1
|
Rodríguez MV, Sánchez DH, Glison N, Ríos CD, Demkura PV, Álvarez Correa CC, Fernández LG, Filippi CV, Heinz R, Pardo P, Rentería S, Guillaumet L, Benech‐Arnold RL. Introgression of dwarfing allele dw1 reduced seed dormancy and increased pre-harvest sprouting susceptibility in grain sorghum converted lines. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1783-1797. [PMID: 40089970 PMCID: PMC12018815 DOI: 10.1111/pbi.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 03/18/2025]
Abstract
Grain sorghum (Sorghum bicolor L. moench) stands as a globally significant cereal crop but the adversity of pre-harvest sprouting (PHS) caused by reduced grain dormancy and moist conditions prior to harvest remains unsolved. Here, we identified a dormancy QTL using a Redlan×IS9530 RIL population, where parent lines are low in tannins and early flowering but otherwise contrasting in grain dormancy and plant height. We phenotyped this population in 2 years with informative PHS-related traits (grain germination index, embryo sensitivity to abscisic acid and in one year the actual natural sprouting), revealing a robust dormancy QTL in chromosome 9 (qDOR-9). This signal overlapped with associations found for plant height (caused by the dw1 locus, used for decades in sorghum improvement) and time to flowering. The effect of qDOR-9 was validated with independent near isogenic lines carrying the IS9530 "dormant" allele while maintaining the Redlan dw1 "short" allele. Additional analyses on Yellow Milo, from which the dw1 allele originated, implied that a low dormancy allele close to dw1 was introduced to Redlan-as well as to many other currently productive lines-by breeding efforts aimed at decreasing plant height, thus illustrating a new instance of genome erosion canalised by crop breeding. However, the introgression of qDOR-9 could enhance PHS tolerance in cultivated dw1-carrying backgrounds without affecting plant stature.
Collapse
Affiliation(s)
- María Verónica Rodríguez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Cátedra de Fisiología Vegetal, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía de la Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
| | - Diego Hernán Sánchez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Cátedra de Fisiología Vegetal, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía de la Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
| | - Nicolás Glison
- Laboratorio de Fisiología Vegetal, Departamento de Biología VegetalFacultad de Agronomía de la Universidad de la RepúblicaMontevideoUruguay
| | - Cristian Damián Ríos
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Cátedra de Cultivos Industriales, Departamento de Producción Vegetal, Facultad de Agronomía de la Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
| | - Patricia Verónica Demkura
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - Cristian Camilo Álvarez Correa
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Cátedra de Cultivos Industriales, Departamento de Producción Vegetal, Facultad de Agronomía de la Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
| | - Luis Germán Fernández
- Instituto de Agrobiotecnología y Biología Molecular (INTA‐CONICET), formerly Instituto de Biotecnología, CICVyA, INTAHurlinghamBuenos AiresArgentina
- Present address:
AER Junín – INTA PergaminoJunínBuenos AiresArgentina
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular (INTA‐CONICET), formerly Instituto de Biotecnología, CICVyA, INTAHurlinghamBuenos AiresArgentina
- Present address:
Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay
| | - Ruth Heinz
- Instituto de Agrobiotecnología y Biología Molecular (INTA‐CONICET), formerly Instituto de Biotecnología, CICVyA, INTAHurlinghamBuenos AiresArgentina
- Present address:
Innovaciones Tecnológicas Agropecuarias S.A.Ciudad Autónoma de Buenos AiresArgentina
| | - Pedro Pardo
- Advanta Semillas SACI, Estación ExperimentalVenado TuertoArgentina
| | | | | | - Roberto Luis Benech‐Arnold
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Cátedra de Cultivos Industriales, Departamento de Producción Vegetal, Facultad de Agronomía de la Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
| |
Collapse
|
2
|
Schuh A, Morris G. Loss of Pleiotropic Regulatory Functions in Tannin1, the Sorghum Ortholog of Arabidopsis Master Regulator TTG1. PLANT DIRECT 2025; 9:e70055. [PMID: 40084038 PMCID: PMC11898007 DOI: 10.1002/pld3.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/16/2025]
Abstract
Transcriptional master regulators are often targeted to improve plant traits, but antagonistic pleiotropic effects of these regulators can hamper this approach. The Myb-bHLH-WDR (MBW) complex is a broadly conserved transcriptional regulator affecting pigmentation, biotic stress resistance, and abiotic stress tolerance. We investigated the function of sorghum grain pigmentation regulator Tannin1, the ortholog of Arabidopsis pleiotropic WD40 regulator TTG1, to test for conserved pleiotropic regulatory effects and to better understand the evolution of the MBW complex in Poaceae. We characterized genome-wide differential expression of leaf tissue using RNA sequencing in near-isogenic lines (NILs) that contrasted wildtype Tan1 and loss-of-function tan1-b alleles, under optimal temperature and chilling stress. Notably, Gene Ontology analyses revealed no pathways with differential expression between Tan1 and tan1-b NILs, suggesting that, in contrast to Arabidopsis TTG1, Tannin1 has no pleiotropic regulatory role in leaves. Further, NILs had no visible difference in anthocyanin pigmentation, and no genes with known or expected function in flavonoid synthesis were differentially expressed. Genome-wide, only 18 total genes were differentially expressed between NILs, with six of these genes located inside the NIL introgression region, an observation most parsimoniously explained by cis-regulatory effects unrelated to Tannin1 regulation. Comparing our findings with known function of TTG1 orthologs in maize, rice, and Arabidopsis, we conclude that pleiotropic regulatory function in leaf tissue was likely lost in panicoid grass evolution before the sorghum-maize split. These findings inform future molecular breeding of MBW regulated traits and highlight the benefit of subfunctionalization to relieve pleiotropic constraints.
Collapse
Affiliation(s)
- Anthony Schuh
- Department of Soil and Crop ScienceColorado State UniversityFort CollinsColoradoUSA
- Department of Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Geoffrey P. Morris
- Department of Soil and Crop ScienceColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
3
|
Nguyen TN, Tuan PA, Sharma D, Ayele BT. Alteration in the balance between ABA and GA signaling mediates genetic variation in induction and retention of dormancy during seed maturation in wheat. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154394. [PMID: 39616728 DOI: 10.1016/j.jplph.2024.154394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 01/21/2025]
Abstract
Induction and retention of dormancy are among the physiological processes that take place during seed maturation; however, the molecular mechanisms underlying these events are poorly understood in wheat. This study revealed that seed maturation in wheat is associated with decreases in abscisic acid (ABA) and gibberellin (GA) levels irrespective of dormancy level exhibited by the seeds mainly via expression of specific ABA (TaCYP707A1) and GA (TaGA3ox2, TaGA2ox3 and TaGA2ox6) metabolism genes. Consistently, ABA to GA level ratio decreased during maturation in both highly dormant and low-dormant seeds with no apparent difference in the ratio of their levels between the two seed samples. Our data, however, showed a close association between the induction and retention of dormancy during seed maturation and modulation of the balance between ABA and GA signaling via expression of specific genes that acts as positive regulators seed response to ABA (TaPYL5 and TaABI5) and GA (TaGAMyb). Consistently, the highly dormant and low-dormant seeds exhibited substantial variation in their sensitivity to ABA and GA during their maturation. The findings of this study highlight that genetic variation in induction and retention of dormancy during wheat seed maturation can be mediated by a shift in balance between seed sensitivity to ABA and GA independent of a shift in balance between their levels.
Collapse
Affiliation(s)
- Tran-Nguyen Nguyen
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Deepak Sharma
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Belay T Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
4
|
Han Y, Wang Z, Han B, Zhang Y, Liu J, Yang Y. Allelic variation of TaABI5-A4 significantly affects seed dormancy in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:240. [PMID: 39341982 DOI: 10.1007/s00122-024-04753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE We identified a pivotal transcription factor TaABI5-A4 that is significantly associated with pre-harvest sprouting in wheat; its function in regulating seed dormancy was confirmed in transgenic rice. ABI5 is a critical transcription factor in regulation of crop seed maturation, dormancy, germination, and post-germination. Sixteen copies of homologous sequences of ABI5 were identified in Chinese wheat line Zhou 8425B. Cultivars of two haplotypes TaABI5-A4a and TaABI5-A4b showed significantly different seed dormancies. Based on two SNPs between the sequences of TaABI5-A4a and TaABI5-A4b, two complementary dominant sequence-tagged site (STS) markers were developed and validated in a natural population of 103 Chinese wheat cultivars and advanced lines and 200 recombinant inbred lines (RILs) derived from the Yangxiaomai/Zhongyou 9507 cross; the STS markers can be used efficiently and reliably to evaluate the dormancy of wheat seeds. The transcription level of TaABI5-A4b was significantly increased in TaABI5-A4a-GFP transgenic rice lines compared with that in TaABI5-A4b-GFP. The average seed germination index of TaABI5-A4a-GFP transgenic rice lines was significantly lower than those of TaABI5-A4b-GFP. In addition, seeds of TaABI5-A4a-GFP transgenic lines had higher ABA sensitivity and endogenous ABA content, lower endogenous GA content and plant height, and thicker stem internodes than those of TaABI5-A4b-GFP. Allelic variation of TaABI5-A4-affected wheat seed dormancy and the gene function was confirmed in transgenic rice. The transgenic rice lines of TaABI5-A4a and TaABI5-A4b had significantly different sensitivities to ABA and contents of endogenous ABA and GA in mature seeds, thereby influencing the seed dormancy, plant height, and stem internode length and diameter.
Collapse
Affiliation(s)
- Yang Han
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Zeng Wang
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Bing Han
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China
| | - Yingjun Zhang
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, Hebei, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Yang
- College of Life Sciences, Inner Mongolia Agricultural University/Key Laboratory of Germplasm Innovation and Utilization of Triticeae Crops at Universities of Inner Mongolia Autonomous Region, 306 Zhaowuda Road, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
5
|
Khan A, Tian R, Bean SR, Yerka M, Jiao Y. Transcriptome and metabolome analyses reveal regulatory networks associated with nutrition synthesis in sorghum seeds. Commun Biol 2024; 7:841. [PMID: 38987396 PMCID: PMC11237005 DOI: 10.1038/s42003-024-06525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Cereal seeds are vital for food, feed, and agricultural sustainability because they store and provide essential nutrients to human and animal food and feed systems. Unraveling molecular processes in seed development is crucial for enhancing cereal grain yield and quality. We analyze spatiotemporal transcriptome and metabolome profiles during sorghum seed development in the inbred line 'BTx623'. Morphological and molecular analyses identify the key stages of seed maturation, specifying starch biosynthesis onset at 5 days post-anthesis (dpa) and protein at 10 dpa. Transcriptome profiling from 1 to 25 dpa reveal dynamic gene expression pathways, shifting from cellular growth and embryo development (1-5 dpa) to cell division, fatty acid biosynthesis (5-25 dpa), and seed storage compounds synthesis in the endosperm (5-25 dpa). Network analysis identifies 361 and 207 hub genes linked to starch and protein synthesis in the endosperm, respectively, which will help breeders enhance sorghum grain quality. The availability of this data in the sorghum reference genome line establishes a baseline for future studies as new pangenomes emerge, which will consider copy number and presence-absence variation in functional food traits.
Collapse
Affiliation(s)
- Adil Khan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Ran Tian
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Scott R Bean
- Grain Quality and Structure Research Unit, Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Melinda Yerka
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada-Reno, Reno, NV, 89557, USA
| | - Yinping Jiao
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
6
|
Kępczyński J, Wójcik A, Dziurka M. NO-mediated dormancy release of Avena fatua caryopses is associated with decrease in abscisic acid sensitivity, content and ABA/GA s ratios. PLANTA 2023; 257:101. [PMID: 37087501 PMCID: PMC10122620 DOI: 10.1007/s00425-023-04117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
MAIN CONCLUSION NO releases caryopsis dormancy in Avena fatua, the effect being dependent on the level of dormancy. The NO effect involves also the reduction of caryopsis sensitivity to ABA and to a decrease in the ABA to GAs ratio due to a decrease in ABA levels and the lack of effect on GAs levels before germination is completed. Nitric oxide (NO) from various donors (i.e. SNP, GSNO and acidified KNO2), applied to dry caryopses or during initial germination, released primary dormancy in caryopses. Dormancy in caryopses was gradually lost during dry storage (after-ripening) at 25 °C, enabling germination at 20 °C in the dark. The after-ripening effect is associated with a decrease in NO required for germination. In addition, NO decreased the sensitivity of dormant caryopses to exogenous abscisic acid (ABA) and decreased the embryos' ABA content before germination was completed. However, NO did not affect the content of bioactive gibberellins (GAs) from non-13-hydroxylation (GA4, GA7) and 13-hydroxylation (GA1, GA3, GA6.) pathways. Paclobutrazol (PAC), commonly regarded as a GAs biosynthesis inhibitor, counteracted the dormancy-releasing effect of NO and did not affect the GAs level; however, it increased the ABA content in embryos before germination was completed. Ascorbic acid, sodium benzoate and tiron, scavengers of reactive oxygen species (ROS), reduced the stimulatory effect of NO on caryopsis germination. This work provides new insight on the participation of NO in releasing A. fatua caryopses dormancy and on the relationship of NO with endogenous ABA and GAs.
Collapse
Affiliation(s)
- Jan Kępczyński
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| | - Agata Wójcik
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Michał Dziurka
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 20-239, Krakow, Poland
| |
Collapse
|
7
|
Takeshima R, Ogiso-Tanaka E, Yasui Y, Matsui K. Targeted amplicon sequencing + next-generation sequencing-based bulked segregant analysis identified genetic loci associated with preharvest sprouting tolerance in common buckwheat (Fagopyrum esculentum). BMC PLANT BIOLOGY 2021; 21:18. [PMID: 33407135 PMCID: PMC7789488 DOI: 10.1186/s12870-020-02790-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Common buckwheat (2n = 2x = 16) is an outcrossing pseudocereal whose seeds contain abundant nutrients and potential antioxidants. As these beneficial compounds are damaged by preharvest sprouting (PHS) and PHS is likely to increase with global warming, it is important to find efficient ways to develop new PHS-tolerant lines. However, genetic loci and selection markers associated with PHS in buckwheat have not been reported. RESULTS By next-generation sequencing (NGS) of whole-genome of parental lines, we developed a genome-wide set of 300 markers. By NGS- based bulked segregant analysis (NGS-BSA), we developed 100 markers linked to PHS tolerance. To confirm the effectiveness of marker development from NGS-BSA data, we developed 100 markers linked to the self-compatibility (SC) trait from previous NGS-BSA data. Using these markers, we developed genetic maps with AmpliSeq technology, which can quickly detect polymorphisms by amplicon-based multiplex targeted NGS, and performed quantitative trait locus (QTL) analysis for PHS tolerance in combination with NGS-BSA. QTL analysis detected two major and two minor QTLs for PHS tolerance in a segregating population developed from a cross between the PHS-tolerant 'Kyukei 29' and the self-compatible susceptible 'Kyukei SC7'. We found different major and minor QTLs in other segregating populations developed from the PHS-tolerant lines 'Kyukei 28' and 'NARO-FE-1'. Candidate markers linked to PHS developed by NGS-BSA were located near these QTL regions. We also investigated the effectiveness of markers linked to these QTLs for selection of PHS-tolerant lines among other segregating populations. CONCLUSIONS We efficiently developed genetic maps using a method combined with AmpliSeq technology and NGS-BSA, and detected QTLs associated with preharvest sprouting tolerance in common buckwheat. This is the first report to identify QTLs for PHS tolerance in buckwheat. Our marker development system will accelerate genetic research and breeding in common buckwheat.
Collapse
Affiliation(s)
- Ryoma Takeshima
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8518, Japan
| | - Eri Ogiso-Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kitasirakawa Oiwake-Cho, Sakyou-ku, Kyoto, 606-8501, Japan
| | - Katsuhiro Matsui
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8518, Japan.
- Graduate School of Life and Environmental Science, University of Tsukuba, Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8518, Japan.
| |
Collapse
|
8
|
Yao M, Chen W, Kong J, Zhang X, Shi N, Zhong S, Ma P, Gallusci P, Jackson S, Liu Y, Hong Y. METHYLTRANSFERASE1 and Ripening Modulate Vivipary during Tomato Fruit Development. PLANT PHYSIOLOGY 2020; 183:1883-1897. [PMID: 32503901 PMCID: PMC7401104 DOI: 10.1104/pp.20.00499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 05/04/2023]
Abstract
Vivipary, wherein seeds germinate prior to dispersal while still associated with the maternal plant, is an adaptation to extreme environments. It is normally inhibited by the establishment of dormancy. The genetic framework of vivipary has been well studied; however, the role of epigenetics in vivipary remains unknown. Here, we report that silencing of METHYLTRANSFERASE1 (SlMET1) promoted precocious seed germination and seedling growth within the tomato (Solanum lycopersicum) epimutant Colorless non-ripening (Cnr) fruits. This was associated with decreases in abscisic acid concentration and levels of mRNA encoding 9-cis-epoxycarotenoid-dioxygenase (SlNCED), which is involved in abscisic acid biosynthesis. Differentially methylated regions were identified in promoters of differentially expressed genes, including SlNCED SlNCED knockdown also induced viviparous seedling growth in Cnr fruits. Strikingly, Cnr ripening reversion suppressed vivipary. Moreover, neither SlMET1/SlNCED-virus-induced gene silencing nor transgenic SlMET1-RNA interference produced vivipary in wild-type tomatoes; the latter affected leaf architecture, arrested flowering, and repressed seed development. Thus, a dual pathway in ripening and SlMET1-mediated epigenetics coordinates the blockage of seed vivipary.
Collapse
Affiliation(s)
- Mengqin Yao
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Weiwei Chen
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Junhua Kong
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, University of California, San Diego, California 92093
- Department of Statistics, University of Georgia, Athens, Georgia 30602
| | - Nongnong Shi
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, Georgia 30602
| | - Philippe Gallusci
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | - Stephen Jackson
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Yule Liu
- Centre for Plant Biology and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
- Worcester-Hangzhou Joint Molecular Plant Health Laboratory, School of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom
| |
Collapse
|
9
|
Kumar R, Janila P, Vishwakarma MK, Khan AW, Manohar SS, Gangurde SS, Variath MT, Shasidhar Y, Pandey MK, Varshney RK. Whole-genome resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:992-1003. [PMID: 31553830 PMCID: PMC7061874 DOI: 10.1111/pbi.13266] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/28/2019] [Accepted: 09/22/2019] [Indexed: 05/11/2023]
Abstract
The subspecies fastigiata of cultivated groundnut lost fresh seed dormancy (FSD) during domestication and human-made selection. Groundnut varieties lacking FSD experience precocious seed germination during harvest imposing severe losses. Development of easy-to-use genetic markers enables early-generation selection in different molecular breeding approaches. In this context, one recombinant inbred lines (RIL) population (ICGV 00350 × ICGV 97045) segregating for FSD was used for deploying QTL-seq approach for identification of key genomic regions and candidate genes. Whole-genome sequencing (WGS) data (87.93 Gbp) were generated and analysed for the dormant parent (ICGV 97045) and two DNA pools (dormant and nondormant). After analysis of resequenced data from the pooled samples with dormant parent (reference genome), we calculated delta-SNP index and identified a total of 10,759 genomewide high-confidence SNPs. Two candidate genomic regions spanning 2.4 Mb and 0.74 Mb on the B05 and A09 pseudomolecules, respectively, were identified controlling FSD. Two candidate genes-RING-H2 finger protein and zeaxanthin epoxidase-were identified in these two regions, which significantly express during seed development and control abscisic acid (ABA) accumulation. QTL-seq study presented here laid out development of a marker, GMFSD1, which was validated on a diverse panel and could be used in molecular breeding to improve dormancy in groundnut.
Collapse
Affiliation(s)
- Rakesh Kumar
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Pasupuleti Janila
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | - Aamir W. Khan
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Surendra S. Manohar
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Sunil S. Gangurde
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Murali T. Variath
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Yaduru Shasidhar
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Manish K. Pandey
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| |
Collapse
|
10
|
Genetic Dissection of Seed Dormancy using Chromosome Segment Substitution Lines in Rice ( Oryza sativa L.). Int J Mol Sci 2020; 21:ijms21041344. [PMID: 32079255 PMCID: PMC7072991 DOI: 10.3390/ijms21041344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 01/26/2023] Open
Abstract
Timing of germination determines whether a new plant life cycle can be initiated; therefore, appropriate dormancy and rapid germination under diverse environmental conditions are the most important features for a seed. However, the genetic architecture of seed dormancy and germination behavior remains largely elusive. In the present study, a linkage analysis for seed dormancy and germination behavior was conducted using a set of 146 chromosome segment substitution lines (CSSLs), of which each carries a single or a few chromosomal segments of Nipponbare (NIP) in the background of Zhenshan 97 (ZS97). A total of 36 quantitative trait loci (QTLs) for six germination parameters were identified. Among them, qDOM3.1 was validated as a major QTL for seed dormancy in a segregation population derived from the qDOM3.1 near-isogenic line, and further delimited into a genomic region of 90 kb on chromosome 3. Based on genetic analysis and gene expression profiles, the candidate genes were restricted to eight genes, of which four were responsive to the addition of abscisic acid (ABA). Among them, LOC_Os03g01540 was involved in the ABA signaling pathway to regulate seed dormancy. The results will facilitate cloning the major QTLs and understanding the genetic architecture for seed dormancy and germination in rice and other crops.
Collapse
|