solanacearum viruses have been well studied, but not their genomic features, which need deeper consideration. This study reports the full genome of 23 new phages infecting RSSC isolated from agricultural samples collected in Mauritius and Reunion islands, particularly affected by this plant bacterial pathogen and considered biodiversity hotspots in the Southwest Indian Ocean. The complete genomic information and phylogenetic classification is provided, revealing high genetic diversity between them and weak similarities with previous related phages. The results support our proposal of 13 new species and seven new genera of R. solanacearum phages. Our findings highlight the wide prevalence of phages of RSSC in infected agricultural settings and the underlying genetic diversity. Discoveries of this kind lead more insight into the diversity of phages in general and to optimizing their use as biocontrol agents of bacterial diseases of plants in agriculture.
Collapse
Affiliation(s)
| | - Claudine Boyer
- Plant Populations and Bio-aggressors in Tropical Ecosystems, Saint Pierre, Reunion, France
| | | | | | | | - Clara Torres-Barceló
- Plant Populations and Bio-aggressors in Tropical Ecosystems, Saint Pierre, Reunion, France. .,Plant Pathology, INRAE, 84140, Montfavet, France.
| |
Collapse
|
12
|
Rasoamanana H, Ravelomanantsoa S, Yahiaoui N, Dianzinga N, Rébert E, Gauche MM, Pecrix Y, Costet L, Rieux A, Prior P, Robène I, Cellier G, Guérin F, Poussier S. Contrasting genetic diversity and structure among Malagasy Ralstonia pseudosolanacearum phylotype I populations inferred from an optimized Multilocus Variable Number of Tandem Repeat Analysis scheme. PLoS One 2020; 15:e0242846. [PMID: 33290390 PMCID: PMC7723262 DOI: 10.1371/journal.pone.0242846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
The Ralstonia solanacearum species complex (RSSC), composed of three species and four phylotypes, are globally distributed soil-borne bacteria with a very broad host range. In 2009, a devastating potato bacterial wilt outbreak was declared in the central highlands of Madagascar, which reduced the production of vegetable crops including potato, eggplant, tomato and pepper. A molecular epidemiology study of Malagasy RSSC strains carried out between 2013 and 2017 identified R. pseudosolanacearum (phylotypes I and III) and R. solanacearum (phylotype II). A previously published population biology analysis of phylotypes II and III using two MultiLocus Variable Number of Tandem Repeats Analysis (MLVA) schemes revealed an emergent epidemic phylotype II (sequevar 1) group and endemic phylotype III isolates. We developed an optimized MLVA scheme (RS1-MLVA14) to characterize phylotype I strains in Madagascar to understand their genetic diversity and structure. The collection included isolates from 16 fields of different Solanaceae species sampled in Analamanga and Itasy regions (highlands) in 2013 (123 strains) and in Atsinanana region (lowlands) in 2006 (25 strains). Thirty-one haplotypes were identified, two of them being particularly prevalent: MT007 (30.14%) and MT004 (16.44%) (sequevar 18). Genetic diversity analysis revealed a significant contrasting level of diversity according to elevation and sampling region. More diverse at low altitude than at high altitude, the Malagasy phylotype I isolates were structured in two clusters, probably resulting from different historical introductions. Interestingly, the most prevalent Malagasy phylotype I isolates were genetically distant from regional and worldwide isolates. In this work, we demonstrated that the RS1-MLVA14 scheme can resolve differences from regional to field scales and is thus suited for deciphering the epidemiology of phylotype I populations.
Collapse
Affiliation(s)
- Hasina Rasoamanana
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Santatra Ravelomanantsoa
- Centre National de la Recherche Appliquée au Développement Rural FOFIFA, Antananarivo, Madagascar
| | - Noura Yahiaoui
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Niry Dianzinga
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Emeline Rébert
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Miharisoa-Mirana Gauche
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Yann Pecrix
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Laurent Costet
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Adrien Rieux
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Philippe Prior
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Isabelle Robène
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Gilles Cellier
- Anses - Plant Health Laboratory - Tropical Pests and Diseases Unit, Saint-Pierre, Réunion, France
| | - Fabien Guérin
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Stéphane Poussier
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| |
Collapse
|
13
|
Lee I, Kim YS, Kim JW, Park DH. Genetic and Pathogenic Characterization of Bacterial Wilt Pathogen, Ralstonia pseudosolanacearum ( Ralstonia solanacearum Phylotype I), on Roses in Korea. THE PLANT PATHOLOGY JOURNAL 2020; 36:440-449. [PMID: 33082728 PMCID: PMC7542028 DOI: 10.5423/ppj.oa.06.2020.0095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study was to analyze the genetic and pathogenic characteristics of Ralstonia pseudosolanacearum in roses in Korea, and to examine the similarities and differences between Korean isolates and the first-reported European strains. Between 2017 and 2019, seventeen isolates from rose plants were identified as R. pseudosolanacearum using Ralstonia-specific primers. All 17 isolates were identified as race 1 using race-specific primers, and were confirmed as biovar 3 due to their ability to utilize carbon sources. Multiplex PCR using phylotype discriminating specific primers identified the 17 isolates as phylotype I. Sequevar comparison with reference sequevars using the sequences of the egl, mutS, and fliC genes, and only the egl gene, revealed that the strains evaluated in this study corresponded to sequevar I-33. The pathogenicity in roses differed depending on the rose cultivars. The different methods used for the genetic characterization of R. pseudosolanacearum indicate that the 17 rose bacterial wilt isolates had the same genetic characteristics. The lack of genetic variation in these isolates indicates their recent introduction from other countries (likely European countries). Therefore, appropriate quarantine and control measures should be taken in order to avoid further increases in the pathogenicity and/or secondary host range of R. pseudosolanacearum through genetic mutation.
Collapse
Affiliation(s)
- Ingyeong Lee
- Applied Biology Program, Division of Bioresource Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 2434, Korea
| | - Yeong Son Kim
- Applied Biology Program, Division of Bioresource Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 2434, Korea
| | - Jin-Won Kim
- Department of Environmental Horticulture, University of Seoul, Seoul 0504, Korea
| | - Duck Hwan Park
- Applied Biology Program, Division of Bioresource Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 2434, Korea
| |
Collapse
|
14
|
Sedighian N, Taghavi SM, Hamzehzarghani H, van der Wolf JM, Wicker E, Osdaghi E. Potato-Infecting Ralstonia solanacearum Strains in Iran Expand Knowledge on the Global Diversity of Brown Rot Ecotype of the Pathogen. PHYTOPATHOLOGY 2020; 110:1647-1656. [PMID: 32401153 DOI: 10.1094/phyto-03-20-0072-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial wilt and brown rot disease caused by Ralstonia solanacearum species complex (RSSC) is one of the major constraints of potato (Solanum tuberosum) production around the globe. During 2017 to 2018, an extensive field survey was conducted in six potato-growing provinces of Iran to monitor the status of bacterial wilt disease. Pathogenicity and host range assays using 59 bacterial strains isolated in Iran showed that they were pathogenic on eggplant, red nightshade, pepper, potato and tomato, while nonpathogenic on common bean, cowpea, cucumber, sunflower, zinnia and zucchini. PCR-based diagnosis revealed that the strains belong to the phylotype IIB/sequevar 1 (IIB/I) lineage of the RSSC. Furthermore, a five-gene multilocus sequence analysis and typing (egl, fliC, gyrB, mutS, and rplB) confirmed the phylogenetically near-homogeneous nature of the strains within IIB/I lineage. Four sequence types were identified among 58 IIB/1 strains isolated in Iran. Phylogenetically near-homogeneous nature of the strains in Iran raise questions about the mode of inoculum entry of the bacterial wilt pathogen into the country (one-time introduction versus multiple introductions), while the geographic origin of the Iranian R. solanacearum strains remains undetermined. Furthermore, sequence typing showed that there were shared alleles (haplotypes) and sequence types among the strains isolated in geographically distant areas in Iran, suggesting intranational transmission of the pathogen in the country.
Collapse
Affiliation(s)
- Nasim Sedighian
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | | | - Jan M van der Wolf
- Wageningen University and Research, Business Unit Biointeractions and Plant Health, 6700 AA, Wageningen, The Netherlands
| | - Emmanuel Wicker
- IPME, Univ Montpellier, CIRAD, IRD, Montpellier, France
- CIRAD, UMR IPME, Montpellier, France
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| |
Collapse
|
15
|
Abdurahman A, Parker ML, Kreuze J, Elphinstone JG, Struik PC, Kigundu A, Arengo E, Sharma K. Molecular Epidemiology of Ralstonia solanacearum Species Complex Strains Causing Bacterial Wilt of Potato in Uganda. PHYTOPATHOLOGY 2019; 109:1922-1931. [PMID: 31272278 DOI: 10.1094/phyto-12-18-0476-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC) is a serious threat to potato production in Uganda. However, little is known about the extent of the disease and the type of the pathogen strains involved. A nationwide survey was conducted to study BW prevalence and incidence in potato, and potato tuber and stem samples of potential alternative hosts were collected for pathogen isolation. DNA was extracted from pure cultures for genetic diversity studies. The pathogen was phylotyped by multiplex PCR; then, a subset of isolates was typed at sequevar level. Isolates of the same sequevar were then haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. BW prevalence and incidence in potato farms were 81.4 and 1.7%, respectively. Three RSSC phylotypes were identified, with the majority of the strains belonging to Phylotype II (80%) followed by Phylotype I (18.5%) and III (1.5%). Phylotype I strains belonged to Sequevar 31, and Phylotype II strains belonged to Sequevar 1. Potato-associated Phylotype II Sequevar 1 strains were more diverse (27 TRST haplotypes) than nonpotato Phylotype I (5 TRST haplotypes). Mapping of TRST haplotypes revealed that three TRST haplotypes of Phylotype II Sequevar 1 strains play an important epidemiological role in BW of potato in Uganda being disseminated via latently infected seed.[Formula: see text]Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Abdulwahab Abdurahman
- Consultative Group for International Agricultural Research, Research Program on Roots, Tubers and Bananas, Lima, Peru
- Sub-Saharan Africa Regional Office, International Potato Center, Nairobi, Kenya
- Centre for Crop Systems Analysis, Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Monica L Parker
- Consultative Group for International Agricultural Research, Research Program on Roots, Tubers and Bananas, Lima, Peru
- Sub-Saharan Africa Regional Office, International Potato Center, Nairobi, Kenya
| | - Jan Kreuze
- Consultative Group for International Agricultural Research, Research Program on Roots, Tubers and Bananas, Lima, Peru
- Crop and Systems Sciences Division, International Potato Center, Lima, Peru
| | - John G Elphinstone
- National Agri-Food Innovation Campus, Fera Science Ltd, Sand Hutton, York, United Kingdom
| | - Paul C Struik
- Centre for Crop Systems Analysis, Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Andrew Kigundu
- National Agricultural Research Laboratories, Kawanda, Uganda
| | - Esther Arengo
- National Agricultural Research Laboratories, Kawanda, Uganda
| | - Kalpana Sharma
- Consultative Group for International Agricultural Research, Research Program on Roots, Tubers and Bananas, Lima, Peru
- Sub-Saharan Africa Regional Office, International Potato Center, Nairobi, Kenya
| |
Collapse
|
16
|
Metabolomic Profiling of the Host Response of Tomato ( Solanum lycopersicum) Following Infection by Ralstonia solanacearum. Int J Mol Sci 2019; 20:ijms20163945. [PMID: 31416118 PMCID: PMC6720392 DOI: 10.3390/ijms20163945] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Tomato (Solanum lycopersicum) is an important dietary source of bioactive phytochemicals and active breeding programs constantly produce new cultivars possessing superior and desirable traits. The phytopathogenic Ralstonia solanacearum, the causal agent of bacterial wilt, is a highly destructive bacterial disease with a high economic impact on tomato production. This study followed an untargeted metabolomic approach involving four tomato cultivars and aimed at the identification of secondary metabolites involved in plant defense after infection with R. solanacearum. Liquid chromatography coupled to mass spectrometry (LC-MS) in combination with multivariate data analysis and chemometric modelling were utilized for the identification of discriminant secondary metabolites. The total of 81 statistically selected features were annotated belonging to the metabolite classes of amino acids, organic acids, fatty acids, various derivatives of cinnamic acid and benzoic acids, flavonoids and steroidal glycoalkaloids. The results indicate that the phenylpropanoid pathway, represented by flavonoids and hydroxycinnamic acids, is of prime importance in the tomato defense response. The hydroxycinnamic acids esters of quinic acid, hexoses and glucaric acids were identified as signatory biomarkers, as well as the hydroxycinnamic acid amides to polyamines and tyramine. Interestingly, the rapid and differential accumulation of putrescine, dopamine, and tyramine derivatives, along with the presence of a newly documented metabolite, feruloyl serotonin, were documented in the infected plants. Metabolite concentration variability in the different cultivar tissues point to cultivar-specific variation in the speed and manner of resource redistribution between the host tissues. These metabolic phenotypes provide insights into the differential metabolic signatures underlying the defense metabolism of the four cultivars, defining their defensive capabilities to R. solanacearum.
Collapse
|
17
|
Sun Y, Li P, Shen D, Wei Q, He J, Lu Y. The Ralstonia solanacearum effector RipN suppresses plant PAMP-triggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD + ratio in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2019; 20:533-546. [PMID: 30499216 PMCID: PMC6637912 DOI: 10.1111/mpp.12773] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ralstonia solanacearum, one of the most destructive plant bacterial pathogens, delivers an array of effector proteins via its type III secretion system for pathogenesis. However, the biochemical functions of most of these proteins remain unclear. RipN is a type III effector with unknown function(s) from the pathogen R. solanacearum. Here, we demonstrate that RipN is a conserved type III effector found within the R. solanacearum species complex that contains a putative Nudix hydrolase domain and has ADP-ribose/NADH pyrophosphorylase activity in vitro. Further analysis shows that RipN localizes to the endoplasmic reticulum (ER) and nucleus in Nicotiana tabacum leaf cells and Arabidopsis protoplasts, and truncation of the C-terminus of RipN results in a loss of nuclear and ER targeting. Furthermore, the expression of RipN in Arabidopsis suppresses callose deposition and the transcription of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes under flg22 treatment, and promotes bacterial growth in planta. In addition, the expression of RipN in plant cells alters NADH/NAD+ , but not GSH/GSSG, ratios, and its Nudix hydrolase activity is indispensable for such biochemical function. These results suggest that RipN acts as a Nudix hydrolase, alters the NADH/NAD+ ratio of the plant and contributes to R. solanacearum virulence by suppression of PTI of the host.
Collapse
Affiliation(s)
- Yunhao Sun
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Pai Li
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Dong Shen
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Qiaoling Wei
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Jianguo He
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Yongjun Lu
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
18
|
Bergsma-Vlami M, van de Bilt JLJ, Tjou-Tam-Sin NNA, Westenberg M, Meekes ETM, Teunissen HAS, Van Vaerenbergh J. Phylogenetic Assignment of Ralstonia pseudosolanacearum (Ralstonia solanacearum Phylotype I) Isolated from Rosa spp. PLANT DISEASE 2018; 102:2258-2267. [PMID: 30192708 DOI: 10.1094/pdis-09-17-1345-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During the last two years, greenhouse cultivation of rose (Rosa spp.) in the Netherlands has been challenged by an uncommon bacterial disease. Affected plants suffered from chlorosis, stunting, wilting, and necrosis. The bacterial isolates obtained from the different Rosa spp. cultivars were all identified as phylotype I, sequevar 33 from the 'Ralstonia solanacearum species complex' (RSSC), actually reclassified as Ralstonia pseudosolanacearum. The work in this paper considers the genetic diversity and the phylogenetic position of 129 R. pseudosolanacearum isolates from the outbreak. This was assessed by AFLP based on four different primer combinations and MLP using partial sequences of the egl, mutS, and fliC genes. The AFLP revealed identical profiles for all the isolates, irrespective of their association with Rosa sp. propagating material, Rosa spp. plants for cut flowers, or water used in the different greenhouse cultivations. These AFLP profiles were unique and diverged from profiles of all other reference isolates in the RSSC included. Furthermore, MLP on egl, fliC, and mutS gene sequences clearly demonstrated that all R. pseudosolanacearum isolates clustered in phylotype I, as a distinct monophyletic group. Interestingly, this monophyletic group also included phylotype I strain Rs-09-161 from eggplant (Solanum melongena), isolated in 2009 in India. AFLP and MLP were both efficient in revealing the genetic divergence from the RSSC isolates included. The phylogenetic tree constructed from the AFLP profiles was, in general, in agreement with the one obtained from MLP. Both phylogenetic trees displayed a similar clustering, supported by high posterior probabilities. Both methodologies clearly demonstrated that the R. pseudosolanacearum isolates from Rosa spp. grouped in a monophyletic group inside phylotype I, with a particular correspondence to a strain present in India, as revealed in MLP.
Collapse
Affiliation(s)
- M Bergsma-Vlami
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, 6700 HC Wageningen, the Netherlands
| | - J L J van de Bilt
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, 6700 HC Wageningen, the Netherlands
| | - N N A Tjou-Tam-Sin
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, 6700 HC Wageningen, the Netherlands
| | - M Westenberg
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, 6700 HC Wageningen, the Netherlands
| | - E T M Meekes
- Naktuinbouw, P.O. Box. 40, 2370 AA Roelofarendsveen, the Netherlands
| | - H A S Teunissen
- Naktuinbouw, P.O. Box. 40, 2370 AA Roelofarendsveen, the Netherlands
| | - J Van Vaerenbergh
- Institute for Agricultural, Fisheries and Food Research (ILVO), Plant Health Department B-9820 Merelbeke, Belgium
| |
Collapse
|