1
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Liu X, Xu Z, Feng B, Zhou Q, Guo S, Liao S, Ou Y, Fan X, Wang T. Dissection of a novel major stable QTL on chromosome 7D for grain hardness and its breeding value estimation in bread wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1356687. [PMID: 38362452 PMCID: PMC10867189 DOI: 10.3389/fpls.2024.1356687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Grain hardness (Gh) is important for wheat processing and end-product quality. Puroindolines polymorphism explains over 60% of Gh variation and the novel genetic factors remain to be exploited. In this study, a total of 153 quantitative trait loci (QTLs), clustered into 12 genomic intervals (C1-C12), for 13 quality-related traits were identified using a recombinant inbred line population derived from the cross of Zhongkemai138 (ZKM138) and Chuanmai44 (CM44). Among them, C7 (harboring eight QTLs for different quality-related traits) and C8 (mainly harboring QGh.cib-5D.1 for Gh) were attributed to the famous genes, Rht-D1 and Pina, respectively, indicating that the correlation of involved traits was supported by the pleotropic or linked genes. Notably, a novel major stable QTL for Gh was detected in the C12, QGh.cib-7D, with ZKM138-derived allele increasing grain hardness, which was simultaneously mapped by the BSE-Seq method. The geographic pattern and transmissibility of this locus revealed that the increasing-Gh allele is highly frequently present in 85.79% of 373 worldwide wheat varieties and presented 99.31% transmissibility in 144 ZKM138-derivatives, indicating the non-negative effect on yield performance and that its indirect passive selection has happened during the actual breeding process. Thus, the contribution of this new Gh-related locus was highlighted in consideration of improving the efficiency and accuracy of the soft/hard material selection in the molecular marker-assisted process. Further, TraesCS7D02G099400, TraesCS7D02G098000, and TraesCS7D02G099500 were initially deduced to be the most potential candidate genes of QGh.cib-7D. Collectively, this study provided valuable information of elucidating the genetic architecture of Gh for wheat quality improvement.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Insitute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shaodan Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhao Ou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Meger J, Ulaszewski B, Chmura DJ, Burczyk J. Signatures of local adaptation to current and future climate in phenology-related genes in natural populations of Quercus robur. BMC Genomics 2024; 25:78. [PMID: 38243199 PMCID: PMC10797717 DOI: 10.1186/s12864-023-09897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Local adaptation is a key evolutionary process that enhances the growth of plants in their native habitat compared to non-native habitats, resulting in patterns of adaptive genetic variation across the entire geographic range of the species. The study of population adaptation to local environments and predicting their response to future climate change is important because of climate change. RESULTS Here, we explored the genetic diversity of candidate genes associated with bud burst in pedunculate oak individuals sampled from 6 populations in Poland. Single nucleotide polymorphism (SNP) diversity was assessed in 720 candidate genes using the sequence capture technique, yielding 18,799 SNPs. Using landscape genomic approaches, we identified 8 FST outliers and 781 unique SNPs in 389 genes associated with geography, climate, and phenotypic variables (individual/family spring and autumn phenology, family diameter at breast height (DBH), height, and survival) that are potentially involved in local adaptation. Then, using a nonlinear multivariate model, Gradient Forests, we identified vulnerable areas of the pedunculate oak distribution in Poland that are at risk from climate change. CONCLUSIONS The model revealed that pedunculate oak populations in the eastern part of the analyzed geographical region are the most sensitive to climate change. Our results might offer an initial evaluation of a potential management strategy for preserving the genetic diversity of pedunculate oak.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Daniel J Chmura
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland.
| |
Collapse
|
4
|
Naqvi RZ, Mahmood MA, Mansoor S, Amin I, Asif M. Omics-driven exploration and mining of key functional genes for the improvement of food and fiber crops. FRONTIERS IN PLANT SCIENCE 2024; 14:1273859. [PMID: 38259913 PMCID: PMC10800452 DOI: 10.3389/fpls.2023.1273859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
The deployment of omics technologies has obtained an incredible boost over the past few decades with the advances in next-generation sequencing (NGS) technologies, innovative bioinformatics tools, and the deluge of available biological information. The major omics technologies in the limelight are genomics, transcriptomics, proteomics, metabolomics, and phenomics. These biotechnological advances have modernized crop breeding and opened new horizons for developing crop varieties with improved traits. The genomes of several crop species are sequenced, and a huge number of genes associated with crucial economic traits have been identified. These identified genes not only provide insights into the understanding of regulatory mechanisms of crop traits but also decipher practical grounds to assist in the molecular breeding of crops. This review discusses the potential of omics technologies for the acquisition of biological information and mining of the genes associated with important agronomic traits in important food and fiber crops, such as wheat, rice, maize, potato, tomato, cassava, and cotton. Different functional genomics approaches for the validation of these important genes are also highlighted. Furthermore, a list of genes discovered by employing omics approaches is being represented as potential targets for genetic modifications by the latest genome engineering methods for the development of climate-resilient crops that would in turn provide great impetus to secure global food security.
Collapse
Affiliation(s)
- Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| |
Collapse
|
5
|
Wang H, Bernardo A, St Amand P, Bai G, Bowden RL, Guttieri MJ, Jordan KW. Skim exome capture genotyping in wheat. THE PLANT GENOME 2023; 16:e20381. [PMID: 37604795 DOI: 10.1002/tpg2.20381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
Next-generation sequencing (NGS) technology advancements continue to reduce the cost of high-throughput genome-wide genotyping for breeding and genetics research. Skim sequencing, which surveys the entire genome at low coverage, has become feasible for quantitative trait locus (QTL) mapping and genomic selection in various crops. However, the genome complexity of allopolyploid crops such as wheat (Triticum aestivum L.) still poses a significant challenge for genome-wide genotyping. Targeted sequencing of the protein-coding regions (i.e., exome) reduces sequencing costs compared to whole genome re-sequencing and can be used for marker discovery and genotyping. We developed a method called skim exome capture (SEC) that combines the strengths of these existing technologies and produces targeted genotyping data while decreasing the cost on a per-sample basis compared to traditional exome capture. Specifically, we fragmented genomic DNA using a tagmentation approach, then enriched those fragments for the low-copy genic portion of the genome using commercial wheat exome baits and multiplexed the sequencing at different levels to achieve desired coverage. We demonstrated that for a library of 48 samples, ∼7-8× target coverage was sufficient for high-quality variant detection. For higher multiplexing levels of 528 and 1056 samples per library, we achieved an average coverage of 0.76× and 0.32×, respectively. Combining these lower coverage SEC sequencing data with genotype imputation using a customized wheat practical haplotype graph database that we developed, we identified hundreds of thousands of high-quality genic variants across the genome. The SEC method can be used for high-resolution QTL mapping, genome-wide association studies, genomic selection, and other downstream applications.
Collapse
Affiliation(s)
- Hongliang Wang
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Robert L Bowden
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Mary J Guttieri
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Katherine W Jordan
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| |
Collapse
|
6
|
Ali S, Kucek LK, Riday H, Krom N, Krogman S, Cooper K, Jacobs L, Mehta P, Trammell M, Bhamidimarri S, Butler T, Saha MC, Monteros MJ. Transcript profiling of hairy vetch (Vicia villosa Roth) identified interesting genes for seed dormancy. THE PLANT GENOME 2023; 16:e20330. [PMID: 37125613 DOI: 10.1002/tpg2.20330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Hairy vetch, a diploid annual legume species, has a robust growth habit, high biomass yield, and winter hardy characteristics. Seed hardness is a major constraint for growing hairy vetch commercially. Hard seeded cultivars are valuable as forages, whereas soft seeded and shatter resistant cultivars have advantages for their use as a cover crop. Transcript analysis of hairy vetch was performed to understand the genetic mechanisms associated with important hairy vetch traits. RNA was extracted from leaves, flowers, immature pods, seed coats, and cotyledons of contrasting soft and hard seeded "AU Merit" plants. A range of 31.22-79.18 Gb RNA sequence data per tissue sample were generated with estimated coverage of 1040-2639×. RNA sequence assembly and mapping of the contigs against the Medicago truncatula (V4.0) genome identified 76,422 gene transcripts. A total of 24,254 transcripts were constitutively expressed in hairy vetch tissues. Key genes, such as KNOX4 (a class II KNOTTED-like homeobox KNOXII gene), qHs1 (endo-1,4-β-glucanase), GmHs1-1 (calcineurin-like metallophosphoesterase), chitinase, shatterproof 1 and 2 (SHP1, SHP2), shatter resistant 1-5 (SHAT1-5)(NAC transcription factor), PDH1 (prephenate dehydrogenase 1), and pectin methylesterases with a potential role in seed hardness and pod shattering, were further explored based on genes involved in seed hardness from other species to query the hairy vetch transcriptome data. Identification of interesting candidate genes in hairy vetch can facilitate the development of improved cultivars with desirable seed characteristics for use as a forage and as a cover crop.
Collapse
Affiliation(s)
- Shahjahan Ali
- USDA-ARS, US Dairy Forage Research Center, Madison, Wisconsin, USA
| | | | | | - Nick Krom
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Sarah Krogman
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | | | - Lynne Jacobs
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Perdeep Mehta
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Michael Trammell
- Oklahoma State University Cooperative Extension, Shawnee, Oklahoma, USA
| | | | - Twain Butler
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | | |
Collapse
|
7
|
Wang D, Li Y, Wang H, Xu Y, Yang Y, Zhou Y, Chen Z, Zhou Y, Gui L, Guo Y, Zhou C, Tang W, Zheng S, Wang L, Guo X, Zhang Y, Cui F, Lin X, Jiao Y, He Y, Li J, He F, Liu X, Xiao J. Boosting wheat functional genomics via an indexed EMS mutant library of KN9204. PLANT COMMUNICATIONS 2023:100593. [PMID: 36945776 PMCID: PMC10363553 DOI: 10.1016/j.xplc.2023.100593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation. However, the lack of gene-indexed mutants and the low transformation efficiency of wheat limit in-depth gene functional studies and genetic manipulation for breeding. In this study, we created a library for KN9204, a popular wheat variety in northern China, with a reference genome, transcriptome, and epigenome of different tissues, using ethyl methyl sulfonate (EMS) mutagenesis. This library contains a vast developmental diversity of critical tissues and transition stages. Exome capture sequencing of 2090 mutant lines using KN9204 genome-designed probes revealed that 98.79% of coding genes had mutations, and each line had an average of 1383 EMS-type SNPs. We identified new allelic variations for crucial agronomic trait-related genes such as Rht-D1, Q, TaTB1, and WFZP. We tested 100 lines with severe mutations in 80 NAC transcription factors (TFs) under drought and salinity stress and identified 13 lines with altered sensitivity. Further analysis of three lines using transcriptome and chromatin accessibility data revealed hundreds of direct NAC targets with altered transcription patterns under salt or drought stress, including SNAC1, DREB2B, CML16, and ZFP182, factors known to respond to abiotic stress. Thus, we have generated and indexed a KN9204 EMS mutant library that can facilitate functional genomics research and offer resources for genetic manipulation of wheat.
Collapse
Affiliation(s)
- Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongpeng Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China; Center for Agricultural Resources Research, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Haojie Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxin Zhou
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni, Inc, Chengdu 610000, China
| | - Yuqing Zhou
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixuan Gui
- Department of Life Science, Tcuni, Inc, Chengdu 610000, China
| | - Yi Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Lei Wang
- Center for Agricultural Resources Research, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Xiulin Guo
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Yingjun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai 264025, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China; Center for Agricultural Resources Research, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China.
| | - Fei He
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing 100101, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing 100101, China.
| |
Collapse
|
8
|
Broccanello C, Bellin D, DalCorso G, Furini A, Taranto F. Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1101271. [PMID: 36778704 PMCID: PMC9911883 DOI: 10.3389/fpls.2023.1101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Addressing the challenges of climate change and durum wheat production is becoming an important driver for food and nutrition security in the Mediterranean area, where are located the major producing countries (Italy, Spain, France, Greece, Morocco, Algeria, Tunisia, Turkey, and Syria). One of the emergent strategies, to cope with durum wheat adaptation, is the exploration and exploitation of the existing genetic variability in landrace populations. In this context, this review aims to highlight the important role of durum wheat landraces as a useful genetic resource to improve the sustainability of Mediterranean agroecosystems, with a focus on adaptation to environmental stresses. We described the most recent molecular techniques and statistical approaches suitable for the identification of beneficial genes/alleles related to the most important traits in landraces and the development of molecular markers for marker-assisted selection. Finally, we outline the state of the art about landraces genetic diversity and signature of selection, already identified from these accessions, for adaptability to the environment.
Collapse
Affiliation(s)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Antonella Furini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
9
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
10
|
Savadi S, Muralidhara BM, Godwin J, Adiga JD, Mohana GS, Eradasappa E, Shamsudheen M, Karun A. De novo assembly and characterization of the draft genome of the cashew (Anacardium occidentale L.). Sci Rep 2022; 12:18187. [PMID: 36307541 PMCID: PMC9616956 DOI: 10.1038/s41598-022-22600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Cashew is the second most important tree nut crop in the global market. Cashew is a diploid and heterozygous species closely related to the mango and pistachio. Its improvement by conventional breeding is slow due to the long juvenile phase. Despite the economic importance, very little genomics/transcriptomics information is available for cashew. In this study, the Oxford nanopore reads and Illumina reads were used for de novo assembly of the cashew genome. The hybrid assembly yielded a 356.6 Mb genome corresponding to 85% of the estimated genome size (419 Mb). The BUSCO analysis showed 91.8% of genome completeness. Transcriptome mapping showed 92.75% transcripts aligned with the assembled genome. Gene predictions resulted in the identification of 31,263 genes coding for a total of 35,000 gene isoforms. About 46% (165 Mb) of the cashew genome comprised of repetitive sequences. Phylogenetic analyses of the cashew with nine species showed that it was closely related to Mangifera indica. Analysis of cashew genome revealed 3104 putative R-genes. The first draft assembly of the genome, transcriptome and R gene information generated in this study would be the foundation for understanding the molecular basis of economic traits and genomics-assisted breeding in cashew.
Collapse
Affiliation(s)
- Siddanna Savadi
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - B. M. Muralidhara
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - Jeffrey Godwin
- Bionivid Technology Private Limited, 209, 4th Cross Rd, B Channasandra, Kasturi Nagar, Bengaluru, Karnataka 560 043 India
| | - J. D. Adiga
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - G. S. Mohana
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - E. Eradasappa
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - M. Shamsudheen
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| | - Anitha Karun
- grid.505948.50000 0004 1764 470XICAR- Directorate of Cashew Research (DCR), Puttur, D.K., Karnataka 574 202 India
| |
Collapse
|
11
|
Rajendran NR, Qureshi N, Pourkheirandish M. Genotyping by Sequencing Advancements in Barley. FRONTIERS IN PLANT SCIENCE 2022; 13:931423. [PMID: 36003814 PMCID: PMC9394214 DOI: 10.3389/fpls.2022.931423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Barley is considered an ideal crop to study cereal genetics due to its close relationship with wheat and diploid ancestral genome. It plays a crucial role in reducing risks to global food security posed by climate change. Genetic variations in the traits of interest in crops are vital for their improvement. DNA markers have been widely used to estimate these variations in populations. With the advancements in next-generation sequencing, breeders could access different types of genetic variations within different lines, with single-nucleotide polymorphisms (SNPs) being the most common type. However, genotyping barley with whole genome sequencing (WGS) is challenged by the higher cost and computational demand caused by the large genome size (5.5GB) and a high proportion of repetitive sequences (80%). Genotyping-by-sequencing (GBS) protocols based on restriction enzymes and target enrichment allow a cost-effective SNP discovery by reducing the genome complexity. In general, GBS has opened up new horizons for plant breeding and genetics. Though considered a reliable alternative to WGS, GBS also presents various computational difficulties, but GBS-specific pipelines are designed to overcome these challenges. Moreover, a robust design for GBS can facilitate the imputation to the WGS level of crops with high linkage disequilibrium. The complete exploitation of GBS advancements will pave the way to a better understanding of crop genetics and offer opportunities for the successful improvement of barley and its close relatives.
Collapse
Affiliation(s)
- Nirmal Raj Rajendran
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Naeela Qureshi
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de Mexico, Mexico
| | - Mohammad Pourkheirandish
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Sutherland J, Bell T, Trexler RV, Carlson JE, Lasky JR. Host genomic influence on bacterial composition in the switchgrass rhizosphere. Mol Ecol 2022; 31:3934-3950. [PMID: 35621390 PMCID: PMC10150372 DOI: 10.1111/mec.16549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Host genetic variation can shape the diversity and composition of associated microbiomes, which may reciprocally influence host traits and performance. While the genetic basis of phenotypic diversity of plant populations in nature has been studied, comparatively little research has investigated the genetics of host effects on their associated microbiomes. Switchgrass (Panicum virgatum) is a highly outcrossing, perennial, grass species with substantial locally adaptive diversity across its native North American range. Here, we compared 383 switchgrass accessions in a common garden to determine the host genotypic influence on rhizosphere bacterial composition. We hypothesized that the composition and diversity of rhizosphere bacterial assemblages would differentiate due to genotypic differences between hosts (potentially due to root phenotypes and associated life history variation). We observed higher alpha diversity of bacteria associated with upland ecotypes and tetraploids, compared to lowland ecotypes and octoploids, respectively. Alpha diversity correlated negatively with flowering time and plant height, indicating that bacterial composition varies along switchgrass life history axes. Narrow-sense heritability (h2 ) of the relative abundance of twenty-one core bacterial families was observed. Overall compositional differences among tetraploids, due to genetic variation, supports wide-spread genotypic influence on the rhizosphere microbiome. Tetraploids were only considered due to complexities associated with the octoploid genomes. Lastly, a genome-wide association study identified 1,861 single-nucleotide polymorphisms associated with 110 families and genes containing them related to potential regulatory functions. Our findings suggest that switchgrass genomic and life-history variation influences bacterial composition in the rhizosphere, potentially due to host adaptation to local environments.
Collapse
Affiliation(s)
- Jeremy Sutherland
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.,Intercollege Graduate Degree Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA.,Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Terrence Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.,Intercollege Graduate Degree Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA.,Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA
| | - Ryan V Trexler
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA.,Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA
| | - John E Carlson
- Intercollege Graduate Degree Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA.,Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA
| | - Jesse R Lasky
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
13
|
Burridge AJ, Winfield MO, Wilkinson PA, Przewieslik-Allen AM, Edwards KJ, Barker GLA. The Use and Limitations of Exome Capture to Detect Novel Variation in the Hexaploid Wheat Genome. FRONTIERS IN PLANT SCIENCE 2022; 13:841855. [PMID: 35498663 PMCID: PMC9039655 DOI: 10.3389/fpls.2022.841855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The bread wheat (Triticum aestivum) pangenome is a patchwork of variable regions, including translocations and introgressions from progenitors and wild relatives. Although a large number of these have been documented, it is likely that many more remain unknown. To map these variable regions and make them more traceable in breeding programs, wheat accessions need to be genotyped or sequenced. The wheat genome is large and complex and consequently, sequencing efforts are often targeted through exome capture. In this study, we employed exome capture prior to sequencing 12 wheat varieties; 10 elite T. aestivum cultivars and two T. aestivum landrace accessions. Sequence coverage across chromosomes was greater toward distal regions of chromosome arms and lower in centromeric regions, reflecting the capture probe distribution which itself is determined by the known telomere to centromere gene gradient. Superimposed on this general pattern, numerous drops in sequence coverage were observed. Several of these corresponded with reported introgressions. Other drops in coverage could not be readily explained and may point to introgressions that have not, to date, been documented.
Collapse
Affiliation(s)
| | - Mark O. Winfield
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Paul A. Wilkinson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Keith J. Edwards
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Gary L. A. Barker
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
14
|
Esposito S, D'Agostino N, Taranto F, Sonnante G, Sestili F, Lafiandra D, De Vita P. Whole-exome sequencing of selected bread wheat recombinant inbred lines as a useful resource for allele mining and bulked segregant analysis. Front Genet 2022; 13:1058471. [PMID: 36482886 PMCID: PMC9723387 DOI: 10.3389/fgene.2022.1058471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 03/22/2023] Open
Abstract
Although wheat (Triticum aestivum L.) is the main staple crop in the world and a major source of carbohydrates and proteins, functional genomics and allele mining are still big challenges. Given the advances in next-generation sequencing (NGS) technologies, the identification of causal variants associated with a target phenotype has become feasible. For these reasons, here, by combining sequence capture and target-enrichment methods with high-throughput NGS re-sequencing, we were able to scan at exome-wide level 46 randomly selected bread wheat individuals from a recombinant inbred line population and to identify and classify a large number of single nucleotide polymorphisms (SNPs). For technical validation of results, eight randomly selected SNPs were converted into Kompetitive Allele-Specific PCR (KASP) markers. This resource was established as an accessible and reusable molecular toolkit for allele data mining. The dataset we are making available could be exploited for novel studies on bread wheat genetics and as a foundation for starting breeding programs aimed at improving different key agronomic traits.
Collapse
Affiliation(s)
- Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA-Council for Agricultural Research and Economics, Foggia, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | | | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA-Council for Agricultural Research and Economics, Foggia, Italy
| |
Collapse
|
15
|
Meger J, Ulaszewski B, Burczyk J. Genomic signatures of natural selection at phenology-related genes in a widely distributed tree species Fagus sylvatica L. BMC Genomics 2021; 22:583. [PMID: 34332553 PMCID: PMC8325806 DOI: 10.1186/s12864-021-07907-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diversity among phenology-related genes is predicted to be a contributing factor in local adaptations seen in widely distributed plant species that grow in climatically variable geographic areas, such as forest trees. European beech (Fagus sylvatica L.) is widespread, and is one of the most important broadleaved tree species in Europe; however, its potential for adaptation to climate change is a matter of uncertainty, and little is known about the molecular basis of climate change-relevant traits like bud burst. RESULTS We explored single nucleotide polymorphisms (SNP) at candidate genes related to bud burst in beech individuals sampled across 47 populations from Europe. SNP diversity was monitored for 380 candidate genes using a sequence capture approach, providing 2909 unlinked SNP loci. We used two complementary analytical methods to find loci significantly associated with geographic variables, climatic variables (expressed as principal components), or phenotypic variables (spring and autumn phenology, height, survival). Redundancy analysis (RDA) was used to detect candidate markers across two spatial scales (entire study area and within subregions). We revealed 201 candidate SNPs at the broadest scale, 53.2% of which were associated with phenotypic variables. Additive polygenic scores, which provide a measure of the cumulative signal across significant candidate SNPs, were correlated with a climate variable (first principal component, PC1) related to temperature and precipitation availability, and spring phenology. However, different genotype-environment associations were identified within Southeastern Europe as compared to the entire geographic range of European beech. CONCLUSIONS Environmental conditions play important roles as drivers of genetic diversity of phenology-related genes that could influence local adaptation in European beech. Selection in beech favors genotypes with earlier bud burst under warmer and wetter habitats within its range; however, selection pressures may differ across spatial scales.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Jaroslaw Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland.
| |
Collapse
|
16
|
Udagawa H, Ichida H, Takeuchi T, Abe T, Takakura Y. Highly Efficient and Comprehensive Identification of Ethyl Methanesulfonate-Induced Mutations in Nicotiana tabacum L. by Whole-Genome and Whole-Exome Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:671598. [PMID: 34140964 PMCID: PMC8204250 DOI: 10.3389/fpls.2021.671598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is a complex allotetraploid species with a large 4.5-Gb genome that carries duplicated gene copies. In this study, we describe the development of a whole-exome sequencing (WES) procedure in tobacco and its application to characterize a test population of ethyl methanesulfonate (EMS)-induced mutations. A probe set covering 50.3-Mb protein coding regions was designed from a reference tobacco genome. The EMS-induced mutations in 19 individual M2 lines were analyzed using our mutation analysis pipeline optimized to minimize false positives/negatives. In the target regions, the on-target rate of WES was approximately 75%, and 61,146 mutations were detected in the 19 M2 lines. Most of the mutations (98.8%) were single nucleotide variants, and 95.6% of them were C/G to T/A transitions. The number of mutations detected in the target coding sequences by WES was 93.5% of the mutations detected by whole-genome sequencing (WGS). The amount of sequencing data necessary for efficient mutation detection was significantly lower in WES (11.2 Gb), which is only 6.2% of the required amount in WGS (180 Gb). Thus, WES was almost comparable to WGS in performance but is more cost effective. Therefore, the developed target exome sequencing, which could become a fundamental tool in high-throughput mutation identification, renders the genome-wide analysis of tobacco highly efficient.
Collapse
Affiliation(s)
- Hisashi Udagawa
- Leaf Tobacco Research Center, Japan Tobacco Inc., Oyama, Japan
| | - Hiroyuki Ichida
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
| | | | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
| | | |
Collapse
|
17
|
De novo assembly and characterization of the first draft genome of quince (Cydonia oblonga Mill.). Sci Rep 2021; 11:3818. [PMID: 33589687 PMCID: PMC7884838 DOI: 10.1038/s41598-021-83113-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 01/30/2023] Open
Abstract
Quince (Cydonia oblonga Mill.) is the sole member of the genus Cydonia in the Rosacea family and closely related to the major pome fruits, apple (Malus domestica Borkh.) and pear (Pyrus communis L.). In the present work, whole genome shotgun paired-end sequencing was employed in order to assemble the first draft genome of quince. A genome assembly that spans 488.4 Mb of sequence corresponding to 71.2% of the estimated genome size (686 Mb) was produced in the study. Gene predictions via ab initio and homology-based sequence annotation strategies resulted in the identification of 25,428 and 30,684 unique putative protein coding genes, respectively. 97.4 and 95.6% of putative homologs of Arabidopsis and rice transcription factors were identified in the ab initio predicted genic sequences. Different machine learning algorithms were tested for classifying pre-miRNA (precursor microRNA) coding sequences, identifying Support Vector Machine (SVM) as the best performing classifier. SVM classification predicted 600 putative pre-miRNA coding loci. Repetitive DNA content of the assembly was also characterized. The first draft assembly of the quince genome produced in this work would constitute a foundation for functional genomic research in quince toward dissecting the genetic basis of important traits and performing genomics-assisted breeding.
Collapse
|
18
|
Li Y, Xiong H, Zhang J, Guo H, Zhou C, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Fang Z, Liu L. Genome-Wide and Exome-Capturing Sequencing of a Gamma-Ray-Induced Mutant Reveals Biased Variations in Common Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:793496. [PMID: 35095966 PMCID: PMC8790116 DOI: 10.3389/fpls.2021.793496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 05/13/2023]
Abstract
Induced mutagenesis is a powerful approach for the creation of novel germplasm and the improvement of agronomic traits. The evaluation of mutagenic effects and functional variations in crops is needed for breeding mutant strains. To investigate the mutagenic effects of gamma-ray irradiation in wheat, this study characterized genomic variations of wheat early heading mutant (eh1) as compared to wild-type (WT) Zhongyuan 9 (ZY9). Whole-genome resequencing of eh1 and ZY9 produced 737.7 Gb sequencing data and identified a total of 23,537,117 homozygous single nucleotide polymorphism (SNP) and 1,608,468 Indel. Analysis of SNP distribution across the chromosome suggests that mutation hotspots existed in certain chromosomal regions. Among the three subgenomes, the variation frequency in subgenome D was significantly lower than in subgenomes A and B. A total of 27.8 Gb data were obtained by exome-capturing sequencing, while 217,948 SNP and 13,554 Indel were identified. Variation annotation in the gene-coding sequences demonstrated that 5.0% of the SNP and 5.3% of the Indel were functionally important. Characterization of exomic variations in 12 additional gamma-ray-induced mutant lines further provided additional insights into the mutagenic effects of this approach. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis suggested that genes with functional variations were enriched in several metabolic pathways, including plant-pathogen interactions and ADP binding. Kompetitive allele-specific PCR (KASP) genotyping with selected SNP within functional genes indicated that 85.7% of the SNPs were polymorphic between the eh1 and wild type. This study provides a basic understanding of the mechanism behind gamma-ray irradiation in hexaploid wheat.
Collapse
Affiliation(s)
- Yuting Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongchun Xiong
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiazi Zhang
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijun Guo
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyun Zhou
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongdun Xie
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Zhao
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiayu Gu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Zhao
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuping Ding
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengwu Fang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
- Zhengwu Fang,
| | - Luxiang Liu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Luxiang Liu,
| |
Collapse
|
19
|
Numaguchi K, Akagi T, Kitamura Y, Ishikawa R, Ishii T. Interspecific introgression and natural selection in the evolution of Japanese apricot (Prunus mume). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1551-1567. [PMID: 33048374 DOI: 10.1111/tpj.15020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Domestication and population differentiation in crops involve considerable phenotypic changes. The logs of these evolutionary paths, including natural/artificial selection, can be found in the genomes of the current populations. However, these profiles have been little studied in tree crops, which have specific characters, such as long generation time and clonal propagation, maintaining high levels of heterozygosity. We conducted exon-targeted resequencing of 129 genomes in the genus Prunus, mainly Japanese apricot (Prunus mume), and apricot (Prunus armeniaca), plum (Prunus salicina), and peach (Prunus persica). Based on their genome-wide single-nucleotide polymorphisms merged with published resequencing data of 79 Chinese P. mume cultivars, we inferred complete and ongoing population differentiation in P. mume. Sliding window characterization of the indexes for genetic differentiation identified interspecific fragment introgressions between P. mume and related species (plum and apricot). These regions often exhibited strong selective sweeps formed in the paths of establishment or formation of substructures of P. mume, suggesting that P. mume has frequently imported advantageous genes from other species in the subgenus Prunus as adaptive evolution. These findings shed light on the complicated nature of adaptive evolution in a tree crop that has undergone interspecific exchange of genome fragments with natural/artificial selections.
Collapse
Affiliation(s)
- Koji Numaguchi
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Minabe, Higashi-honjo 1416-7, Wakayama, 645-0021, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Tsushima-naka 1-1-1, Okayama, 700-8530, Japan
| | - Yuto Kitamura
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Minabe, Higashi-honjo 1416-7, Wakayama, 645-0021, Japan
| | - Ryo Ishikawa
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
| | - Takashige Ishii
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
| |
Collapse
|
20
|
Shinozuka H, Shinozuka M, de Vries EM, Sawbridge TI, Spangenberg GC, Cocks BG. Fungus-originated genes in the genomes of cereal and pasture grasses acquired through ancient lateral transfer. Sci Rep 2020; 10:19883. [PMID: 33199756 PMCID: PMC7670438 DOI: 10.1038/s41598-020-76478-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
Evidence for ancestral gene transfer between Epichloë fungal endophyte ancestors and their host grass species is described. From genomes of cool-season grasses (the Poeae tribe), two Epichloë-originated genes were identified through DNA sequence similarity analysis. The two genes showed 96% and 85% DNA sequence identities between the corresponding Epichloë genes. One of the genes was specific to the Loliinae sub-tribe. The other gene was more widely conserved in the Poeae and Triticeae tribes, including wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). The genes were independently transferred during the last 39 million years. The transferred genes were expressed in plant tissues, presumably retaining molecular functions. Multiple gene transfer events between the specific plant and fungal lineages are unique. A range of cereal crops is included in the Poeae and Triticeae tribes, and the Loliinae sub-tribe is consisted of economically important pasture and forage crops. Identification and characterisation of the 'natural' adaptation transgenes in the genomes of cereals, and pasture and forage grasses, that worldwide underpin the production of major foods, such as bread, meat, and milk, may change the 'unnatural' perception status of transgenic and gene-edited plants.
Collapse
Affiliation(s)
- Hiroshi Shinozuka
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia.
| | - Maiko Shinozuka
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia
| | - Ellen M de Vries
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Timothy I Sawbridge
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - German C Spangenberg
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Benjamin G Cocks
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| |
Collapse
|
21
|
Sahu PK, Sao R, Mondal S, Vishwakarma G, Gupta SK, Kumar V, Singh S, Sharma D, Das BK. Next Generation Sequencing Based Forward Genetic Approaches for Identification and Mapping of Causal Mutations in Crop Plants: A Comprehensive Review. PLANTS 2020; 9:plants9101355. [PMID: 33066352 PMCID: PMC7602136 DOI: 10.3390/plants9101355] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
The recent advancements in forward genetics have expanded the applications of mutation techniques in advanced genetics and genomics, ahead of direct use in breeding programs. The advent of next-generation sequencing (NGS) has enabled easy identification and mapping of causal mutations within a short period and at relatively low cost. Identifying the genetic mutations and genes that underlie phenotypic changes is essential for understanding a wide variety of biological functions. To accelerate the mutation mapping for crop improvement, several high-throughput and novel NGS based forward genetic approaches have been developed and applied in various crops. These techniques are highly efficient in crop plants, as it is relatively easy to grow and screen thousands of individuals. These approaches have improved the resolution in quantitative trait loci (QTL) position/point mutations and assisted in determining the functional causative variations in genes. To be successful in the interpretation of NGS data, bioinformatics computational methods are critical elements in delivering accurate assembly, alignment, and variant detection. Numerous bioinformatics tools/pipelines have been developed for such analysis. This article intends to review the recent advances in NGS based forward genetic approaches to identify and map the causal mutations in the crop genomes. The article also highlights the available bioinformatics tools/pipelines for reducing the complexity of NGS data and delivering the concluding outcomes.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gautam Vishwakarma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sudhir Kumar Gupta
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India;
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
- Correspondence: (D.S.); (B.K.D.)
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
- Correspondence: (D.S.); (B.K.D.)
| |
Collapse
|
22
|
Barrera-Redondo J, Piñero D, Eguiarte LE. Genomic, Transcriptomic and Epigenomic Tools to Study the Domestication of Plants and Animals: A Field Guide for Beginners. Front Genet 2020; 11:742. [PMID: 32760427 PMCID: PMC7373799 DOI: 10.3389/fgene.2020.00742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023] Open
Abstract
In the last decade, genomics and the related fields of transcriptomics and epigenomics have revolutionized the study of the domestication process in plants and animals, leading to new discoveries and new unresolved questions. Given that some domesticated taxa have been more studied than others, the extent of genomic data can range from vast to nonexistent, depending on the domesticated taxon of interest. This review is meant as a rough guide for students and academics that want to start a domestication research project using modern genomic tools, as well as for researchers already conducting domestication studies that are interested in following a genomic approach and looking for alternate strategies (cheaper or more efficient) and future directions. We summarize the theoretical and technical background needed to carry out domestication genomics, starting from the acquisition of a reference genome and genome assembly, to the sampling design for population genomics, paleogenomics, transcriptomics, epigenomics and experimental validation of domestication-related genes. We also describe some examples of the aforementioned approaches and the relevant discoveries they made to understand the domestication of the studied taxa.
Collapse
Affiliation(s)
| | | | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
23
|
Xing Y, Dabney AR, Li X, Wang G, Gill CA, Casola C. SECNVs: A Simulator of Copy Number Variants and Whole-Exome Sequences From Reference Genomes. Front Genet 2020; 11:82. [PMID: 32153642 PMCID: PMC7046838 DOI: 10.3389/fgene.2020.00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 01/26/2023] Open
Abstract
Copy number variants are duplications and deletions of the genome that play an important role in phenotypic changes and human disease. Many software applications have been developed to detect copy number variants using either whole-genome sequencing or whole-exome sequencing data. However, there is poor agreement in the results from these applications. Simulated datasets containing copy number variants allow comprehensive comparisons of the operating characteristics of existing and novel copy number variant detection methods. Several software applications have been developed to simulate copy number variants and other structural variants in whole-genome sequencing data. However, none of the applications reliably simulate copy number variants in whole-exome sequencing data. We have developed and tested Simulator of Exome Copy Number Variants (SECNVs), a fast, robust and customizable software application for simulating copy number variants and whole-exome sequences from a reference genome. SECNVs is easy to install, implements a wide range of commands to customize simulations, can output multiple samples at once, and incorporates a pipeline to output rearranged genomes, short reads and BAM files in a single command. Variants generated by SECNVs are detected with high sensitivity and precision by tools commonly used to detect copy number variants. SECNVs is publicly available at https://github.com/YJulyXing/SECNVs.
Collapse
Affiliation(s)
- Yue Xing
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, United States
- Department of Statistics, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Alan R. Dabney
- Department of Statistics, Texas A&M University, College Station, TX, United States
| | - Xiao Li
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Guosong Wang
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Clare A. Gill
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, United States
| |
Collapse
|
24
|
Kane NA, Berthouly-Salazar C. Population Genomics of Pearl Millet. POPULATION GENOMICS 2020. [DOI: 10.1007/13836_2020_80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Guerra FP, Suren H, Holliday J, Richards JH, Fiehn O, Famula R, Stanton BJ, Shuren R, Sykes R, Davis MF, Neale DB. Exome resequencing and GWAS for growth, ecophysiology, and chemical and metabolomic composition of wood of Populus trichocarpa. BMC Genomics 2019; 20:875. [PMID: 31747881 PMCID: PMC6864938 DOI: 10.1186/s12864-019-6160-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background Populus trichocarpa is an important forest tree species for the generation of lignocellulosic ethanol. Understanding the genomic basis of biomass production and chemical composition of wood is fundamental in supporting genetic improvement programs. Considerable variation has been observed in this species for complex traits related to growth, phenology, ecophysiology and wood chemistry. Those traits are influenced by both polygenic control and environmental effects, and their genome architecture and regulation are only partially understood. Genome wide association studies (GWAS) represent an approach to advance that aim using thousands of single nucleotide polymorphisms (SNPs). Genotyping using exome capture methodologies represent an efficient approach to identify specific functional regions of genomes underlying phenotypic variation. Results We identified 813 K SNPs, which were utilized for genotyping 461 P. trichocarpa clones, representing 101 provenances collected from Oregon and Washington, and established in California. A GWAS performed on 20 traits, considering single SNP-marker tests identified a variable number of significant SNPs (p-value < 6.1479E-8) in association with diameter, height, leaf carbon and nitrogen contents, and δ15N. The number of significant SNPs ranged from 2 to 220 per trait. Additionally, multiple-marker analyses by sliding-windows tests detected between 6 and 192 significant windows for the analyzed traits. The significant SNPs resided within genes that encode proteins belonging to different functional classes as such protein synthesis, energy/metabolism and DNA/RNA metabolism, among others. Conclusions SNP-markers within genes associated with traits of importance for biomass production were detected. They contribute to characterize the genomic architecture of P. trichocarpa biomass required to support the development and application of marker breeding technologies.
Collapse
Affiliation(s)
- Fernando P Guerra
- Department of Plant Sciences, University of California at Davis, 262C Robbins Hall, Mail Stop 4, Davis, CA, 95616, USA.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, P.O. Box 747, 3460000, Chile
| | - Haktan Suren
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jason Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - James H Richards
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, 95616, USA
| | - Randi Famula
- Department of Plant Sciences, University of California at Davis, 262C Robbins Hall, Mail Stop 4, Davis, CA, 95616, USA
| | - Brian J Stanton
- Biological Research Group, GreenWood Resources, Portland, OR, 97201, USA
| | - Richard Shuren
- Biological Research Group, GreenWood Resources, Portland, OR, 97201, USA
| | - Robert Sykes
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Mark F Davis
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - David B Neale
- Department of Plant Sciences, University of California at Davis, 262C Robbins Hall, Mail Stop 4, Davis, CA, 95616, USA. .,Bioenergy Research Center, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
26
|
Kumawat S, Rana N, Bansal R, Vishwakarma G, Mehetre ST, Das BK, Kumar M, Kumar Yadav S, Sonah H, Sharma TR, Deshmukh R. Expanding Avenue of Fast Neutron Mediated Mutagenesis for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2019; 8:E164. [PMID: 31185678 PMCID: PMC6631465 DOI: 10.3390/plants8060164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
: Fast neutron (FN) radiation mediated mutagenesis is a unique approach among the several induced mutagenesis methods being used in plant science in terms of impacted mutations. The FN mutagenesis usually creates deletions from few bases to several million bases (Mb). A library of random deletion generated using FN mutagenesis lines can provide indispensable resources for the reverse genetic approaches. In this review, information from several efforts made using FN mutagenesis has been compiled to understand the type of induced mutations, frequency, and genetic stability. Concerns regarding the utilization of FN mutagenesis technique for a plant with different level of ploidy and genome complexity are discussed. We have highlighted the utility of next-generation sequencing techniques that can be efficiently utilized for the characterization of mutant lines as well as for the mapping of causal mutations. Pros and cons of mapping by mutation (MutMap), mutant chromosome sequencing (MutChromSeq), exon capture, whole genome sequencing, MutRen-Seq, and different tilling approaches that can be used for the detection of FN-induced mutation has also been discussed. Genomic resources developed using the FN mutagenesis have been catalogued wooing to meaningful utilization of the available resources. The information provided here will be helpful for the efficient exploration for the crop improvement programs and for better understanding of genetic regulations.
Collapse
Affiliation(s)
- Surbhi Kumawat
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Nitika Rana
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Ruchi Bansal
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Gautam Vishwakarma
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Sayaji T Mehetre
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Bikram Kishore Das
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Manish Kumar
- Department of Seed Science and Technology, College of Horticulture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh 173230, India.
| | | | - Humira Sonah
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Tilak Raj Sharma
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| | - Rupesh Deshmukh
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India.
| |
Collapse
|
27
|
Assessment of Genetic Differentiation and Linkage Disequilibrium in Solanum pimpinellifolium Using Genome-Wide High-Density SNP Markers. G3-GENES GENOMES GENETICS 2019; 9:1497-1505. [PMID: 30858236 PMCID: PMC6505160 DOI: 10.1534/g3.118.200862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To mine new favorable alleles for tomato breeding, we investigated the feasibility of utilizing Solanum pimpinellifolium as a diverse panel of genome-wide association study through the restriction site-associated DNA sequencing technique. Previous attempts to conduct genome-wide association studies using S. pimpinellifolium were impeded by an inability to correct for population stratification and by lack of high-density markers to address the issue of rapid linkage disequilibrium decay. In the current study, a set of 24,330 SNPs was identified using 99 S. pimpinellifolium accessions from the Tomato Genetic Resource Center. Approximately 84% of PstI site-associated DNA sequencing regions were located in the euchromatic regions, resulting in the tagging of most SNPs on or near genes. Our genotypic data suggested that S. pimpinellifolium were divided into three single-ancestry subpopulations and four mixed-ancestry subpopulations. Additionally, our SNP genotypic data consistently confirmed the genetic differentiation, achieving a relatively reliable correction of population stratification. Previous studies utilized the 8K tomato SNP array, SolCAP, to investigate the genetic variation of S. pimpinellifolium and we performed a meta-analysis of these genotypes. The result suggested SolCAP array was less appropriate to profile the genetic differentiation of S. pimpinellifolium when more accessions were involved because the samples belonging to the same accession demonstrated different genome patterns. Moreover, as expected, rapid linkage disequilibrium decay was observed in S. pimpinellifolium, especially in euchromatic regions. Approximately two-thirds of the flanking SNP markers did not display linkage disequilibrium based on r2 = 0.1. However, the 18-Kb linkage disequilibrium decay indeed reveals the potential of single-gene resolution in GWAS when markers are saturated.
Collapse
|