1
|
Ishaya FD, Rasmussen A. Quantifying Nitrogen Uptake Rates of Maize Roots Using Stable Isotopes. Cold Spring Harb Protoc 2025; 2025:pdb.top108436. [PMID: 38740422 DOI: 10.1101/pdb.top108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Nitrogen is an essential element for plant growth and development; however, application of nitrogen (N)-based fertilizers comes with a high environmental cost. This includes the energy required for production, volatilization from fields, and runoff or leaching to waterways triggering algal blooms. As such, a key goal in plant breeding programs is to develop varieties that maintain yield while requiring less fertilization. Central to this goal is understanding how roots take up nitrogen and finding traits that represent improvements in the net uptake. Maize, one of the most widely produced crops in the world, has seminal, crown, and brace root types, each under independent developmental control. Recent evidence suggests that these independent developmental patterns may result in different nutrient uptake characteristics. As such, understanding the uptake dynamics of each root type under different environmental conditions is an essential aspect for the selection of new maize varieties. A key method for tracking nitrogen uptake is the use of the 15N stable isotope, which is naturally less abundant than the main 14N isotope. This method involves replacing the 14N in nutrient solutions with 15N, exogenously providing it to the plant tissues (roots in this case), and then measuring the 15N content of the tissues after a fixed amount of time. Here, we provide a brief overview of nitrogen uptake and remobilization in maize, and discuss current techniques for measuring nutrient uptake, with a focus on methods using stable isotopes of nitrogen.
Collapse
Affiliation(s)
- Findimila Dio Ishaya
- Division of Agriculture and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Amanda Rasmussen
- Division of Agriculture and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| |
Collapse
|
2
|
Liang Y, Wang J, Wang Z, Hu D, Jiang Y, Han Y, Wang Y. Fulvic acid alleviates the stress of low nitrogen on maize by promoting root development and nitrogen metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14249. [PMID: 38472657 DOI: 10.1111/ppl.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The potential of fulvic acid (FA) to improve plant growth has been acknowledged, but its effect on plant growth and nutrient uptake under nutrient stress remains unclear. This study investigated the effects of different FA application rates on maize growth and nitrogen utilization under low nitrogen stress. The results showed that under low nitrogen stress, FA significantly stimulated maize growth, particularly root development, biomass, and nitrogen content. The enhanced activity levels of key enzymes in nitrogen metabolism were observed, along with differential gene expression in maize, which enriched nitrogen metabolism, amino acid metabolism and plant hormone metabolism. The application of FA regulated the hormones' level, reduced abscisic acid content in leaves and Me-JA content in roots, and increased auxin and zeatin ribose content in leaves. This study concludes that, by promoting root development, nitrogen metabolism, and hormone metabolism, an appropriate concentration of FA can enhance plant tolerance to low nitrogen conditions and improve nitrogen use efficiency.
Collapse
Affiliation(s)
- Yuanyuan Liang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Junbo Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Zeping Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Desheng Hu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Yanlai Han
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yi Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Marmagne A, Masclaux-Daubresse C, Chardon F. Modulation of plant nitrogen remobilization and postflowering nitrogen uptake under environmental stresses. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153781. [PMID: 36029571 DOI: 10.1016/j.jplph.2022.153781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Plants are sessile organisms that take up nitrogen (N) from the soil for growth and development. At the postflowering stage, N that plants require for seed growth and filling derives from either root uptake or shoot remobilization. The balance between N uptake and N remobilization determines the final carbon (C) and N composition of the seed. The N uptake and N remobilization mechanisms are regulated by endogenous signals, including hormones, developmental stage, and carbon/nitrogen ratio, and by environmental factors. The cellular responses to the environment are relatively well known. However, the effects of environmental stresses on the balance between N uptake and N remobilization are still poorly understood. Thus, this study aims to analyze the impact of environmental stresses (drought, heat, darkness, triggered defense, and low nitrate) on N fluxes within plants during seed filling. Using publicly available Arabidopsis transcriptome data, expression of several marker genes involved in N assimilation, transport, and recycling was analyzed in relation to stress. Results showed that the responses of genes encoding inorganic N transporters, N assimilation, and N recycling are mainly regulated by N limitation, the genes encoding housekeeping proteases are principally sensitive to C limitation, and the response of genes involved in the transport of organic N is controlled by both C and N limitations. In addition, 15N data were used to examine the effects of severe environmental stresses on N remobilization and N uptake, and a schematic representation of the major factors that regulate the balance between N remobilization and N uptake under the stress and control conditions was provided.
Collapse
Affiliation(s)
- Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
4
|
Zinta R, Tiwari JK, Buckseth T, Thakur K, Goutam U, Kumar D, Challam C, Bhatia N, Poonia AK, Naik S, Singh RK, Thakur AK, Dalamu D, Luthra SK, Kumar V, Kumar M. Root system architecture for abiotic stress tolerance in potato: Lessons from plants. FRONTIERS IN PLANT SCIENCE 2022; 13:926214. [PMID: 36212284 PMCID: PMC9539750 DOI: 10.3389/fpls.2022.926214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The root is an important plant organ, which uptakes nutrients and water from the soil, and provides anchorage for the plant. Abiotic stresses like heat, drought, nutrients, salinity, and cold are the major problems of potato cultivation. Substantial research advances have been achieved in cereals and model plants on root system architecture (RSA), and so root ideotype (e.g., maize) have been developed for efficient nutrient capture to enhance nutrient use efficiency along with genes regulating root architecture in plants. However, limited work is available on potatoes, with a few illustrations on root morphology in drought and nitrogen stress. The role of root architecture in potatoes has been investigated to some extent under heat, drought, and nitrogen stresses. Hence, this mini-review aims to update knowledge and prospects of strengthening RSA research by applying multi-disciplinary physiological, biochemical, and molecular approaches to abiotic stress tolerance to potatoes with lessons learned from model plants, cereals, and other plants.
Collapse
Affiliation(s)
- Rasna Zinta
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- Lovely Professional University, Phagwada, Punjab, India
| | - Jagesh Kumar Tiwari
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Tanuja Buckseth
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Kanika Thakur
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Umesh Goutam
- Lovely Professional University, Phagwada, Punjab, India
| | - Devendra Kumar
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Regional Station, Meerut, India
| | - Clarissa Challam
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Regional Station, Shillong, India
| | - Nisha Bhatia
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Anuj K. Poonia
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Sharmistha Naik
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- Indian Council of Agricultural Research (ICAR)-National Research Centre for Grapes, Pune, Maharashtra, India
| | - Rajesh K. Singh
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ajay K. Thakur
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Dalamu Dalamu
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Satish K. Luthra
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Regional Station, Meerut, India
| | - Vinod Kumar
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Manoj Kumar
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Regional Station, Meerut, India
| |
Collapse
|
5
|
Moura EGD, Sousa RMD, Campos LS, Cardoso-Silva AJ, Mooney SJ, Aguiar ADC. Could more efficient utilization of ecosystem services improve soil quality indicators to allow sustainable intensification of Amazonian family farming? ECOLOGICAL INDICATORS 2021; 127:107723. [PMID: 34345224 PMCID: PMC8171238 DOI: 10.1016/j.ecolind.2021.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
In the Amazonian periphery, there are sources of numerous disservices, including deforestation, loss of wildlife habitat and biodiversity erosion. However, there are great opportunities to adopt appropriate agricultural management practices to take advantage of the benefits of ecosystem services for sustainable agricultural intensification. Thus, the aim of this work was to evaluate the effects of certain ecosystem services provided by combined use of legumes with residue of low- and high-quality on soil quality indicators, nitrogen use efficiency and sustainability of maize grain yield in infertile tropical soil. The overarching objective is to determine how ecosystem services can contribute to the improvement of land-use policy to ensure the sustainability of cultivated lands, in such a way that forest can be preserved by avoiding deforestation of other new areas through shifting cultivation systems. Four leguminous tree species were used, two with high-quality residues Leucaena leucocephala (leucaena) and Gliricidia sepium (gliricidia) and two with low-quality residues Clitoria fairchildiana (clitoria) and Acacia mangium (acacia). Maize grain yield was evaluated between 2011 and 2017 in these treatments. In 2018, to assess how ecosystem services affect crop performance, the treatments were divided into ten treatments with and without urea. We conclude that increased uptake of inorganic and organic N by maize resulting from improvement of the soil quality indicators may allow agricultural intensification. This improvement can help meet the challenges of sustainability and feasibility of agroecosystems of the Amazonian periphery by making the agroecosystem more productive year by year. Therefore, our results confirm that the utilization of an ecosystem services style approach can help meet the challenges of sustainability and feasibility in agrosystems of the Amazonian periphery. In addition, these results can contribute to the development of land-use policy in the Amazonian periphery, aiming for the intensification of agriculture in cropped areas to avoid deforestation of new areas from shifting cultivation systems.
Collapse
Affiliation(s)
- Emanoel G. de Moura
- Agroecology Program, State University of Maranhão, São Luís, MA CEP 65054-970, Brazil
| | - Rafael M. de Sousa
- Agroecology Program, State University of Maranhão, São Luís, MA CEP 65054-970, Brazil
| | - Lorena S. Campos
- Agroecology Program, State University of Maranhão, São Luís, MA CEP 65054-970, Brazil
| | - Anágila J. Cardoso-Silva
- Biology Department, Federal University of Maranhão, Portugueses Avenue, 1966, Bacanga, São Luís, MA CEP 65080-805, Brazil
| | - Sacha J. Mooney
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Alana das C.F. Aguiar
- Biology Department, Federal University of Maranhão, Portugueses Avenue, 1966, Bacanga, São Luís, MA CEP 65080-805, Brazil
| |
Collapse
|
6
|
Nazari M, Riebeling S, Banfield CC, Akale A, Crosta M, Mason-Jones K, Dippold MA, Ahmed MA. Mucilage Polysaccharide Composition and Exudation in Maize From Contrasting Climatic Regions. FRONTIERS IN PLANT SCIENCE 2020; 11:587610. [PMID: 33363554 PMCID: PMC7752898 DOI: 10.3389/fpls.2020.587610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/18/2020] [Indexed: 05/28/2023]
Abstract
Mucilage, a gelatinous substance comprising mostly polysaccharides, is exuded by maize nodal and underground root tips. Although mucilage provides several benefits for rhizosphere functions, studies on the variation in mucilage amounts and its polysaccharide composition between genotypes are still lacking. In this study, eight maize (Zea mays L.) genotypes from different globally distributed agroecological zones were grown under identical abiotic conditions in a randomized field experiment. Mucilage exudation amount, neutral sugars and uronic acids were quantified. Galactose (∼39-42%), fucose (∼22-30%), mannose (∼11-14%), and arabinose (∼8-11%) were the major neutral sugars in nodal root mucilage. Xylose (∼1-4%), and glucose (∼1-4%) occurred only in minor proportions. Glucuronic acid (∼3-5%) was the only uronic acid detected. The polysaccharide composition differed significantly between maize genotypes. Mucilage exudation was 135 and 125% higher in the Indian (900 M Gold) and Kenyan (DH 02) genotypes than in the central European genotypes, respectively. Mucilage exudation was positively associated with the vapor pressure deficit of the genotypes' agroecological zone. The results indicate that selection for environments with high vapor pressure deficit may favor higher mucilage exudation, possibly because mucilage can delay the onset of hydraulic failure during periods of high vapor pressure deficit. Genotypes from semi-arid climates might offer sources of genetic material for beneficial mucilage traits.
Collapse
Affiliation(s)
- Meisam Nazari
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Sophie Riebeling
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Callum C. Banfield
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Asegidew Akale
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Margherita Crosta
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Michaela A. Dippold
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Mutez Ali Ahmed
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
7
|
Griffiths M, York LM. Targeting Root Ion Uptake Kinetics to Increase Plant Productivity and Nutrient Use Efficiency. PLANT PHYSIOLOGY 2020; 182:1854-1868. [PMID: 32029523 PMCID: PMC7140967 DOI: 10.1104/pp.19.01496] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Root system architecture has received increased attention in recent years; however, significant knowledge gaps remain for physiological phenes, or units of phenotype, that have been relatively less studied. Ion uptake kinetics studies have been invaluable in uncovering distinct nutrient uptake systems in plants with the use of Michaelis-Menten kinetic modeling. This review outlines the theoretical framework behind ion uptake kinetics, provides a meta-analysis for macronutrient uptake parameters, and proposes new strategies for using uptake kinetics parameters as selection criteria for breeding crops with improved resource acquisition capability. Presumably, variation in uptake kinetics is caused by variation in type and number of transporters, assimilation machinery, and anatomical features that can vary greatly within and among species. Critically, little is known about what determines transporter properties at the molecular level or how transporter properties scale to the entire root system. A meta-analysis of literature containing measures of crop nutrient uptake kinetics provides insights about the need for standardization of reporting, the differences among crop species, and the relationships among various uptake parameters and experimental conditions. Therefore, uptake kinetics parameters are proposed as promising target phenes that integrate several processes for functional phenomics and genetic analysis, which will lead to a greater understanding of this fundamental plant process. Exploiting this genetic and phenotypic variation has the potential to greatly advance breeding efforts for improved nutrient use efficiency in crops.
Collapse
Affiliation(s)
| | - Larry M York
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401
| |
Collapse
|
8
|
Brezovcsik K, Veres S, Molnár J, Fenyvesi A, Szűcs Z. Comparison of manganese uptake and transport of maize seedlings by mini-PET camera. Appl Radiat Isot 2020; 160:109127. [PMID: 32174463 DOI: 10.1016/j.apradiso.2020.109127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022]
Abstract
Manganese is one of the most important essential micronutrients for the plants. To monitor its uptake and transport by radioactive tracking is a powerful method due to the no carrier added 52Mn in 10-12 moldm-3 concentration range. The generally used method is to measure the radioactivity of cut parts of plants by gamma-spectrometry. Only few studies reported about noninvasive measurement, using pairs of detectors connected in coincidence. We use a full ring MiniPET machine for this purpose to dynamically visualize the uptake and distribution of the radionuclide in 4D. The results are controlled with the conventional gamma spectroscopy after chopping the plants into six parts. The study of stress tolerance initiated by PEG 6000 in different hybrids of maize is also presented as possible application for the phenotyping of plants by PET camera.
Collapse
Affiliation(s)
- Károly Brezovcsik
- Institute for Nuclear Research, Atomki, Bem tér 18/c, 4026, Debrecen, Hungary; University of Debrecen, Doctoral School of Chemistry, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Szilvia Veres
- University of Debrecen, Department of Agricultural Botany, Crop Physiolgy and Biotechnology, Institute of Crop Sciences, Egyetem tér 1., 4032, Debrecen, Hungary
| | - József Molnár
- Institute for Nuclear Research, Atomki, Bem tér 18/c, 4026, Debrecen, Hungary
| | - András Fenyvesi
- Institute for Nuclear Research, Atomki, Bem tér 18/c, 4026, Debrecen, Hungary
| | - Zoltán Szűcs
- Institute for Nuclear Research, Atomki, Bem tér 18/c, 4026, Debrecen, Hungary
| |
Collapse
|
9
|
Sena VGL, de Moura EG, Macedo VRA, Aguiar ACF, Price AH, Mooney SJ, Calonego JC. Ecosystem services for intensification of agriculture, with emphasis on increased nitrogen ecological use efficiency. Ecosphere 2020; 11:e03028. [PMID: 34824877 PMCID: PMC8597402 DOI: 10.1002/ecs2.3028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 11/13/2022] Open
Abstract
In weathered tropical soil, low nutrient use efficiency can lead to agricultural systems becoming unsustainable. Therefore, tropical agriculture is highly dependent on ecosystem services, such as nutrient recycling and carbon sequestration, to enhance soil fertility, increase nutrient uptake, and facilitate sustainable production of agricultural goods. This research aimed to find the balance between sustainability and profitability of tropical agriculture by evaluating the changes in soil caused by the ecosystem services provided by the biomass of leguminous trees (Gliricidia) and assessing how these changes (associated with potassium) can affect nitrogen-use efficiency and maize yield. An experiment was conducted testing the impact of Glircidia biomass addition vs. bare soil, with or without addition of both nitrogen and/or potassium. Changes in soil organic matter, (SOM) base cations sum, soil resistance, N uptake, N-use efficiency, and maize yield were evaluated. Gliricidia biomass, when used with N and K, contributed to increasing SOM by 5.0 g/kg and the sum of base cations by 1458. 65 kg/ha in the 0-30 cm layer. Moreover, grain yield was increased by approximately 70% in the treatments with Gliricidia when compared to treatments without biomass where yield was very low. In bare soil, the additional yield of 1.5 tons/ha would not be enough to convince farmers to change slash and burn to conventional bare soil systems. Our results showed that leguminous trees, such as Gliricidia, might contribute to ensuring sustainable agricultural intensification in humid tropical soils with low natural fertility by providing ecosystem services such as biomass production, carbon sequestration, base cation recycling, and increased N acquisition. These findings might be an important strategy to replace the common slash-and-burn-system and preserve the rainforest against the traditional shifting cultivation system. In contrast, the conventional system with bare soil showed that the addition of nitrogen was unfeasible, mainly in conditions of high rainfall precipitation. In these circumstances, the use of potassium may increase nitrogen-use efficiency only when biomass is not used.
Collapse
Affiliation(s)
- Virley G. L. Sena
- Department of Crop ScienceCollege of Agricultural SciencesSão Paulo State UniversityBotucatuSão Paulo18.610‐307Brazil
| | - Emanoel G. de Moura
- Postgraduate Program in AgroecologyMaranhão State UniversitySão LuisMaranhão65000‐000Brazil
| | - Vinícius R. A. Macedo
- Federal Institute of Education, Science and Technology of PiauíUruçuíPiauí64860‐000Brazil
| | - Alana C. F. Aguiar
- Department of BiologyFederal University of MaranhãoSão LuísMaranhão65080‐805Brazil
| | - Adam H. Price
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenAB24 3UUUK
| | - Sacha J. Mooney
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE125RDUK
| | - Juliano C. Calonego
- Department of Crop ScienceCollege of Agricultural SciencesSão Paulo State UniversityBotucatuSão Paulo18.610‐307Brazil
| |
Collapse
|
10
|
Gupta S, Akhatar J, Kaur P, Sharma A, Sharma P, Mittal M, Bharti B, Banga SS. Genetic analyses of nitrogen assimilation enzymes in Brassica juncea (L.) Czern & Coss. Mol Biol Rep 2019; 46:4235-4244. [PMID: 31115836 DOI: 10.1007/s11033-019-04878-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Nitrogen (N) is a critical input for plant growth and development. A better understanding of N uptake and utilization is important to develop plant breeding strategies for improving nitrogen use efficiency (NUE). With that objective in mind, we assayed a SNP-genotyped association panel comprising 92 inbred lines for the activities of nitrate reductase (NR), nitrite reductase (NIR), glutamine synthetase (GS) and glutamate synthase (GOGAT). All these enzymes are associated with N assimilation. The experiments were carried out at two levels of N application: no added N (N0) and agrnomically recommened dose (100 kg/ha) of N application (N100). Genome wide association studies (GWAS) helped to identify several marker-trait associations (MTAs), involving chromosomes A01, A06, A08, B02, B04, B05 and B08. These explained high phenotypic variation (up to 32%). Annotation of the genomic region(s) in or around significant SNPs allowed prediction of genes encoding high affinity nitrate transporters, glutamine synthetase 1.3, myb-like transcription factor family protein, bidirectional amino acid transporter 1, auxin signaling F-box 3 and oxidoreductases. This is the first attempt to use GWAS for identification of enzyme QTLs to explain variation for nitrogen assimilation enzymes in Brassica juncea.
Collapse
Affiliation(s)
- Shilpa Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Palminder Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Anju Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Pushp Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Baudh Bharti
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Surinder Singh Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India.
| |
Collapse
|
11
|
Dechorgnat J, Francis KL, Dhugga KS, Rafalski JA, Tyerman SD, Kaiser BN. Tissue and nitrogen-linked expression profiles of ammonium and nitrate transporters in maize. BMC PLANT BIOLOGY 2019; 19:206. [PMID: 31109290 PMCID: PMC6528335 DOI: 10.1186/s12870-019-1768-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND In order to grow, plants rely on soil nutrients which can vary both spatially and temporally depending on the environment, the soil type or the microbial activity. An essential nutrient is nitrogen, which is mainly accessible as nitrate and ammonium. Many studies have investigated transport genes for these ions in Arabidopsis thaliana and recently in crop species, including Maize, Rice and Barley. However, in most crop species, an understanding of the participants in nitrate and ammonium transport across the soil plant continuum remains undefined. RESULTS We have mapped a non-exhaustive set of putative nitrate and ammonium transporters in maize. The selected transporters were defined based on previous studies comparing nitrate transport pathways conserved between Arabidopsis and Zea mays (Plett D et. al, PLOS ONE 5:e15289, 2010). We also selected genes from published studies (Gu R et. al, Plant and Cell Physiology, 54:1515-1524, 2013, Garnett T et. al, New Phytol 198:82-94, 2013, Garnett T et. al, Frontiers in Plant Sci 6, 2015, Dechorgnat J et. al, Front Plant Sci 9:531, 2018). To analyse these genes, the plants were grown in a semi-hydroponic system to carefully control nitrogen delivery and then harvested at both vegetative and reproductive stages. The expression patterns of 26 putative nitrogen transporters were then tested. Six putative genes were found not expressed in our conditions. Transcripts of 20 other genes were detected at both the vegetative and reproductive stages of maize development. We observed the expression of nitrogen transporters in all organs tested: roots, young leaves, old leaves, silks, cobs, tassels and husk leaves. We also followed the gene expression response to nitrogen starvation and resupply and uncovered mainly three expression patterns: (i) genes unresponsiveness to nitrogen supply; (ii) genes showing an increase of expression after nitrogen starvation; (iii) genes showing a decrease of expression after nitrogen starvation. CONCLUSIONS These data allowed the mapping of putative nitrogen transporters in maize at both the vegetative and reproductive stages of development. No growth-dependent expression was seen in our conditions. We found that nitrogen transporter genes were expressed in all the organs tested and in many cases were regulated by the availability of nitrogen supplied to the plant. The gene expression patterns in relation to organ specificity and nitrogen availability denote a speciality of nitrate and ammonium transporter genes and their probable function depending on the plant organ and the environment.
Collapse
Affiliation(s)
- Julie Dechorgnat
- University of Adelaide, School of Agriculture Food and Wine, 2B Hartley Grove, Urrbrae, SA 5064 Australia
- University of Sydney, School of Life and Environmental Sciences, 380 Werombi Road, Brownlow Hill, NSW 2570 Australia
| | - Karen L. Francis
- University of Adelaide, School of Agriculture Food and Wine, 2B Hartley Grove, Urrbrae, SA 5064 Australia
| | - Kanwarpal S. Dhugga
- Genetic Discovery Group, DuPont Pioneer, Johnston, IA 50131-1004 USA
- Present Address: Genetic Resources Group, International Center for Maize and Wheat Improvement (CIMMYT), El Batan, 56237 Texcoco, Mexico
| | - J. Antony Rafalski
- Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station, Building E353, Wilmington, DE 198803 USA
| | - Stephen D. Tyerman
- University of Adelaide, School of Agriculture Food and Wine, 2B Hartley Grove, Urrbrae, SA 5064 Australia
| | - Brent N. Kaiser
- University of Sydney, School of Life and Environmental Sciences, 380 Werombi Road, Brownlow Hill, NSW 2570 Australia
| |
Collapse
|
12
|
Amthor JS, Bar-Even A, Hanson AD, Millar AH, Stitt M, Sweetlove LJ, Tyerman SD. Engineering Strategies to Boost Crop Productivity by Cutting Respiratory Carbon Loss. THE PLANT CELL 2019; 31:297-314. [PMID: 30670486 PMCID: PMC6447004 DOI: 10.1105/tpc.18.00743] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/04/2018] [Accepted: 01/09/2019] [Indexed: 05/03/2023]
Abstract
Roughly half the carbon that crop plants fix by photosynthesis is subsequently lost by respiration. Nonessential respiratory activity leading to unnecessary CO2 release is unlikely to have been minimized by natural selection or crop breeding, and cutting this large loss could complement and reinforce the currently dominant yield-enhancement strategy of increasing carbon fixation. Until now, however, respiratory carbon losses have generally been overlooked by metabolic engineers and synthetic biologists because specific target genes have been elusive. We argue that recent advances are at last pinpointing individual enzyme and transporter genes that can be engineered to (1) slow unnecessary protein turnover, (2) replace, relocate, or reschedule metabolic activities, (3) suppress futile cycles, and (4) make ion transport more efficient, all of which can reduce respiratory costs. We identify a set of engineering strategies to reduce respiratory carbon loss that are now feasible and model how implementing these strategies singly or in tandem could lead to substantial gains in crop productivity.
Collapse
Affiliation(s)
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley 6009 WA, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| |
Collapse
|
13
|
Hrmova M, Gilliham M. Plants fighting back: to transport or not to transport, this is a structural question. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:68-76. [PMID: 30138844 DOI: 10.1016/j.pbi.2018.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Membrane-embedded transport proteins are fundamental to life; their co-ordinated action controls the movement and distribution of solutes into, around and out of cells for signalling, metabolism, nutrition, stress tolerance and development. Here we outline two case studies of transport systems that plants use to tolerate soil elemental toxicity, demonstrating how iterative studies of protein structure and function result in unparalleled insights into transport mechanics. Further, we propose that integrative platforms of biological, biochemical and biophysical tools can provide quantitative data on substrate specificity and transport rates, which are important in understanding transporter evolution and their roles in cell biology and whole plant physiology. Such knowledge equips biotechnologists and breeders with the power to deliver improvements in crop yields in sub-optimal soils.
Collapse
Affiliation(s)
- Maria Hrmova
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia; School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China.
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia; Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
14
|
Wen Z, Kaiser BN. Unraveling the Functional Role of NPF6 Transporters. FRONTIERS IN PLANT SCIENCE 2018; 9:973. [PMID: 30042774 PMCID: PMC6048437 DOI: 10.3389/fpls.2018.00973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/15/2018] [Indexed: 05/20/2023]
Abstract
The nitrate transporter 1/peptide transporter (NPF) family represents a growing list of putative nitrate permeable transport proteins expressed within multiple cell types and tissues across a diverse range of plant species. Their designation as nitrate permeable and/or selective transporters is slowly being defined as more genes are characterized and their functional activities tested both in planta and in vitro. The most notable of the NPF family has been the Arabidopsis thaliana homolog, AtNPF6.3, previously known as AtNRT1.1 or CHL1. AtNPF6.3 has traditionally been characterized as a dual-affinity nitrate transporter contributing to root nitrate uptake in Arabidopsis. It has also been identified as a nitrate sensor which regulates the expression of high-affinity nitrate transport proteins NRT2s and lateral root development as a part of the primary nitrate response in plants. The sensor function of AtNPF6.3 has also been attributed to its auxin transport activity. Other homologs of AtNPF6.3 are now being described highlighting the variability in their functional capabilities (alternative substrates and kinetics) linking to structural aspects of the proteins. This review focusses on NPF6.3-like transport proteins and the knowledge that has been gained since their initial discovery over two decades ago. The review will investigate from a structural point of view how NPF6.3-like proteins may transport nitrate as well as other ions and what can be learned from structural uniqueness about predicted activities in plants.
Collapse
Affiliation(s)
- Zhengyu Wen
- *Correspondence: Zhengyu Wen, Brent N. Kaiser,
| | | |
Collapse
|