1
|
Rincón-Flórez VA, Carvalhais LC, Silva AMF, McTaggart A, Ray JD, O'Dwyer C, Roberts JM, Souza EB, Albuquerque GMR, Drenth A. Validation of PCR Diagnostic Assays for Detection and Identification of All Ralstonia solanacearum Sequevars Causing Moko Disease in Banana. PHYTOPATHOLOGY 2024; 114:2375-2384. [PMID: 39145736 DOI: 10.1094/phyto-06-24-0190-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Moko disease in banana is a bacterial wilt caused by strains within Ralstonia solanacearum sensu stricto. The disease is endemic to Central and South America but has spread to the Philippines and peninsular Malaysia. Detecting new incursions early in Moko-free banana production regions is of utmost importance for containment and eradication, as Moko management significantly increases costs in banana production. Molecular studies have supported the classification of R. solanacearum sensu stricto into phylotypes IIA, IIB, and IIC, each comprising various sequevars based on nucleotide divergence of a partial sequence within the endoglucanase gene. Moko disease in banana is caused by strains classified as sequevars 6, 24, 41, and 53 within phylotype IIA and sequevars 3, 4, and 25 within phylotype IIB. To ensure accurate diagnostic assays are available to detect all Moko sequevars, we systematically validated previously published assays for Moko diagnostics. To be able to identify all sequevars, including the latest described sequevars, namely IIB-25, IIA-41, and IIA-53, we developed and validated two novel assays using genome-wide association studies on over 100 genomes of R. solanacearum sensu stricto. Validations using 196 bacterial isolates confirmed that a previous multiplex PCR-based assay targeting sequevars IIB-3, IIB-4, IIA-6, and IIA-24 and our two novel assays targeting sequevars IIB-25, IIA-41, and IIA-53 were specific, reproducible, and accurate for Moko diagnostics.
Collapse
Affiliation(s)
- Vivian A Rincón-Flórez
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Adriano M F Silva
- Centre for Agricultural Sciences, Federal University of Alagoas, Maceió, Brazil
- Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Alistair McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Jane D Ray
- Biosecurity and Animal Welfare, Department of Industry, Tourism and Trade, Northern Territory, Australia
| | - Cecilia O'Dwyer
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Janet M Roberts
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Elineide B Souza
- Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - André Drenth
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Hamilton CD, Zaricor B, Dye CJ, Dresserl E, Michaels R, Allen C. Ralstonia solanacearum pandemic lineage strain UW551 overcomes inhibitory xylem chemistry to break tomato bacterial wilt resistance. MOLECULAR PLANT PATHOLOGY 2024; 25:e13395. [PMID: 37846613 PMCID: PMC10782650 DOI: 10.1111/mpp.13395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Plant-pathogenic Ralstonia strains cause bacterial wilt disease by colonizing xylem vessels of many crops, including tomato. Host resistance is the best control for bacterial wilt, but resistance mechanisms of the widely used Hawaii 7996 tomato breeding line (H7996) are unknown. Using growth in ex vivo xylem sap as a proxy for host xylem, we found that Ralstonia strain GMI1000 grows in sap from both healthy plants and Ralstonia-infected susceptible plants. However, sap from Ralstonia-infected H7996 plants inhibited Ralstonia growth, suggesting that in response to Ralstonia infection, resistant plants increase inhibitors in their xylem sap. Consistent with this, reciprocal grafting and defence gene expression experiments indicated that H7996 wilt resistance acts in both above- and belowground plant parts. Concerningly, H7996 resistance is broken by Ralstonia strain UW551 of the pandemic lineage that threatens highland tropical agriculture. Unlike other Ralstonia, UW551 grew well in sap from Ralstonia-infected H7996 plants. Moreover, other Ralstonia strains could grow in sap from H7996 plants previously infected by UW551. Thus, UW551 overcomes H7996 resistance in part by detoxifying inhibitors in xylem sap. Testing a panel of xylem sap compounds identified by metabolomics revealed that no single chemical differentially inhibits Ralstonia strains that cannot infect H7996. However, sap from Ralstonia-infected H7996 contained more phenolic compounds, which are known to be involved in plant antimicrobial defence. Culturing UW551 in this sap reduced total phenolic levels, indicating that the resistance-breaking Ralstonia strain degrades these chemical defences. Together, these results suggest that H7996 tomato wilt resistance depends in part on inducible phenolic compounds in xylem sap.
Collapse
Affiliation(s)
- Corri D. Hamilton
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Beatriz Zaricor
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Carolyn Jean Dye
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Emma Dresserl
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Renee Michaels
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Caitilyn Allen
- Department of Plant PathologyUniversity of Wisconsin MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Cellier G, Nordey T, Cortada L, Gauche M, Rasoamanana H, Yahiaoui N, Rébert E, Prior P, Chéron JJ, Poussier S, Pruvost O. Molecular Epidemiology of Ralstonia pseudosolanacearum Phylotype I Strains in the Southwest Indian Ocean Region and Their Relatedness to African Strains. PHYTOPATHOLOGY 2023; 113:423-435. [PMID: 36399027 DOI: 10.1094/phyto-09-22-0355-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The increasing requirement for developing tools enabling fine strain traceability responsible for epidemics is tightly linked with the need to understand factors shaping pathogen populations and their environmental interactions. Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is one of the most important plant diseases in tropical and subtropical regions. Sadly, little, outdated, or no information on its epidemiology is reported in the literature, although alarming outbreaks are regularly reported as disasters. A large set of phylotype I isolates (n = 2,608) was retrieved from diseased plants in fields across the Southwest Indian Ocean (SWIO) and Africa. This collection enabled further assessment of the epidemiological discriminating power of the previously published RS1-MLVA14 scheme. Thirteen markers were validated and characterized as not equally informative. Most had little infra-sequevar polymorphism, and their performance depended on the sequevar. Strong correlation was found with a previous multilocus sequence typing scheme. However, 2 to 3% of sequevars were not correctly assigned through endoglucanase gene sequence. Discriminant analysis of principal components (DAPC) revealed four groups with strong phylogenetic relatedness to sequevars 31, 33, and 18. Phylotype I-31 isolates were highly prevalent in the SWIO and Africa, but their dissemination pathways remain unclear. Tanzania and Mauritius showed the greatest diversity of RSSC strains, as the four DAPC groups were retrieved. Mauritius was the sole territory harboring a vast phylogenetic diversity and all DAPC groups. More research is still needed to understand the high prevalence of phylotype I-31 at such a large geographic scale.
Collapse
Affiliation(s)
- Gilles Cellier
- Anses, Plant Health Laboratory, Saint Pierre, Reunion Island
| | | | - Laura Cortada
- East Africa Hub, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Nematology Section, Department of Biology, Ghent University, Ghent, Belgium
| | - Mirana Gauche
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Hasina Rasoamanana
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Noura Yahiaoui
- Anses, Plant Health Laboratory, Saint Pierre, Reunion Island
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Emeline Rébert
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Philippe Prior
- INRAE, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint-Pierre, Reunion Island
| | - Jean Jacques Chéron
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Stéphane Poussier
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Olivier Pruvost
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| |
Collapse
|
4
|
Zhao Q, Geng MY, Xia CJ, Lei T, Wang J, Cao CD, Wang J. Identification, genetic diversity, and pathogenicity of Ralstonia pseudosolanacearum causing cigar tobacco bacterial wilt in China. FEMS Microbiol Ecol 2023; 99:fiad018. [PMID: 36822630 DOI: 10.1093/femsec/fiad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Ralstonia pseudosolanacearum, previously known as R. solanacearum species complex (RSSC) phylotypes I and III, is a plant pathogenic bacterium causing significant yield losses in economical crops. In the May of 2020 and 2021, cigar tobacco bacterial wilt was first observed in fields in Danzhou, Hainan Province, China. A total of eight bacterial isolates were isolated and identified as R. pseudosolanacearum with race 1, biovar III by 16S rRNA gene sequencing, Biolog, and host identification. The amino acid sequence showed that Hainan strains and 15 R. pseudosolanacearum reference strains from flue-cured tobacco in Shandong and Guizhou Provinces, all belonged to RS1000 type containing the avrA gene, only Guizhou strains also had the popP1 gene. On the basis of phylotype-specific multiplex PCR amplification, mismatch repair gene and endoglucanase gene-base tree, Hainan strains were identified as phylotype I sequevar 70, and showed stronger pathogenic capabilities on three different varieties than those reference strains. This is the first report of cigar tobacco bacterial wilt caused by R. pseudosolanacearum sequevar 70. The results revealed the diversity of RSSC in Nicotiana tabacum in China and provided useful information regarding the epidemiology of cigar tobacco wilt disease, as well as the breeding for disease resistance in local cigar tobacco.
Collapse
Affiliation(s)
- Qian Zhao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No.4 Keyuanjing, Laoshan District, Qingdao, Shandong 266101, China
- Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Ming-Yan Geng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No.4 Keyuanjing, Laoshan District, Qingdao, Shandong 266101, China
| | - Chang-Jian Xia
- Haikou Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, No.120 Hongchenghu Road, Qiongshan District, Haikou, Hainan 571103, China
| | - Ting Lei
- Qiannan Branch of Guizhou Tobacco Corporation, No.8 Hebin, Duyun, Guizhou 558000, China
| | - Jie Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No.4 Keyuanjing, Laoshan District, Qingdao, Shandong 266101, China
| | - Chang-Dai Cao
- Rizhao Branch of Shandong Tobacco Corporation, No.269 Juzhou, Donggang District, Rizhao, Shandong 276800, China
| | - Jing Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No.4 Keyuanjing, Laoshan District, Qingdao, Shandong 266101, China
| |
Collapse
|
5
|
Rasoamanana H, Ravelomanantsoa S, Nomenjanahary MV, Gauche MM, Prior P, Guérin F, Robène I, Pecrix Y, Poussier S. Bacteriocin Production Correlates with Epidemiological Prevalence of Phylotype I Sequevar 18 Ralstonia pseudosolanacearum in Madagascar. Appl Environ Microbiol 2023; 89:e0163222. [PMID: 36602304 PMCID: PMC9888187 DOI: 10.1128/aem.01632-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is a major threat to vegetable crops in Madagascar. For more effective disease management, surveys were carried out in the main vegetable production areas of the country, leading to the collection of 401 new RSSC isolates. Phylogenetic assignment of the isolates revealed a high prevalence of phylotype I sequevar 18. This result contrasts sharply with the epidemiological pattern of RSSC in neighboring islands, including Reunion Island, Comoros, Mayotte, Mauritius, Rodrigues, and the Seychelles, where phylotype I sequevar 31 is widespread. Molecular typing characterization of the Malagasy isolates allowed the identification of 96 haplotypes. Some are found in various plots located in different provinces, which suggests that they were probably disseminated via infected plant material. To find out a potential explanation for the observed epidemiological pattern, we examined the capacity of the Malagasy strains to produce bacteriocin. Interestingly, the highly prevalent genetic lineages I-18 produce bacteriocins that are active against all the genetic lineages present in the country. This work sheds light on the potential impact of bacteriocins in the epidemiology of Malagasy RSSC. IMPORTANCE Knowledge of the epidemiology of a plant pathogen is essential to develop effective control strategies. This study focuses on the epidemiological pattern of Ralstonia pseudosolanacearum phylotype I populations responsible for bacterial wilt in Madagascar. We identified, with the newly collected isolates in three provinces, four genetic lineages probably propagated via infected plant material in Madagascar. We revealed that the epidemiological situation in Madagascar contrasts with that of neighboring Indian Ocean islands. Interestingly, our study on the bacteriocin-producing capacity of Malagasy isolates revealed a correlation between the inhibitory activity of the producing strains and the observed epidemiology. These results suggested that the epidemiology of plant pathogens may be impacted by bacteriocin production.
Collapse
Affiliation(s)
- Hasina Rasoamanana
- University of Reunion Island, UMR PVBMT, Saint-Pierre, Reunion Island, France
| | | | | | | | | | - Fabien Guérin
- University of Reunion Island, UMR PVBMT, Saint-Pierre, Reunion Island, France
| | | | - Yann Pecrix
- CIRAD, UMR PVBMT, Saint-Pierre, Reunion Island, France
| | - Stéphane Poussier
- University of Reunion Island, UMR PVBMT, Saint-Pierre, Reunion Island, France
| |
Collapse
|
6
|
Sharma K, Iruegas-Bocardo F, Abdurahman A, Alcalá-Briseño RI, Garrett KA, Goss EM, Ngundo G, Kreuze J, Atieno E, Munguti F. Ralstonia Strains from Potato-Growing Regions of Kenya Reveal Two Phylotypes and Epidemic Clonality of Phylotype II Sequevar 1 Strains. PHYTOPATHOLOGY 2022; 112:2072-2083. [PMID: 35522048 DOI: 10.1094/phyto-11-21-0455-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial wilt, caused by the Ralstonia solanacearum species complex (RSSC), is the most destructive potato disease in Kenya. Studies were conducted to (i) determine the molecular diversity of RSSC strains associated with bacterial wilt of potato in Kenya, (ii) generate an RSSC distribution map for epidemiological inference, and (iii) determine whether phylotype II sequevar 1 strains exhibit epidemic clonality. Surveys were conducted in 2018 and 2019, in which tubers from wilting potato plants and stem samples of potential alternative hosts were collected for pathogen isolation. The pathogen was phylotyped by multiplex PCR and 536 RSSC strains typed at a sequevar level. Two RSSC phylotypes were identified, phylotype II (98.4%, n = 506 [sequevar 1 (n = 505) and sequevar 2 (n = 1)]) and phylotype I (1.6%, n = 30 [sequevar 13 (n = 9) and a new sequevar (n = 21)]). The phylotype II sequevar 1 strains were haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. The TRST scheme identified 51 TRST profiles within the phylotype II sequevar 1 strains with a modest diversity index (HGDI = 0.87), confirming the epidemic clonality of RSSC phylotype II sequevar 1 strains in Kenya. A minimum spanning tree and mapping of the TRST profiles revealed that TRST27 '8-5-12-7-5' is the primary founder of the clonal complex of RSSC phylotype II sequevar 1 and is widely distributed via latently infected seed tubers. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kalpana Sharma
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers and Bananas (RTB), Centro Internacional de la Papa, Nairobi, Kenya, Lima, Peru
- International Potato Center (CIP), Sub-Saharan Africa Regional Office, Nairobi, Kenya
| | | | - Abdulwahab Abdurahman
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers and Bananas (RTB), Centro Internacional de la Papa, Nairobi, Kenya, Lima, Peru
- International Potato Center (CIP), Sub-Saharan Africa Regional Office, Nairobi, Kenya
| | - Ricardo I Alcalá-Briseño
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
- Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
| | - Karen A Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
- Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - George Ngundo
- Kenya Plant Health Inspectorate Service (KEPHIS), Plant Quarantine and Biosecurity Station (PQBS), Nairobi, Kenya
| | - Jan Kreuze
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers and Bananas (RTB), Centro Internacional de la Papa, Nairobi, Kenya, Lima, Peru
- International Potato Center (CIP), Crop and Systems Sciences Division, Lima, Peru
| | - Elly Atieno
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers and Bananas (RTB), Centro Internacional de la Papa, Nairobi, Kenya, Lima, Peru
- International Potato Center (CIP), Sub-Saharan Africa Regional Office, Nairobi, Kenya
| | - Florence Munguti
- Kenya Plant Health Inspectorate Service (KEPHIS), Plant Quarantine and Biosecurity Station (PQBS), Nairobi, Kenya
| |
Collapse
|
7
|
Steidl OR, Truchon AN, Hayes MM, Allen C. Complete Genome Resources for Ralstonia Bacterial Wilt Strains UW763 (Phylotype I); Rs5 and UW700 (Phylotype II); and UW386, RUN2474, and RUN2279 (Phylotype III). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1212-1215. [PMID: 34232701 DOI: 10.1094/mpmi-04-21-0086-a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We share whole genome sequences of six strains from the Ralstonia solanacearum species complex, a diverse group of Betaproteobacteria that cause plant vascular wilt diseases. Using single-molecule real-time technology, we sequenced and assembled full genomes of Rs5 and UW700, two phylotype IA-sequevar 7 (IIA-7) strains from the southeastern United States that are closely related to the R. solanacearum species type strain, K60, but were isolated >50 years later. Four sequenced strains from Africa include a soil isolate from Nigeria (UW386, III-23), a tomato isolate from Senegal (UW763, I-14), and two potato isolates from the Madagascar highlands (RUN2474, III-19 and RUN2279, III-60). This resource will support studies of the genetic diversity, ecology, virulence, and microevolution of this globally distributed group of high-impact plant pathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Olivia R Steidl
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Alicia N Truchon
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Madeline M Hayes
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| |
Collapse
|
8
|
Khairy AM, Tohamy MRA, Zayed MA, Ali MAS. Detecting pathogenic bacterial wilt disease of potato using biochemical markers and evaluate resistant in some cultivars. Saudi J Biol Sci 2021; 28:5193-5203. [PMID: 34466097 PMCID: PMC8381064 DOI: 10.1016/j.sjbs.2021.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial wilt caused by Ralstonia solanacearum (Smith), is one of the chief severe diseases of potato in warm temperate regions, tropics and subtropics of the world. The study was conducted to isolate and identify bacterial pathogens and select the most resistant cultivars and avoid the decrease in the total value of Egyptian potato exports to the European Union (EU) due to the quarantine restrictions imposed by the EU on potato tubers exported from Egypt affected by bacterial wilt. The results of traditional identification through morphological and serological studies showed that the five isolates were isolated and identified as Ralstonia solanacearum. Furthermore, the results illustrated that RS5 isolate showed the lowest percentage of disease incidence reduction on the three tested potatoes cultivar Bellini, Spunta and Mondial recorded 9.64%, 15.41% and 34.12%, respectively. While, RS8 isolate exhibited the highest effective one the percentage of disease reduction on all tested potato cultivars. This isolate reduced disease incidence 60.60%, 63.21% and 71.66%, compering to the healthy control treatment. The result of molecular identification represent that the probe used in Taq-man (PCR) was of the type (B2) capable to detect only biovar 2 of R. solanacearum bacterial wilt. Furthermore, primer and probe are specific for detection of the race 3 biovar 2 strain. Positive results were obtained in all assays used including IFAS, protein content and SDS-PAGE with all five isolates. So the isolate (RS5) was the most virulence one, followed by RS1, RS3, RS2 and RS8, registered that the tested isolates were R. solanacearum race 3, biovar 2. Also, studies focused on the form of genetic distances and similarities based on pathogenic and plant growth parameters. The results illustrate that the highest genetic similarity (0.998) was found between Bellini and Spunta cultivars as the closest but the lowest value (0.946) was found between Mondial and Bellini as most distant. These results were similarity with genetic distances and SDS-PAGE profile of the three tested potato cultivars.
Collapse
Affiliation(s)
- Ahmed M Khairy
- Plant Pathology Department, Faculty of Agric, Zagazig Univ, Egypt
| | | | - Mohamed A Zayed
- Plant Pathology Department, Faculty of Agric, Zagazig Univ, Egypt
| | - Mohamed A S Ali
- Plant Pathology Department, Faculty of Agric, Zagazig Univ, Egypt
| |
Collapse
|
9
|
Yu RM, Suo YY, Yang R, Chang YN, Tian T, Song YJ, Wang HJ, Wang C, Yang RJ, Liu HL, Gao G. StMBF1c positively regulates disease resistance to Ralstonia solanacearum via it's primary and secondary upregulation combining expression of StTPS5 and resistance marker genes in potato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110877. [PMID: 33902863 DOI: 10.1016/j.plantsci.2021.110877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Multiprotein bridging factor 1 (MBF1) is a transcription coactivator that has a general defense response to pathogens. However, the regulatory mechanisms of MBF1 resistance bacterial wilt remain largely unknown. Here, the role of StMBF1c in potato resistance to Ralstonia solanacearum infection was characterized. qRT-PCR assays indicated that StMBF1c could was elicited by SA, MJ and ABA and the time-course expression pattern of the StMBF1c gene induced by R. solanacearum was found to be twice significant upregulated expression during the early and middle stages of bacterial wilt. Combined with the co-expression analysis of disease-resistant marker genes, gain-of-function and loss-of-function assays demonstrated that StMBF1c was associated with defence priming. Overexpression or silencing the MBF1c could enhance plants resistance or sensitivity to R. solanacearum through inducing or reducing NPR and PR genes related to SA signal pathway. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiment results confirmed the interaction of StMBF1c with StTPS5 which played a key role in ABA signal pathway in potato. It is speculated that by combining StTPS5 and resistance marker genes, StMBF1c is activated twice to participate in potato bacterial wilt resistance, in which EPI, PTI involved.
Collapse
Affiliation(s)
- Rui-Min Yu
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Yan-Yun Suo
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Rui Yang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Yan-Nan Chang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Tian Tian
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Yan-Jie Song
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Huan-Jun Wang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Cong Wang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Ru-Jie Yang
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Hong-Liang Liu
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| | - Gang Gao
- Genetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen, China.
| |
Collapse
|
10
|
Sharma K, Kreuze J, Abdurahman A, Parker M, Nduwayezu A, Rukundo P. Molecular Diversity and Pathogenicity of Ralstonia solanacearum Species Complex Associated With Bacterial Wilt of Potato in Rwanda. PLANT DISEASE 2021; 105:770-779. [PMID: 32720880 DOI: 10.1094/pdis-04-20-0851-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial wilt (BW), caused by Ralstonia solanacearum species complex (RSSC), leads to substantial potato yield losses in Rwanda. Studies were conducted to (i) determine the molecular diversity of RSSC strains associated with BW of potato, (ii) generate an RSSC distribution map for epidemiological inferences, and (iii) test the pathogenicity of predominant RSSC phylotypes on six commercial potato cultivars. In surveys conducted in 2018 and 2019, tubers from wilting potato plants were collected for pathogen isolation. DNA was extracted from 95 presumptive RSSC strain colonies. The pathogen was phylotyped by multiplex PCR and typed at sequevar level. Phylotype II sequevar 1 strains were then haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. Pathogenicity of one phylotype II strain and two phylotype III strains were tested on cultivars Kinigi, Kirundo, Victoria, Kazeneza, Twihaze, and Cruza. Two RSSC phylotypes were identified, phylotype II (95.79%, n = 91) and phylotype III (4.21%, n = 4). This is the first report of phylotype III strains from Rwanda. Phylotype II strains were identified as sequevar 1 and distributed across potato growing regions in the country. The TRST scheme identified 14 TRST haplotypes within the phylotype II sequevar 1 strains with moderate diversity index (HGDI = 0.55). Mapping of TRST haplotypes revealed that a single TRST '8-5-12-7-5' haplotype plays an important epidemiological role in BW of potato in Rwanda. None of the cultivars had complete resistance to the tested phylotypes; the level of susceptibility varied among cultivars. Cultivar Cruza, which is less susceptible to phylotype II and III strains, is recommended when planting potatoes in the fields with history of BW.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kalpana Sharma
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers, and Bananas (RTB)
- International Potato Center (CIP), Sub-Saharan Africa Regional Office, Nairobi, Kenya
| | - Jan Kreuze
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers, and Bananas (RTB)
- International Potato Center (CIP), Crop and Systems Sciences Division, Lima, Peru
| | - Abdulwahab Abdurahman
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers, and Bananas (RTB)
- International Potato Center (CIP), Sub-Saharan Africa Regional Office, Nairobi, Kenya
| | - Monica Parker
- Consultative Group for International Agricultural Research (CGIAR) Research Program on Roots, Tubers, and Bananas (RTB)
- International Potato Center (CIP), Sub-Saharan Africa Regional Office, Nairobi, Kenya
| | - Anastase Nduwayezu
- Rwanda Agriculture and Animal Resources Development Board (RAB), Musanze Station, Northern Province, Rwanda
| | - Placide Rukundo
- Rwanda Agriculture and Animal Resources Development Board (RAB), Musanze Station, Northern Province, Rwanda
| |
Collapse
|
11
|
Emerging infectious diseases threatening food security and economies in Africa. GLOBAL FOOD SECURITY 2021. [DOI: 10.1016/j.gfs.2020.100479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Rasoamanana H, Ravelomanantsoa S, Yahiaoui N, Dianzinga N, Rébert E, Gauche MM, Pecrix Y, Costet L, Rieux A, Prior P, Robène I, Cellier G, Guérin F, Poussier S. Contrasting genetic diversity and structure among Malagasy Ralstonia pseudosolanacearum phylotype I populations inferred from an optimized Multilocus Variable Number of Tandem Repeat Analysis scheme. PLoS One 2020; 15:e0242846. [PMID: 33290390 PMCID: PMC7723262 DOI: 10.1371/journal.pone.0242846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
The Ralstonia solanacearum species complex (RSSC), composed of three species and four phylotypes, are globally distributed soil-borne bacteria with a very broad host range. In 2009, a devastating potato bacterial wilt outbreak was declared in the central highlands of Madagascar, which reduced the production of vegetable crops including potato, eggplant, tomato and pepper. A molecular epidemiology study of Malagasy RSSC strains carried out between 2013 and 2017 identified R. pseudosolanacearum (phylotypes I and III) and R. solanacearum (phylotype II). A previously published population biology analysis of phylotypes II and III using two MultiLocus Variable Number of Tandem Repeats Analysis (MLVA) schemes revealed an emergent epidemic phylotype II (sequevar 1) group and endemic phylotype III isolates. We developed an optimized MLVA scheme (RS1-MLVA14) to characterize phylotype I strains in Madagascar to understand their genetic diversity and structure. The collection included isolates from 16 fields of different Solanaceae species sampled in Analamanga and Itasy regions (highlands) in 2013 (123 strains) and in Atsinanana region (lowlands) in 2006 (25 strains). Thirty-one haplotypes were identified, two of them being particularly prevalent: MT007 (30.14%) and MT004 (16.44%) (sequevar 18). Genetic diversity analysis revealed a significant contrasting level of diversity according to elevation and sampling region. More diverse at low altitude than at high altitude, the Malagasy phylotype I isolates were structured in two clusters, probably resulting from different historical introductions. Interestingly, the most prevalent Malagasy phylotype I isolates were genetically distant from regional and worldwide isolates. In this work, we demonstrated that the RS1-MLVA14 scheme can resolve differences from regional to field scales and is thus suited for deciphering the epidemiology of phylotype I populations.
Collapse
Affiliation(s)
- Hasina Rasoamanana
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Santatra Ravelomanantsoa
- Centre National de la Recherche Appliquée au Développement Rural FOFIFA, Antananarivo, Madagascar
| | - Noura Yahiaoui
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Niry Dianzinga
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Emeline Rébert
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Miharisoa-Mirana Gauche
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Yann Pecrix
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Laurent Costet
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Adrien Rieux
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Philippe Prior
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Isabelle Robène
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Gilles Cellier
- Anses - Plant Health Laboratory - Tropical Pests and Diseases Unit, Saint-Pierre, Réunion, France
| | - Fabien Guérin
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Stéphane Poussier
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| |
Collapse
|
13
|
Sedighian N, Taghavi SM, Hamzehzarghani H, van der Wolf JM, Wicker E, Osdaghi E. Potato-Infecting Ralstonia solanacearum Strains in Iran Expand Knowledge on the Global Diversity of Brown Rot Ecotype of the Pathogen. PHYTOPATHOLOGY 2020; 110:1647-1656. [PMID: 32401153 DOI: 10.1094/phyto-03-20-0072-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial wilt and brown rot disease caused by Ralstonia solanacearum species complex (RSSC) is one of the major constraints of potato (Solanum tuberosum) production around the globe. During 2017 to 2018, an extensive field survey was conducted in six potato-growing provinces of Iran to monitor the status of bacterial wilt disease. Pathogenicity and host range assays using 59 bacterial strains isolated in Iran showed that they were pathogenic on eggplant, red nightshade, pepper, potato and tomato, while nonpathogenic on common bean, cowpea, cucumber, sunflower, zinnia and zucchini. PCR-based diagnosis revealed that the strains belong to the phylotype IIB/sequevar 1 (IIB/I) lineage of the RSSC. Furthermore, a five-gene multilocus sequence analysis and typing (egl, fliC, gyrB, mutS, and rplB) confirmed the phylogenetically near-homogeneous nature of the strains within IIB/I lineage. Four sequence types were identified among 58 IIB/1 strains isolated in Iran. Phylogenetically near-homogeneous nature of the strains in Iran raise questions about the mode of inoculum entry of the bacterial wilt pathogen into the country (one-time introduction versus multiple introductions), while the geographic origin of the Iranian R. solanacearum strains remains undetermined. Furthermore, sequence typing showed that there were shared alleles (haplotypes) and sequence types among the strains isolated in geographically distant areas in Iran, suggesting intranational transmission of the pathogen in the country.
Collapse
Affiliation(s)
- Nasim Sedighian
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | | | - Jan M van der Wolf
- Wageningen University and Research, Business Unit Biointeractions and Plant Health, 6700 AA, Wageningen, The Netherlands
| | - Emmanuel Wicker
- IPME, Univ Montpellier, CIRAD, IRD, Montpellier, France
- CIRAD, UMR IPME, Montpellier, France
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| |
Collapse
|
14
|
Abdurahman A, Parker ML, Kreuze J, Elphinstone JG, Struik PC, Kigundu A, Arengo E, Sharma K. Molecular Epidemiology of Ralstonia solanacearum Species Complex Strains Causing Bacterial Wilt of Potato in Uganda. PHYTOPATHOLOGY 2019; 109:1922-1931. [PMID: 31272278 DOI: 10.1094/phyto-12-18-0476-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC) is a serious threat to potato production in Uganda. However, little is known about the extent of the disease and the type of the pathogen strains involved. A nationwide survey was conducted to study BW prevalence and incidence in potato, and potato tuber and stem samples of potential alternative hosts were collected for pathogen isolation. DNA was extracted from pure cultures for genetic diversity studies. The pathogen was phylotyped by multiplex PCR; then, a subset of isolates was typed at sequevar level. Isolates of the same sequevar were then haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. BW prevalence and incidence in potato farms were 81.4 and 1.7%, respectively. Three RSSC phylotypes were identified, with the majority of the strains belonging to Phylotype II (80%) followed by Phylotype I (18.5%) and III (1.5%). Phylotype I strains belonged to Sequevar 31, and Phylotype II strains belonged to Sequevar 1. Potato-associated Phylotype II Sequevar 1 strains were more diverse (27 TRST haplotypes) than nonpotato Phylotype I (5 TRST haplotypes). Mapping of TRST haplotypes revealed that three TRST haplotypes of Phylotype II Sequevar 1 strains play an important epidemiological role in BW of potato in Uganda being disseminated via latently infected seed.[Formula: see text]Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Abdulwahab Abdurahman
- Consultative Group for International Agricultural Research, Research Program on Roots, Tubers and Bananas, Lima, Peru
- Sub-Saharan Africa Regional Office, International Potato Center, Nairobi, Kenya
- Centre for Crop Systems Analysis, Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Monica L Parker
- Consultative Group for International Agricultural Research, Research Program on Roots, Tubers and Bananas, Lima, Peru
- Sub-Saharan Africa Regional Office, International Potato Center, Nairobi, Kenya
| | - Jan Kreuze
- Consultative Group for International Agricultural Research, Research Program on Roots, Tubers and Bananas, Lima, Peru
- Crop and Systems Sciences Division, International Potato Center, Lima, Peru
| | - John G Elphinstone
- National Agri-Food Innovation Campus, Fera Science Ltd, Sand Hutton, York, United Kingdom
| | - Paul C Struik
- Centre for Crop Systems Analysis, Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Andrew Kigundu
- National Agricultural Research Laboratories, Kawanda, Uganda
| | - Esther Arengo
- National Agricultural Research Laboratories, Kawanda, Uganda
| | - Kalpana Sharma
- Consultative Group for International Agricultural Research, Research Program on Roots, Tubers and Bananas, Lima, Peru
- Sub-Saharan Africa Regional Office, International Potato Center, Nairobi, Kenya
| |
Collapse
|
15
|
Molecular Epidemiology of Xanthomonas perforans Outbreaks in Tomato Plants from Transplant to Field as Determined by Single-Nucleotide Polymorphism Analysis. Appl Environ Microbiol 2019; 85:AEM.01220-19. [PMID: 31253682 DOI: 10.1128/aem.01220-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 01/15/2023] Open
Abstract
Outbreaks of bacterial spot on tomato (BST) caused by Xanthomonas perforans are a major concern for sustainable crop production. BST is a common occurrence in tomato transplants grown for field production. We hypothesized that BST outbreaks in commercial fields originate from X. perforans strains inadvertently introduced from commercial transplant facilities. To test this hypothesis, we used a genome-wide single-nucleotide polymorphism (SNP) analysis to characterize X. perforans strains recovered from tomato transplant facilities and fields in commercial production areas. X. perforans strains were isolated from symptomatic transplants prior to roguing at two commercial transplant growers. Then, the same groups of transplants were tracked to commercial fields to recover X. perforans strains from diseased plants prior to harvest. Whole-genome sequencing was carried out on 84 strains isolated from transplant and field plants from Florida and South Carolina. SNPs were called using three reference strains that represented the genetic variation of the sampled strains. Field strains showing genetic similarity to transplant strains had a difference of 2 to 210 SNPs. Transplant and field strains clustered together by grower within each phylogenomic group, consistent with expectations. The range of genetic divergence among strains isolated from field plants was similar to the range obtained from strains on transplants. Using the range of genetic variation observed in transplants, we estimate that 60% to 100% of field strains were an extension of the transplant strain population. Our results stress the importance of BST management to reduce X. perforans movement from transplant to field and to minimize subsequent disease outbreaks.IMPORTANCE Current management of Xanthomonas perforans on tomato plants mainly relies on the frequent application of pesticides. However, the lack of effective pesticides and the development of strain tolerance to certain bactericides limit the ability to control outbreaks in production fields. Better knowledge of probable sources of X. perforans inoculum during tomato production is required to refine management strategies. Tomato plants are typically established in the field using transplants. This study aimed to determine if strains from field epidemics were coming from transplant facilities or resulted from local field outbreaks. The overall goal was to identify potential sources of inoculum and subsequently develop strategies to reduce carryover from transplant production to the field. Our results indicate that tomato producers should shift disease management efforts to transplant facilities to reduce disease in the field. Improved transplant health should reduce the likelihood of bacterial spot outbreaks and subsequently reduce pesticide usage in the field.
Collapse
|
16
|
Sun Y, Li P, Shen D, Wei Q, He J, Lu Y. The Ralstonia solanacearum effector RipN suppresses plant PAMP-triggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD + ratio in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2019; 20:533-546. [PMID: 30499216 PMCID: PMC6637912 DOI: 10.1111/mpp.12773] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ralstonia solanacearum, one of the most destructive plant bacterial pathogens, delivers an array of effector proteins via its type III secretion system for pathogenesis. However, the biochemical functions of most of these proteins remain unclear. RipN is a type III effector with unknown function(s) from the pathogen R. solanacearum. Here, we demonstrate that RipN is a conserved type III effector found within the R. solanacearum species complex that contains a putative Nudix hydrolase domain and has ADP-ribose/NADH pyrophosphorylase activity in vitro. Further analysis shows that RipN localizes to the endoplasmic reticulum (ER) and nucleus in Nicotiana tabacum leaf cells and Arabidopsis protoplasts, and truncation of the C-terminus of RipN results in a loss of nuclear and ER targeting. Furthermore, the expression of RipN in Arabidopsis suppresses callose deposition and the transcription of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes under flg22 treatment, and promotes bacterial growth in planta. In addition, the expression of RipN in plant cells alters NADH/NAD+ , but not GSH/GSSG, ratios, and its Nudix hydrolase activity is indispensable for such biochemical function. These results suggest that RipN acts as a Nudix hydrolase, alters the NADH/NAD+ ratio of the plant and contributes to R. solanacearum virulence by suppression of PTI of the host.
Collapse
Affiliation(s)
- Yunhao Sun
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Pai Li
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Dong Shen
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Qiaoling Wei
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Jianguo He
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Yongjun Lu
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|