1
|
Fleitas AL, Castro A, Blumwald E, Vidal S. Functional specialization of chloroplast vesiculation ( CV) duplicated genes from soybean shows partial overlapping roles during stress-induced or natural senescence. FRONTIERS IN PLANT SCIENCE 2023; 14:1184020. [PMID: 37346131 PMCID: PMC10280078 DOI: 10.3389/fpls.2023.1184020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Soybean is a globally important legume crop which is highly sensitive to drought. The identification of genes of particular relevance for drought responses provides an important basis to improve tolerance to environmental stress. Chloroplast Vesiculation (CV) genes have been characterized in Arabidopsis and rice as proteins participating in a specific chloroplast-degradation vesicular pathway (CVV) during natural or stress-induced leaf senescence. Soybean genome contains two paralogous genes encoding highly similar CV proteins, CV1 and CV2. In this study, we found that expression of CV1 was differentially upregulated by drought stress in soybean contrasting genotypes exhibiting slow-wilting (tolerant) or fast-wilting (sensitive) phenotypes. CV1 reached higher induction levels in fast-wilting plants, suggesting a negative correlation between CV1 gene expression and drought tolerance. In contrast, autophagy (ATG8) and ATI-PS (ATI1) genes were induced to higher levels in slow-wilting plants, supporting a pro-survival role for these genes in soybean drought tolerance responses. The biological function of soybean CVs in chloroplast degradation was confirmed by analyzing the effect of conditional overexpression of CV2-FLAG fusions on the accumulation of specific chloroplast proteins. Functional specificity of CV1 and CV2 genes was assessed by analyzing their specific promoter activities in transgenic Arabidopsis expressing GUS reporter gene driven by CV1 or CV2 promoters. CV1 promoter responded primarily to abiotic stimuli (hyperosmolarity, salinity and oxidative stress), while the promoter of CV2 was predominantly active during natural senescence. Both promoters were highly responsive to auxin but only CV1 responded to other stress-related hormones, such as ABA, salicylic acid and methyl jasmonate. Moreover, the dark-induced expression of CV2, but not of CV1, was strongly inhibited by cytokinin, indicating similarities in the regulation of CV2 to the reported expression of Arabidopsis and rice CV genes. Finally, we report the expression of both CV1 and CV2 genes in roots of soybean and transgenic Arabidopsis, suggesting a role for the encoded proteins in root plastids. Together, the results indicate differential roles for CV1 and CV2 in development and in responses to environmental stress, and point to CV1 as a potential target for gene editing to improve crop performance under stress without compromising natural development.
Collapse
Affiliation(s)
- Andrea Luciana Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Comparative Metabolomic Studies of Siberian Wildrye ( Elymus sibiricus L.): A New Look at the Mechanism of Plant Drought Resistance. Int J Mol Sci 2022; 24:ijms24010452. [PMID: 36613896 PMCID: PMC9820681 DOI: 10.3390/ijms24010452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Drought is one of the most important factors affecting plant growth and production due to ongoing global climate change. Elymus sibiricus has been widely applied for ecological restoration and reseeding of degraded grassland in the Qinghai-Tibetan Plateau (QTP) because of its strong adaptability to barren, salted, and drought soils. To explore the mechanism of drought resistance in E. sibiricus, drought-tolerant and drought-sensitive genotypes of E. sibiricus were used in metabolomic studies under simulated long-term and short-term drought stress. A total of 1091 metabolites were detected, among which, 27 DMs were considered to be the key metabolites for drought resistance of E. sibiricus in weighted gene co-expression network analysis (WGCNA). Ten metabolites, including 3-amino-2-methylpropanoic acid, coniferin, R-aminobutyrate, and so on, and 12 metabolites, including L-Proline, L-histidine, N-acetylglycine, and so on, showed differential accumulation patterns under short-term and long-term drought stress, respectively, and thus, could be used as biomarkers for drought-tolerant and drought-sensitive E. sibiricus. In addition, different metabolic accumulation patterns and different drought response mechanisms were also found in drought-tolerant and drought-sensitive genotypes of E. sibiricus. Finally, we constructed metabolic pathways and metabolic patterns for the two genotypes. This metabolomic study on the drought stress response of E. sibiricus can provide resources and a reference for the breeding of new drought-tolerant cultivars of E. sibiricus.
Collapse
|
3
|
Improved drought tolerance of EMS mutagenized Alfalfa (Medicago sativa L.) mutants by in vitro screening at germination stage. Sci Rep 2022; 12:12693. [PMID: 35882960 PMCID: PMC9325702 DOI: 10.1038/s41598-022-16294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
The objectives of this study were to determine drought tolerant novel mutant of alfalfa (Medicago sativa L.) genotypes by screening EMS mutagenized 340675 M3 seeds at germination stages in the presence of osmotic stress of 35% PEG6000. Root growth assay provided several drought tolerant candidate mutants. Of those, 4 mutants were further evaluated at water deficit conditions applied for 24 days after the first cutting at flowering bud stage. The results revealed that mutants determined as drought tolerant at germination stage were also tolerant to water deficit conditions. Protein content and superoxide dismutase values were found to be higher in all mutants than controls. Ascorbate peroxides, glutton reductase and lipid peroxidase values varied based on the mutant genotype and duration of drought stress. Drought stress significantly changed transcriptional levels of MtP5CS, MtDehyd, MseIF-2, MtRD2 and MsNAC genes. These results indicated that in vitro screening of alfalfa mutant seeds for osmatic tolerance at germination and early seedling growth stages was successfully able to determine the drought tolerant alfalfa mutants which were also tolerant to water deficit conditions after the first cutting at flowering bud stage.
Collapse
|
4
|
Ku YS, Cheung MY, Cheng SS, Nadeem MA, Chung G, Lam HM. Using the Knowledge of Post-transcriptional Regulations to Guide Gene Selections for Molecular Breeding in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:867731. [PMID: 35432392 PMCID: PMC9009170 DOI: 10.3389/fpls.2022.867731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The omics approaches allow the scientific community to successfully identify genomic regions associated with traits of interest for marker-assisted breeding. Agronomic traits such as seed color, yield, growth habit, and stress tolerance have been the targets for soybean molecular breeding. Genes governing these traits often undergo post-transcriptional modifications, which should be taken into consideration when choosing elite genes for molecular breeding. Post-transcriptional regulations of genes include transcript regulations, protein modifications, and even the regulation of the translational machinery. Transcript regulations involve elements such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) for the maintenance of transcript stability or regulation of translation efficiency. Protein modifications involve molecular modifications of target proteins and the alterations of their interacting partners. Regulations of the translational machinery include those on translation factors and the ribosomal protein complex. Post-transcriptional regulations usually involve a set of genes instead of a single gene. Such a property may facilitate molecular breeding. In this review, we will discuss the post-transcriptional modifications of genes related to favorable agronomic traits such as stress tolerance, growth, and nutrient uptake, using examples from soybean as well as other crops. The examples from other crops may guide the selection of genes for marker-assisted breeding in soybean.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ming-Yan Cheung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
5
|
Prator CA, Chooi KM, Jones D, Davy MW, MacDiarmid RM, Almeida RPP. Comparison of two different host plant genera responding to grapevine leafroll-associated virus 3 infection. Sci Rep 2020; 10:8505. [PMID: 32444786 PMCID: PMC7244584 DOI: 10.1038/s41598-020-64972-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/17/2020] [Indexed: 11/08/2022] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses of grapevine but, despite this, there remain several gaps in our understanding of its biology. Because of its narrow host range - limited to Vitis species - and because the virus is restricted to the phloem, most GLRaV-3 research has concentrated on epidemiology and the development of detection assays. The recent discovery that GLRaV-3 can infect Nicotiana benthamiana, a plant model organism, makes new opportunities available for research in this field. We used RNA-seq to compare both V. vinifera and P1/HC-Pro N. benthamiana host responses to GLRaV-3 infection. Our analysis revealed that the majority of DEGs observed between the two hosts were unique although responses between the two hosts also showed several shared gene expression results. When comparing gene expression patterns that were shared between the two hosts, we observed the downregulation of genes associated with stress chaperones, and the induction of gene families involved in primary plant physiological processes. This is the first analysis of gene expression profiles beyond Vitis to mealybug-transmitted GLRaV-3 and demonstrates that N. benthamiana could serve as a useful tool for future studies of GLRaV-3-host interactions.
Collapse
Affiliation(s)
- Cecilia A Prator
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Dan Jones
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Marcus W Davy
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Kunert K, Vorster BJ. In search for drought-tolerant soybean: is the slow-wilting phenotype more than just a curiosity? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:457-460. [PMID: 31909814 PMCID: PMC6946004 DOI: 10.1093/jxb/erz235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article comments on:Ye H, Song L, Schapaugh WT, Ali MDL, Sinclair TR, Riar MK, Raymond RN, Li Y, Vuong T, Valliyodan B, Neto PA, Klepadlo M, Song Q, Shannon JG, Chen P, Nguyen HT. 2019. The importance of slow canopy wilting in drought tolerance in soybean, Journal of Experimental Botany 71, 642–652.
Collapse
Affiliation(s)
- Karl Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Barend J Vorster
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Mishra RK, Datey A, Hussain T. mRNA Recruiting eIF4 Factors Involved in Protein Synthesis and Its Regulation. Biochemistry 2019; 59:34-46. [DOI: 10.1021/acs.biochem.9b00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rishi Kumar Mishra
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Ayushi Datey
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Zhang Z, Liu X, Li R, Yuan L, Dai Y, Wang X. Identification and Functional Analysis of a Protein Disulfide Isomerase ( AtPDI1) in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:913. [PMID: 30073003 PMCID: PMC6060501 DOI: 10.3389/fpls.2018.00913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/08/2018] [Indexed: 05/30/2023]
Abstract
Protein disulfide isomerase (PDI) catalyzes the conversion of thiol-disulfide and plays an important role in various physiological events in animals. A PDI (OaPDI) from a tropical plant was detailed studied and it was found to be involved in response of biotic stress (Gruber et al., 2007). However, the activities of PDI related to physiological functions in plants are poorly understood. In the present study, a homolog of human PDI in Arabidopsis (AtPDI1), encoded by the gene (At3g54960), was characterized. The recombinant AtPDI1 protein had disulfide isomerase activity in vitro and two pairs of conservative cysteines in catalytic domains play a crucial role in the PDI activities. Expression of AtPDI1 in Escherichia coli significantly enhanced stress tolerance of cells and the mutations of critical cysteines almost lose this function. In plants, AtPDI1 was strongly induced by abiotic stresses and exogenous abscisic acid. An ArabidopsisAtPDI1 knockdown mutant (pdi1) and overexpression lines of transgenic plants obtained by this investigation were used to further examine the function of AtPDI1. The mutant line was more sensitive to stresses than the wild-type, while overexpressing AtPDI1 increased tolerance of seedlings to abiotic stresses, with a higher germination ratio and longer length of roots than the wild-type. Our results suggested AtPDI1 played roles in anti-stresses in Arabidopsis, which relate to the activities of PDI.
Collapse
|