1
|
Dayama BR, Mahadik VA, Somani D, Shinde BA, Kondhare KR, Karthikeyan M, Kadoo NY. Transcriptome analyses reveal TaWRKY41 as a potential candidate governing spot blotch resistance in wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:591-608. [PMID: 40443467 PMCID: PMC12116962 DOI: 10.1007/s12298-025-01583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 02/21/2025] [Accepted: 03/18/2025] [Indexed: 06/02/2025]
Abstract
Spot blotch disease caused by Bipolaris sorokiniana poses a significant threat to wheat production. Cultivation of disease-resistant wheat genotypes appears to be the most practical approach to mitigate the impact of this devastating disease. However, the molecular responses of wheat plants during spot blotch disease progression remain poorly understood. This study employed RNA-sequencing to unravel the spatiotemporal molecular events underlying the resistance mechanism in the spot blotch susceptible and resistant wheat genotypes. This study further provides a comprehensive overview of differentially expressed transcripts through functional analysis and transcription factor identification, elucidating the biological mechanisms governing wheat-B. sorokiniana interaction. In the resistant genotype, the expression of one of the key transcription factors, TaWRKY41, was significantly induced upon pathogen inoculation. Computational studies, electrophoretic-mobility shift assay, and yeast one-hybrid assay confirmed the interaction of the recombinant TaWRKY41 protein with W-box elements present in the promoters of plant defense-related genes. Furthermore, co-expression network analyses identified downstream genes positively correlated with TaWRKY41, providing insights into their probable involvement in the defense response. Overall, our investigation suggests that TaWRKY41 contributes to spot blotch resistance in wheat. This knowledge can help develop new disease-resistant wheat varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01583-5.
Collapse
Affiliation(s)
- Bhakti R. Dayama
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Varsha A. Mahadik
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Deepika Somani
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Balkrishna A. Shinde
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- MIT School of Bioengineering Sciences & Research, MIT-ADT University, Rajbaug, Loni Kalbhor, Pune, Maharashtra 412201 India
| | - Kirtikumar R. Kondhare
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Muthukumarasamy Karthikeyan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
| | - Narendra Y. Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
2
|
Maulenbay A, Rsaliyev A. Fungal Disease Tolerance with a Focus on Wheat: A Review. J Fungi (Basel) 2024; 10:482. [PMID: 39057367 PMCID: PMC11277790 DOI: 10.3390/jof10070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In this paper, an extensive review of the literature is provided examining the significance of tolerance to fungal diseases in wheat amidst the escalating global demand for wheat and threats from environmental shifts and pathogen movements. The current comprehensive reliance on agrochemicals for disease management poses risks to food safety and the environment, exacerbated by the emergence of fungicide resistance. While resistance traits in wheat can offer some protection, these traits do not guarantee the complete absence of losses during periods of vigorous or moderate disease development. Furthermore, the introduction of individual resistance genes into wheat monoculture exerts selection pressure on pathogen populations. These disadvantages can be addressed or at least mitigated with the cultivation of tolerant varieties of wheat. Research in this area has shown that certain wheat varieties, susceptible to severe infectious diseases, are still capable of achieving high yields. Through the analysis of the existing literature, this paper explores the manifestations and quantification of tolerance in wheat, discussing its implications for integrated disease management and breeding strategies. Additionally, this paper addresses the ecological and evolutionary aspects of tolerance in the pathogen-plant host system, emphasizing its potential to enhance wheat productivity and sustainability.
Collapse
Affiliation(s)
- Akerke Maulenbay
- Research Institute for Biological Safety Problems, Gvardeisky 080409, Kazakhstan
| | - Aralbek Rsaliyev
- Research Institute for Biological Safety Problems, Gvardeisky 080409, Kazakhstan
| |
Collapse
|
3
|
Vasistha NK, Sharma V, Singh S, Kaur R, Kumar A, Ravat VK, Kumar R, Gupta PK. Meta-QTL analysis and identification of candidate genes for multiple-traits associated with spot blotch resistance in bread wheat. Sci Rep 2024; 14:13083. [PMID: 38844568 PMCID: PMC11156910 DOI: 10.1038/s41598-024-63924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
In bread wheat, a literature search gave 228 QTLs for six traits, including resistance against spot blotch and the following five other related traits: (i) stay green; (ii) flag leaf senescence; (iii) green leaf area duration; (iv) green leaf area of the main stem; and (v) black point resistance. These QTLs were used for metaQTL (MQTL) analysis. For this purpose, a consensus map with 72,788 markers was prepared; 69 of the above 228 QTLs, which were suitable for MQTL analysis, were projected on the consensus map. This exercise resulted in the identification of 16 meta-QTLs (MQTLs) located on 11 chromosomes, with the PVE ranging from 5.4% (MQTL7) to 21.8% (MQTL5), and the confidence intervals ranging from 1.5 to 20.7 cM (except five MQTLs with a range of 36.1-57.8 cM). The number of QTLs associated with individual MQTLs ranged from a maximum of 17 in MQTL3 to 8 each in MQTL5 and MQTL8 and 5 each in MQTL7 and MQTL14. The 16 MQTLs, included 12 multi-trait MQTLs; one of the MQTL also overlapped a genomic region carrying the major spot blotch resistance gene Sb1. Of the total 16 MQTLs, 12 MQTLs were also validated through marker-trait associations that were available from earlier genome-wide association studies. The genomic regions associated with MQTLs were also used for the identification of candidate genes (CGs) and led to the identification of 516 CGs encoding 508 proteins; 411 of these proteins are known to be associated with resistance against several biotic stresses. In silico expression analysis of CGs using transcriptome data allowed the identification of 71 differentially expressed CGs, which were examined for further possible studies. The findings of the present study should facilitate fine-mapping and cloning of genes, enabling Marker Assisted Selection.
Collapse
Affiliation(s)
- Neeraj Kumar Vasistha
- Department of Genetics and Plant Breeding, Rajiv Gandhi University, Rono Hills, Itanagar, India
- Department of Genetics-Plant Breeding and Biotechnology, Dr K. S. Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vaishali Sharma
- Department of Genetics-Plant Breeding and Biotechnology, Dr K. S. Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
| | - Sahadev Singh
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Meerut Institute of Technology, NH-58 Baral Partapur Bypass Road, Meerut, India
| | - Ramandeep Kaur
- Department of Genetics-Plant Breeding and Biotechnology, Dr K. S. Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
| | - Anuj Kumar
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vikas Kumar Ravat
- Department of Plant Pathology, Rajiv Gandhi University, Rono Hills, Itanagar, India
| | - Rahul Kumar
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Pushpendra K Gupta
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India.
- Murdoch's Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia.
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India.
| |
Collapse
|
4
|
Kamble U, He X, Navathe S, Kumar M, Patial M, Kabir MR, Singh G, Singh GP, Joshi AK, Singh PK. Genome-wide association mapping for field spot blotch resistance in South Asian spring wheat genotypes. THE PLANT GENOME 2024; 17:e20425. [PMID: 38221748 DOI: 10.1002/tpg2.20425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Spot blotch caused by Bipolaris sorokiniana ((Sacc.) Shoemaker) (teleomorph: Cochliobolus sativus [Ito and Kuribayashi] Drechsler ex Dastur) is an economically important disease of warm and humid regions. The present study focused on identifying resistant genotypes and single-nucleotide polymorphism (SNP) markers associated with spot blotch resistance in a panel of 174 bread spring wheat lines using field screening and genome-wide association mapping strategies. Field experiments were conducted in Agua Fria, Mexico, during the 2019-2020 and 2020-2021 cropping seasons. A wide range of phenotypic variation was observed among genotypes tested during both years. Twenty SNP markers showed significant association with spot blotch resistance on 15 chromosomes, namely, 1A, 1B, 2A, 2B, 2D, 3A, 3B, 4B, 4D, 5A, 5B, 6A, 6B, 7A, and 7B. Of these, two consistently significant SNPs on 5A, TA003225-0566 and TA003225-1427, may represent a new resistance quantitative trait loci. Further, in the proximity of Tsn1 on 5B, AX-94435238 was the most stable and consistent in both years. The identified genomic regions could be deployed to develop spot blotch-resistant genotypes, particularly in the spot blotch-vulnerable wheat growing areas.
Collapse
Affiliation(s)
- Umesh Kamble
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Xinyao He
- International Maize and Wheat Improvement Centre (CIMMYT) Apedo, Mexico City, Mexico
| | | | - Manjeet Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madhu Patial
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | | | | | - Pawan Kumar Singh
- International Maize and Wheat Improvement Centre (CIMMYT) Apedo, Mexico City, Mexico
| |
Collapse
|
5
|
Aditya S, Aggarwal R, Bashyal BM, Gurjar MS, Saharan MS, Aggarwal S. Unraveling the dynamics of wheat leaf blight complex: isolation, characterization, and insights into pathogen population under Indian conditions. Front Microbiol 2024; 15:1287721. [PMID: 38450160 PMCID: PMC10915091 DOI: 10.3389/fmicb.2024.1287721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Wheat, a staple food crop for 35% of the global population, faces a threat from Helminthosporium leaf blight (HLB), a complex of spot blotch (Bipolaris sorokiniana) and tan spot (Pyrenophora-tritici-repentis) diseases under warm and humid conditions. However, in Indian conditions, the knowledge of existing pathogen populations associated with the HLB complex is limited and largely dominated by only B. sorokiniana (spot blotch). To address this, diseased samples were collected from all six wheat growing zones during 2020-2022. The pathogenic species were identified through in-depth morphological characterization, supplemented with ITS-rDNA and GAPDH sequence analysis, a diagnostic SCAR marker, and pathogenicity studies on two wheat varieties: Sonalika and HD2733. The 32 isolates collected from 10 different states consist of B. spicifera (12.5% of all isolates), Exserohilum rostratum (9.3%), Bipolaris oryzae (3.1%), and B. sorokiniana (75%). B. sorokiniana exhibited the highest disease severity on both varieties. Other lesser-known pathogenic species also produced comparable disease severity as B. sorokiniana isolates and, therefore are economically important. Unraveling pathogen composition and biology aids in disease control and resistance breeding. Our study highlights economically impactful and lesser-known pathogenic species causing wheat leaf blight/spot blotch in India, guiding both current management and future resistance breeding strategies in plant pathology.
Collapse
Affiliation(s)
- Sanghmitra Aditya
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Aggarwal
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | | | |
Collapse
|
6
|
Atsbeha G, Mekonnen T, Kebede M, Haileselassie T, Goodwin SB, Tesfaye K. Genetic architecture of adult-plant resistance to stripe rust in bread wheat ( Triticum aestivum L.) association panel. FRONTIERS IN PLANT SCIENCE 2023; 14:1256770. [PMID: 38130484 PMCID: PMC10733515 DOI: 10.3389/fpls.2023.1256770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a severe disease in wheat worldwide, including Ethiopia, causing up to 100% wheat yield loss in the worst season. The use of resistant cultivars is considered to be the most effective and durable management technique for controlling the disease. Therefore, the present study targeted the genetic architecture of adult plant resistance to yellow rust in 178 wheat association panels. The panel was phenotyped for yellow rust adult-plant resistance at three locations. Phonological, yield, yield-related, and agro-morphological traits were recorded. The association panel was fingerprinted using the genotyping-by-sequencing (GBS) platform, and a total of 6,788 polymorphic single nucleotide polymorphisms (SNPs) were used for genome-wide association analysis to identify effective yellow rust resistance genes. The marker-trait association analysis was conducted using the Genome Association and Prediction Integrated Tool (GAPIT). The broad-sense heritability for the considered traits ranged from 74.52% to 88.64%, implying the presence of promising yellow rust resistance alleles in the association panel that could be deployed to improve wheat resistance to the disease. The overall linkage disequilibrium (LD) declined within an average physical distance of 31.44 Mbp at r2 = 0.2. Marker-trait association (MTA) analysis identified 148 loci significantly (p = 0.001) associated with yellow rust adult-plant resistance. Most of the detected resistance quantitative trait loci (QTLs) were located on the same chromosomes as previously reported QTLs for yellow rust resistance and mapped on chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6A, 6B, 7A, and 7D. However, 12 of the discovered MTAs were not previously documented in the wheat literature, suggesting that they could represent novel loci for stripe rust resistance. Zooming into the QTL regions in IWGSC RefSeq Annotation v1 identified crucial disease resistance-associated genes that are key in plants' defense mechanisms against pathogen infections. The detected QTLs will be helpful for marker-assisted breeding of wheat to increase resistance to stripe rust. Generally, the present study identified putative QTLs for field resistance to yellow rust and some important agronomic traits. Most of the discovered QTLs have been reported previously, indicating the potential to improve wheat resistance to yellow rust by deploying the QTLs discovered by marker-assisted selection.
Collapse
Affiliation(s)
- Genet Atsbeha
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Tilahun Mekonnen
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mulugeta Kebede
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Stephen B. Goodwin
- USDA-Agricultural Research Service, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Bio and Emerging Technology Institute. Affiliated with the Institute of Biotechnology, Addis Ababa, University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Rabieyan E, Darvishzadeh R, Mohammadi R, Gul A, Rasheed A, Akhar FK, Abdi H, Alipour H. Genetic diversity, linkage disequilibrium, and population structure of tetraploid wheat landraces originating from Europe and Asia. BMC Genomics 2023; 24:682. [PMID: 37964224 PMCID: PMC10644499 DOI: 10.1186/s12864-023-09768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Durum wheat is one of the most important crops, especially in the Mediterranean region. Insight into the genetic diversity of germplasm can improve the breeding program management in various traits. This study was done using single nucleotide polymorphisms (SNP) markers to characterize the genetic distinctiveness and differentiation of tetraploid wheat landraces collected from nine European and Asian countries. A sum of 23,334 polymorphic SNPs was detected in 126 tetraploid wheat landraces in relation to the reference genome. RESULTS The number of identified SNPs was 11,613 and 11,721 in A and B genomes, respectively. The highest and lowest diversity was on 6B and 6 A chromosomes, respectively. Structure analysis classified the landraces into two distinct subpopulations (K = 2). Evaluating the principal coordinate analysis (PCoA) and weighted pair-group method using arithmetic averages (WPGMA) clustering results demonstrated that landraces (99.2%) are categorized into one of the two chief subpopulations. Therefore, the grouping pattern did not clearly show the presence of a clear pattern of relationships between genetic diversity and their geographical derivation. Part of this result could be due to the historical exchange between different germplasms. Although the result did not separate landraces based on their region of origin, the landraces collected from Iran were classified into the same group and cluster. Analysis of molecular variance (AMOVA) also confirmed the results of population structure. Finally, Durum wheat landraces in some countries, including Turkey, Russia, Ukraine, and Afghanistan, were highly diverse, while others, including Iran and China, were low-diversity. CONCLUSION The recent study concluded that the 126 tetraploid wheat genotypes and their GBS-SNP markers are very appropriate for quantitative trait loci (QTLs) mapping and genome-wide association studies (GWAS). The core collection comprises two distinct subpopulations. Subpopulation II genotypes are the most diverse genotypes, and if they possess desired traits, they may be used in future breeding programs. The degree of diversity in the landraces of countries can provide the ground for the improvement of new cultivars with international cooperation. linkage disequilibrium (LD) hotspot distribution across the genome was investigated, which provides useful information about the genomic regions that contain intriguing genes.
Collapse
Affiliation(s)
- Ehsan Rabieyan
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Reza Darvishzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Reza Mohammadi
- Dryland Agricultural Research Institute (DARI), AREEO, Sararood branch, Iran
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Awais Rasheed
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing, 100081, China
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fatemeh Keykha Akhar
- Department of Plant Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran
| | - Hossein Abdi
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
| |
Collapse
|
8
|
Halder J, Gill HS, Zhang J, Altameemi R, Olson E, Turnipseed B, Sehgal SK. Genome-wide association analysis of spike and kernel traits in the U.S. hard winter wheat. THE PLANT GENOME 2023; 16:e20300. [PMID: 36636831 DOI: 10.1002/tpg2.20300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
A better understanding of the genetic control of spike and kernel traits that have higher heritability can help in the development of high-yielding wheat varieties. Here, we identified the marker-trait associations (MTAs) for various spike- and kernel-related traits in winter wheat (Triticum aestivum L.) through genome-wide association studies (GWAS). An association mapping panel comprising 297 hard winter wheat accessions from the U.S. Great Plains was evaluated for eight spike- and kernel-related traits in three different environments. A GWAS using 15,590 single-nucleotide polymorphisms (SNPs) identified a total of 53 MTAs for seven spike- and kernel-related traits, where the highest number of MTAs were identified for spike length (16) followed by the number of spikelets per spike (15) and spikelet density (11). Out of 53 MTAs, 14 were considered to represent stable quantitative trait loci (QTL) as they were identified in multiple environments. Five multi-trait MTAs were identified for various traits including the number of spikelets per spike (NSPS), spikelet density (SD), kernel width (KW), and kernel area (KA) that could facilitate the pyramiding of yield-contributing traits. Further, a significant additive effect of accumulated favorable alleles on the phenotype of four spike-related traits suggested that breeding lines and cultivars with a higher number of favorable alleles could be a valuable resource for breeders to improve yield-related traits. This study improves the understanding of the genetic basis of yield-related traits in hard winter wheat and provides reliable molecular markers that will facilitate marker-assisted selection (MAS) in wheat breeding programs.
Collapse
Affiliation(s)
- Jyotirmoy Halder
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Harsimardeep S Gill
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Jinfeng Zhang
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Rami Altameemi
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Eric Olson
- Dep. of Plant, Soil and Microbial Sciences, Michigan State Univ., East Lansing, MI, 48824, USA
| | - Brent Turnipseed
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| | - Sunish K Sehgal
- Dep. of Agronomy, Horticulture & Plant Science, South Dakota State Univ., Brookings, SD, 57007, USA
| |
Collapse
|
9
|
Singh S, Gaurav SS, Vasistha NK, Kumar U, Joshi AK, Mishra VK, Chand R, Gupta PK. Genetics of spot blotch resistance in bread wheat ( Triticum aestivum L.) using five models for GWAS. FRONTIERS IN PLANT SCIENCE 2023; 13:1036064. [PMID: 36743576 PMCID: PMC9891466 DOI: 10.3389/fpls.2022.1036064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Genetic architecture of resistance to spot blotch in wheat was examined using a Genome-Wide Association Study (GWAS) involving an association panel comprising 303 diverse genotypes. The association panel was evaluated at two different locations in India including Banaras Hindu University (BHU), Varanasi (Uttar Pradesh), and Borlaug Institute for South Asia (BISA), Pusa, Samastipur (Bihar) for two consecutive years (2017-2018 and 2018-2019), thus making four environments (E1, BHU 2017-18; E2, BHU 2018-19; E3, PUSA, 2017-18; E4, PUSA, 2018-19). The panel was genotyped for 12,196 SNPs based on DArT-seq (outsourced to DArT Ltd by CIMMYT); these SNPs included 5,400 SNPs, which could not be assigned to individual chromosomes and were therefore, described as unassigned by the vendor. Phenotypic data was recorded on the following three disease-related traits: (i) Area Under Disease Progress Curve (AUDPC), (ii) Incubation Period (IP), and (iii) Lesion Number (LN). GWAS was conducted using each of five different models, which included two single-locus models (CMLM and SUPER) and three multi-locus models (MLMM, FarmCPU, and BLINK). This exercise gave 306 MTAs, but only 89 MTAs (33 for AUDPC, 30 for IP and 26 for LN) including a solitary MTA detected using all the five models and 88 identified using four of the five models (barring SUPER) were considered to be important. These were used for further analysis, which included identification of candidate genes (CGs) and their annotation. A majority of these MTAs were novel. Only 70 of the 89 MTAs were assigned to individual chromosomes; the remaining 19 MTAs belonged to unassigned SNPs, for which chromosomes were not known. Seven MTAs were selected on the basis of minimum P value, number of models, number of environments and location on chromosomes with respect to QTLs reported earlier. These 7 MTAs, which included five main effect MTAs and two for epistatic interactions, were considered to be important for marker-assisted selection (MAS). The present study thus improved our understanding of the genetics of resistance against spot blotch in wheat and provided seven MTAs, which may be used for MAS after due validation.
Collapse
Affiliation(s)
- Sahadev Singh
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Shailendra Singh Gaurav
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Neeraj Kumar Vasistha
- Department of Genetics-Plant Breeding and Biotechnology, Dr Khem Singh Gill, Akal College of Agriculture, Eternal University, Sirmaur, India
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | - Arun Kumar Joshi
- The International Maize and Wheat Improvement Center (CIMMYT), Borlaug Institute for South Asia (BISA), G-2, B-Block, NASC Complex, DPS Marg, New Delhi, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Indian Institute of Agricultural Science, Banaras Hindu University, Varanasi, India
| | - Ramesh Chand
- Department of Mycology and Plant Pathology, Indian Institute of Agricultural Science Banaras Hindu University, Varanasi, India
| | - Pushpendra Kumar Gupta
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Borlaug Institute for South Asia (BISA), Ludhiana, India
- Murdoch’s Centre for Crop & Food Innovation, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
10
|
Khalid A, Hameed A, Tahir MF. Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Front Nutr 2023; 10:1053196. [PMID: 36908903 PMCID: PMC9998918 DOI: 10.3389/fnut.2023.1053196] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/26/2023] [Indexed: 03/14/2023] Open
Abstract
Wheat (Triticum aestivum L.) belonging to one of the most diverse and substantial families, Poaceae, is the principal cereal crop for the majority of the world's population. This cereal is polyploidy in nature and domestically grown worldwide. Wheat is the source of approximately half of the food calories consumed worldwide and is rich in proteins (gluten), minerals (Cu, Mg, Zn, P, and Fe), vitamins (B-group and E), riboflavin, niacin, thiamine, and dietary fiber. Wheat seed-storage proteins represent an important source of food and energy and play a major role in the determination of bread-making quality. The two groups of wheat grain proteins, i.e., gliadins and glutenins, have been widely studied using SDS-PAGE and other techniques. Sustainable production with little input of chemicals along with high nutritional quality for its precise ultimate uses in the human diet are major focus areas for wheat improvement. An expansion in the hereditary base of wheat varieties must be considered in the wheat breeding program. It may be accomplished in several ways, such as the use of plant genetic resources, comprising wild relatives and landraces, germplasm-assisted breeding through advanced genomic tools, and the application of modern methods, such as genome editing. In this review, we critically focus on phytochemical composition, reproduction growth, types, quality, seed storage protein, and recent challenges in wheat breeding and discuss possible ways forward to combat those issues.
Collapse
Affiliation(s)
- Anam Khalid
- Department of Biochemistry, University of Jhang, Jhang, Pakistan
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | | |
Collapse
|
11
|
Kumar S, Pradhan AK, Kumar U, Dhillon GS, Kaur S, Budhlakoti N, Mishra DC, Singh AK, Singh R, Kumari J, Kumaran VV, Mishra VK, Bhati PK, Das S, Chand R, Singh K, Kumar S. Validation of Novel spot blotch disease resistance alleles identified in unexplored wheat (Triticum aestivum L.) germplasm lines through KASP markers. BMC PLANT BIOLOGY 2022; 22:618. [PMID: 36577935 PMCID: PMC9798658 DOI: 10.1186/s12870-022-04013-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND During the last few decades, the diverse sources of resistance, several genes and QTLs for spot blotch resistance have been identified. However, a large set of germplasm lines are still unexplored that have the potential to develop highly resistant wheat cultivars for the target environments. Therefore, the identification of new sources of resistance to spot blotch is essential for breeding programmes to develop spot blotch resistant cultivars and sustain wheat production. The association mapping panel of 294 diverse bread wheat accessions was used to explore new sources of spot blotch disease resistance and to identify genomic regions using genome wide association analysis (GWAS). The genotypes were tested in replicated trials for spot blotch disease at three major hot spots in India (Varanasi in UP, Pusa in Bihar, and Cooch Behar in West Bengal). The area under the disease progress curve (AUDPC) was calculated to assess the level of resistance in each genotype. RESULTS A total of 19 highly and 76 moderately resistant lines were identified. Three accessions (EC664204, IC534306 and IC535188) were nearly immune to spot blotch disease. The genotyping of all accessions resulted in a total of 16,787 high-quality polymorphic SNPs. The GWAS was performed using a Compressed Mixed Linear Model (CMLM) and a Mixed Linear Model (MLM). A total of seven significant MTAs, common in both the models and consistent across the environment, were further validated to develop KASP markers. Four MTAs (AX-94710084, AX-94865722, AX-95135556, and AX-94529408) on three chromosomes (2AL, 2BL, and 3BL) have been successfully validated through the KASP marker. CONCLUSIONS The new source of resistance was identified from unexplored germplasm lines. The genomic regions identified through GWAS were validated through KASP markers. The marker information and the highly resistant sources are valuable resources to rapidly develop immune or near immune wheat varieties.
Collapse
Affiliation(s)
- Suneel Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Uttam Kumar
- Borlaug Institute for South Asia, NASC Complex, DPS Marg, New Delhi, India.
| | | | - Satinder Kaur
- Punjab Agricultural University, Ludhiana, Punjab, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jyoti Kumari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Vikas V Kumaran
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, India
| | | | | | - Saikat Das
- Uttar Banga Krishi Vishwavidyalaya, Pundibari, Coochbehar, India
| | - Ramesh Chand
- Banaras Hindu University, Uttar Pradesh, Varanasi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India.
| |
Collapse
|
12
|
Rahim MS, Kumar V, Roy J. Genetic dissection of quantitative traits loci identifies new genes for gelatinization parameters of starch and amylose-lipid complex (Resistant starch 5) in bread wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111452. [PMID: 36087884 DOI: 10.1016/j.plantsci.2022.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Starch is a major component of cereal grains such as wheat. Physicochemical and functional properties of starch affect end-use food quality and nutrients. To improve cultivars that preserve superior starch quality, the genetic foundation of the wheat starch and amylose-lipid complex (ALc, Resistant starch type 5) gelatinization are needed. This genome-wide association (GWA) mapping used 192 wheat genotypes (previously reported) to generate SNPs using an enhanced version of sequencing termed ddRAD on the Illumina Hi-seq X platform and 3696 high-quality influential SNPs were filtered out. The heterozygosity and Fst ranges in five subpopulations were 0.31-0.40 and 0.18-0.30 respectively. Nucleotide diversity and PIC ranged from 0.21 (6A) to 0.32 (2A) and 0.29 (6A) to 0.39 (4D) respectively. The Shannon waiver index was 1.7 and the whole-genome LD decay was 22 Mb at r2 = 0.38. Following FDR, 23 and 8 SNPs showed association with starch properties in the year 2017 and 2018, respectively while 93 and 20 SNPs were associated with ALc gelatinization in the year 2017 and 2018 respectively. The identified potential new genes (GSK3-alpha, RING-type domain-containing protein, Tetratricopeptide repeat, Hexosyltransferase, GLP, SNF1, and WRKY transcription factor) within LD range (∼16 Kb to ∼15 Mb), BLUP value, and cis and trans-position of SNPs network provide valuable information for the future wheat breeding strategy for the improvement of the starch quality trait.
Collapse
Affiliation(s)
- Mohammed Saba Rahim
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali-140 306, Punjab, India; Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda.
| | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda.
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali-140 306, Punjab, India.
| |
Collapse
|
13
|
Navathe S, Pandey AK, Sharma S, Chand R, Mishra VK, Kumar D, Jaiswal S, Iquebal MA, Govindan V, Joshi AK, Singh PK. New Genomic Regions Identified for Resistance to Spot Blotch and Terminal Heat Stress in an Interspecific Population of Triticum aestivum and T. spelta. PLANTS (BASEL, SWITZERLAND) 2022; 11:2987. [PMID: 36365440 PMCID: PMC9657703 DOI: 10.3390/plants11212987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the most widely grown and consumed food crops in the world. Spot blotch and terminal heat stress are the two significant constraints mainly in the Indo-Gangetic plains of South Asia. The study was undertaken using 185 recombinant lines (RILs) derived from the interspecific hybridization of 'Triticum aestivum (HUW234) × T. spelta (H+26)' to reveal genomic regions associated with tolerance to combined stress to spot blotch and terminal heat. Different physiological (NDVI, canopy temperature, leaf chlorophyll) and grain traits (TGW, grain size) were observed under stressed (spot blotch, terminal heat) and non-stressed environments. The mean maturity duration of RILs under combined stress was reduced by 12 days, whereas the normalized difference vegetation index (NDVI) was 46.03%. Similarly, the grain size was depleted under combined stress by 32.23% and thousand kernel weight (TKW) by 27.56% due to spot blotch and terminal heat stress, respectively. The genetic analysis using 6734 SNP markers identified 37 significant loci for the area under the disease progress curve (AUDPC) and NDVI. The genome-wide functional annotation of the SNP markers revealed gene functions such as plant chitinases, NB-ARC and NBS-LRR, and the peroxidase superfamily Cytochrome P450 have a positive role in the resistance through a hypersensitive response. Zinc finger domains, cysteine protease coding gene, F-box protein, ubiquitin, and associated proteins, play a substantial role in the combined stress of spot blotch and terminal heat in bread wheat, according to genomic domains ascribed to them. The study also highlights T. speltoides as a source of resistance to spot blotch and terminal heat tolerance.
Collapse
Affiliation(s)
- Sudhir Navathe
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- Agharkar Research Institute, G.G. Agharkar Road, Pune 411004, India
| | - Ajeet Kumar Pandey
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Sharma
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ramesh Chand
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vinod Kumar Mishra
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Veracruz 56237, Mexico
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia, NASC Complex, DPS Marg, New Delhi 110012, India
- International Maize and Wheat Improvement Center (CIMMYT), G-2, B-Block, NASC Complex, DPS Marg, New Delhi 110012, India
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), Veracruz 56237, Mexico
| |
Collapse
|
14
|
Molecular diversity, haplotype distribution and genetic variation flow of Bipolaris sorokiniana fungus causing spot blotch disease in different wheat-growing zones. J Appl Genet 2022; 63:793-803. [PMID: 35931929 DOI: 10.1007/s13353-022-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
Abstract
Bipolaris sorokiniana (BS) is an economically important fungal pathogen causing spot blotch of wheat (Trtiticum aestivum) and found in all wheat-growing zones of India. Very scanty and fragmentary information is available on its genetic diversity. The current research is the first detailed report on the geographic distribution and evolution of BS population in five geographically distinct wheat-growing zones (North Western Plain Zone (NWPZ), North Eastern Plain zone (NEPZ), North Hill Zone (NHZ), Southern Hill Zone (SHZ) and Peninsular Zone (PZ)) of India, studied by performing nucleotide sequence comparison of internal transcribed spacer region of 528 isolates. A moderate to low levels of haplotypic diversity was noticed in different wheat-growing zones. Phylogenetic analysis suggests that B. sorokiniana exist in two distinct lineages as all isolates under study were grouped in two different clades and found analogous to the findings of haplotypic and TCS network analysis. The genetic parameters revealed the existence of 40 haplotypes with three major haplotypes (H-1, H-2 and H-3) which showed star-like structure network surrounded by several single haplotypes, revealing high frequency of the mutations (Eta = 2 - 158) in total analyzed population. H-1 was observed as a predominant haplotype and prevalent in all the five zones. Moderate level of genetic differentiation was found between NHZ and other zones like NWPZ (Fst = 0.332) and SHZ (Fst = 0.382) and PZ (Fst = 0.299), whereas it was low between NEPZ and PZ (Fst = 0.034). Higher transfer rate of genetic variation was noticed between NEPZ and PZ (Nm = 7.06), while it was found minimum between NHZ and SHZ (Nm = 0.40). Moreover, negative score of neutrality statistics (Tajima's D and Fu's FS test) for NWPZ population suggested recent population expansion. However, positive score for both the neutrality tests observed in NEPZ indicated the dominance of balancing selection in structuring their population. Recombination events were observed in the NWPZ and NHZ population, while it was absent in SHZ, NEPZ and PZ population. Thus, the lack of any specific genetic population structure in all the zones indicates for the expansion history only from one common source population, i.e. NWPZ, a mega zone of wheat production in India. Overall, it seems that the predominance of individual haplotypes with a moderate level of genetic variation and human-mediated movement of contaminated seed and dispersal of inoculum, mutations and recombination as prime evolutionary processes play essential role in defining the genetic structure of BS population.
Collapse
|
15
|
Genome-Wide Association Study for Spot Blotch Resistance in Synthetic Hexaploid Wheat. Genes (Basel) 2022; 13:genes13081387. [PMID: 36011298 PMCID: PMC9407756 DOI: 10.3390/genes13081387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Spot blotch (SB) caused by Bipolaris sorokiniana (Sacc.) Shoem is a destructive fungal disease affecting wheat and many other crops. Synthetic hexaploid wheat (SHW) offers opportunities to explore new resistance genes for SB for introgression into elite bread wheat. The objectives of our study were to evaluate a collection of 441 SHWs for resistance to SB and to identify potential new genomic regions associated with the disease. The panel exhibited high SB resistance, with 250 accessions showing resistance and 161 showing moderate resistance reactions. A genome-wide association study (GWAS) revealed a total of 41 significant marker–trait associations for resistance to SB, being located on chromosomes 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5D, 6D, 7A, and 7D; yet none of them exhibited a major phenotypic effect. In addition, a partial least squares regression was conducted to validate the marker–trait associations, and 15 markers were found to be most important for SB resistance in the panel. To our knowledge, this is the first GWAS to investigate SB resistance in SHW that identified markers and resistant SHW lines to be utilized in wheat breeding.
Collapse
|
16
|
Qalavand F, Esfahani MN, Vatandoost J, Azarm DA. Enzyme activity and population genetic structure analysis in wheat associated with resistance to Bipolaris sorokiniana-common root rot diseases. PHYTOCHEMISTRY 2022; 200:113208. [PMID: 35447108 DOI: 10.1016/j.phytochem.2022.113208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Common root rot disease (CRR) caused by Bipolaris sorokiniana (Sacc.) (Pleosporaceae), is an important fungal disease of wheat, Triticum aestivum (Poaceae), causing considerable yield losses globally. Incorporating genetic resistance in cultivated crops is considered the most efficient and sustainable solution to counter root rot diseases. Moreover, resistance to CCR is quantitative in nature, and thus the mechanism is poorly understood. To this aim, we analyzed the activities of defense-related enzymes; peroxidase (POX), superoxide dismutase (SOD), polyphenol oxidase (PPO), catalase (CAT), phenylalanine ammonia-lyase (PAL), β-1,3-glucanase (GLU) and chitinase (CHI), as well as total phenol content (TPC) to CRR on the three known resistant wheat 'Alvand' and 'Bam', 'Mehregan' at different time points (wpi) following CRR pathogen, B. sorokiniana inoculation. Of which, were selected out of 33 wheat cultivars previously screened for resistance to CRR. We also analyzed the genetic variability of the entire germplasm, 33 wheat cultivars using seven simple sequence repeat (SSR) primer pairs. The activity of antioxidant enzymes was increased in the related resistant genotypes. Of which, 'Bam' had the highest increase in PPO, and GLU activities, followed by 'Alvand' in SOD, PAL, and CHI significantly. Whereas, 'Mehregan' showed the highest level of TPC, POX, and CAT activities. In addition, five out of seven used SSR primers produced a total of 20 polymorphic bands, of which the number of alleles in each gene locus varied within 3-7 bands. The polymorphism information content (PIC) value also ranged from 0.44 to 0.81, with the mean of 0.65, Shannon Information Index (I) between 0.29 and 0.63 with an average of 0.47 per locus, and Nei's gene diversity (h) value varied from 0.16 to 0.44 with an average of 0.32. The average number of effective alleles was 1.52, ranging between 1.21 and 1.8. The gene locus Xgwm 140 showed the highest diversity in the population genetic structure, which explains the ability of the primers to resolve the assayed germplasm. Thus, resistance to CRR in wheat was mainly related to the enhancement of antioxidant enzymes, although the specific metabolic pathways require further study. This study presents new insights for understanding resistance mechanisms of the selected wheat cultivars to CRR, thus improving wheat yield in the future.
Collapse
Affiliation(s)
- Fatemeh Qalavand
- Department of Agricultural-Biotechnology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Mehdi Nasr Esfahani
- Plant Protection Research Department, Isfahan Agriculture and Natural Resource Research and Education Center, AREEO, Isfahan, 81786-96446, Iran.
| | - Jafar Vatandoost
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Davood Amin Azarm
- Horticulture Crop Research Department, Isfahan Agriculture and Natural Resource Research and Education Center, AREEO, Isfahan, 81786-96446, Iran
| |
Collapse
|
17
|
Kumar S, Jacob SR, Mir RR, Vikas VK, Kulwal P, Chandra T, Kaur S, Kumar U, Kumar S, Sharma S, Singh R, Prasad S, Singh AM, Singh AK, Kumari J, Saharan MS, Bhardwaj SC, Prasad M, Kalia S, Singh K. Indian Wheat Genomics Initiative for Harnessing the Potential of Wheat Germplasm Resources for Breeding Disease-Resistant, Nutrient-Dense, and Climate-Resilient Cultivars. Front Genet 2022; 13:834366. [PMID: 35846116 PMCID: PMC9277310 DOI: 10.3389/fgene.2022.834366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat is one of the major staple cereal food crops in India. However, most of the wheat-growing areas experience several biotic and abiotic stresses, resulting in poor quality grains and reduced yield. To ensure food security for the growing population in India, there is a compelling need to explore the untapped genetic diversity available in gene banks for the development of stress-resistant/tolerant cultivars. The improvement of any crop lies in exploring and harnessing the genetic diversity available in its genetic resources in the form of cultivated varieties, landraces, wild relatives, and related genera. A huge collection of wheat genetic resources is conserved in various gene banks across the globe. Molecular and phenotypic characterization followed by documentation of conserved genetic resources is a prerequisite for germplasm utilization in crop improvement. The National Genebank of India has an extensive and diverse collection of wheat germplasm, comprising Indian wheat landraces, primitive cultivars, breeding lines, and collection from other countries. The conserved germplasm can contribute immensely to the development of wheat cultivars with high levels of biotic and abiotic stress tolerance. Breeding wheat varieties that can give high yields under different stress environments has not made much headway due to high genotypes and environmental interaction, non-availability of truly resistant/tolerant germplasm, and non-availability of reliable markers linked with the QTL having a significant impact on resistance/tolerance. The development of new breeding technologies like genomic selection (GS), which takes into account the G × E interaction, will facilitate crop improvement through enhanced climate resilience, by combining biotic and abiotic stress resistance/tolerance and maximizing yield potential. In this review article, we have summarized different constraints being faced by Indian wheat-breeding programs, challenges in addressing biotic and abiotic stresses, and improving quality and nutrition. Efforts have been made to highlight the wealth of Indian wheat genetic resources available in our National Genebank and their evaluation for the identification of trait-specific germplasm. Promising genotypes to develop varieties of important targeted traits and the development of different genomics resources have also been highlighted.
Collapse
Affiliation(s)
- Sundeep Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
- *Correspondence: Sundeep Kumar,
| | - Sherry R. Jacob
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-Kashmir), Jammu and Kashmir, India
| | - V. K. Vikas
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pawan Kulwal
- State Level Biotechnology Centre, Mahatma Phule Krishi Vidyapeeth, Rahuri, India
| | - Tilak Chandra
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Uttam Kumar
- Borlaug Institute for South Asia, Ludhiana, India
| | - Suneel Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), Jammu and Kashmir, India
| | - Sai Prasad
- Indian Agriculture Research Institute Regional Research Station, Indore, India
| | - Anju Mahendru Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Amit Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jyoti Kumari
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - M. S. Saharan
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | | | - Manoj Prasad
- Laboratory of Plant Virology, National Institute of Plant Genome Research, New Delhi, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Kuldeep Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
18
|
Zhang X, Huang T, Wang Q, Guo Y, Zhang P, Xie H, Liu J, Li L, Zhang C, Qin P. Mechanisms of Resistance to Spot Blotch in Yunnan Iron Shell Wheat Based on Metabolome and Transcriptomics. Int J Mol Sci 2022; 23:5184. [PMID: 35563578 PMCID: PMC9104156 DOI: 10.3390/ijms23095184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Spot blotch (SB) is a fungal disease that threatens wheat yield and quality. Presently, the molecular mechanism against SB is unclear. In this study, the resistant variety Zhenkang iron shell wheat (Yunmai 0030) and susceptible variety Lincang iron shell wheat (Yunmai 0608) were selected by identifying SB of Yunnan iron shell wheat. The metabolome and transcriptome of leaves of two varieties at different positions were detected using the systemic acquired resistance theory to investigate the molecular and physiological changes in Yunnan iron shell wheat under SB stress. We found that the genes and metabolites related to benzoxazinoid biosynthesis and arginine and proline metabolism were highly enriched after infection with leaf blight. The enriched differential metabolites mainly included phenolic acids, alkaloids, and flavonoids. We further observed that DIBOA- and DIMBOA-glucoside positively affected iron shell wheat resistance to leaf blight and proline and its derivatives were important for plant self-defense. Furthermore, we confirmed that the related metabolites in benzoxazinoid biosynthesis and arginine and proline metabolism positively affected Triticum aestivum ssp. resistance to SB. This study provides new insights into the dynamic physiological changes of wheat in response to SB, helps us better understand the mechanism of resistance to SB, and contributes to the breeding and utilization of resistant varieties.
Collapse
Affiliation(s)
- Xuesong Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (T.H.); (Q.W.); (Y.G.); (P.Z.); (H.X.); (J.L.); (L.L.)
| | - Tingzhi Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (T.H.); (Q.W.); (Y.G.); (P.Z.); (H.X.); (J.L.); (L.L.)
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (T.H.); (Q.W.); (Y.G.); (P.Z.); (H.X.); (J.L.); (L.L.)
| | - Yirui Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (T.H.); (Q.W.); (Y.G.); (P.Z.); (H.X.); (J.L.); (L.L.)
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (T.H.); (Q.W.); (Y.G.); (P.Z.); (H.X.); (J.L.); (L.L.)
| | - Heng Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (T.H.); (Q.W.); (Y.G.); (P.Z.); (H.X.); (J.L.); (L.L.)
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (T.H.); (Q.W.); (Y.G.); (P.Z.); (H.X.); (J.L.); (L.L.)
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (T.H.); (Q.W.); (Y.G.); (P.Z.); (H.X.); (J.L.); (L.L.)
| | - Chuanli Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (T.H.); (Q.W.); (Y.G.); (P.Z.); (H.X.); (J.L.); (L.L.)
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (T.H.); (Q.W.); (Y.G.); (P.Z.); (H.X.); (J.L.); (L.L.)
| |
Collapse
|
19
|
Hussain S, Habib M, Ahmed Z, Sadia B, Bernardo A, Amand PS, Bai G, Ghori N, Khan AI, Awan FS, Maqbool R. Genotyping-by-Sequencing Based Molecular Genetic Diversity of Pakistani Bread Wheat ( Triticum aestivum L.) Accessions. Front Genet 2022; 13:772517. [PMID: 35464861 PMCID: PMC9019749 DOI: 10.3389/fgene.2022.772517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022] Open
Abstract
Spring wheat (Triticum aestivum L.) is one of the most imperative staple food crops, with an annual production of 765 million tons globally to feed ∼40% world population. Genetic diversity in available germplasm is crucial for sustainable wheat improvement to ensure global food security. A diversity panel of 184 Pakistani wheat accessions was genotyped using 123,596 high-quality single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing with 42% of the SNPs mapped on B, 36% on A, and 22% on D sub-genomes of wheat. Chromosome 2B contains the most SNPs (9,126), whereas 4D has the least (2,660) markers. The mean polymorphic information content, genetic diversity, and major allele frequency of the population were 0.157, 0.1844, and 0.87, respectively. Analysis of molecular variance revealed a higher genetic diversity (80%) within the sub-population than among the sub-populations (20%). The genome-wide linkage disequilibrium was 0.34 Mbp for the whole wheat genome. Among the three subgenomes, A has the highest LD decay value (0.29 Mbp), followed by B (0.2 Mbp) and D (0.07 Mbp) genomes, respectively. The results of population structure, principal coordinate analysis, phylogenetic tree, and kinship analysis also divided the whole population into three clusters comprising 31, 33, and 120 accessions in group 1, group 2, and group 3, respectively. All groups were dominated by the local wheat accessions. Estimation of genetic diversity will be a baseline for the selection of breeding parents for mutations and the genome-wide association and marker-assisted selection studies.
Collapse
Affiliation(s)
- Shabbir Hussain
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Madiha Habib
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Zaheer Ahmed
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Sadia
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Amy Bernardo
- USDA, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Paul St Amand
- USDA, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Guihua Bai
- USDA, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Nida Ghori
- USDA, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Azeem I Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Faisal S Awan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Rizwana Maqbool
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
20
|
Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma X, York LM. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. THE NEW PHYTOLOGIST 2021; 232:98-112. [PMID: 33683730 PMCID: PMC8518983 DOI: 10.1111/nph.17329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/26/2021] [Indexed: 05/05/2023]
Abstract
The root economics space is a useful framework for plant ecology but is rarely considered for crop ecophysiology. In order to understand root trait integration in winter wheat, we combined functional phenomics with trait economic theory, utilizing genetic variation, high-throughput phenotyping, and multivariate analyses. We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits using a novel high-throughput method for CO2 flux and the open-source software RhizoVision Explorer to analyze scanned images. We uncovered substantial variation in specific root respiration (SRR) and specific root length (SRL), which were primary indicators of root metabolic and structural costs. Multiple linear regression analysis indicated that lateral root tips had the greatest SRR, and the residuals from this model were used as a new trait. Specific root respiration was negatively correlated with plant mass. Network analysis, using a Gaussian graphical model, identified root weight, SRL, diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified genetic regions associated with SRR, SRL, and root branching frequency, and proposed gene candidates. Combining functional phenomics and root economics is a promising approach to improving our understanding of crop ecophysiology. We identified root traits and genomic regions that could be harnessed to breed more efficient crops for sustainable agroecosystems.
Collapse
Affiliation(s)
- Haichao Guo
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Habtamu Ayalew
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | | | - Kundan Dhakal
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Marcus Griffiths
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Xue‐Feng Ma
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Larry M. York
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| |
Collapse
|
21
|
Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma XF, York LM. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. THE NEW PHYTOLOGIST 2021. [PMID: 33683730 DOI: 10.1101/2020.11.12.380238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The root economics space is a useful framework for plant ecology but is rarely considered for crop ecophysiology. In order to understand root trait integration in winter wheat, we combined functional phenomics with trait economic theory, utilizing genetic variation, high-throughput phenotyping, and multivariate analyses. We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits using a novel high-throughput method for CO2 flux and the open-source software RhizoVision Explorer to analyze scanned images. We uncovered substantial variation in specific root respiration (SRR) and specific root length (SRL), which were primary indicators of root metabolic and structural costs. Multiple linear regression analysis indicated that lateral root tips had the greatest SRR, and the residuals from this model were used as a new trait. Specific root respiration was negatively correlated with plant mass. Network analysis, using a Gaussian graphical model, identified root weight, SRL, diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified genetic regions associated with SRR, SRL, and root branching frequency, and proposed gene candidates. Combining functional phenomics and root economics is a promising approach to improving our understanding of crop ecophysiology. We identified root traits and genomic regions that could be harnessed to breed more efficient crops for sustainable agroecosystems.
Collapse
Affiliation(s)
- Haichao Guo
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Habtamu Ayalew
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Anand Seethepalli
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kundan Dhakal
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Marcus Griffiths
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Xue-Feng Ma
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Larry M York
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
22
|
Su J, Zhao J, Zhao S, Li M, Pang S, Kang Z, Zhen W, Chen S, Chen F, Wang X. Genetics of Resistance to Common Root Rot (Spot Blotch), Fusarium Crown Rot, and Sharp Eyespot in Wheat. Front Genet 2021; 12:699342. [PMID: 34249110 PMCID: PMC8260946 DOI: 10.3389/fgene.2021.699342] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/21/2021] [Indexed: 12/05/2022] Open
Abstract
Due to soil changes, high density planting, and the use of straw-returning methods, wheat common root rot (spot blotch), Fusarium crown rot (FCR), and sharp eyespot (sheath blight) have become severe threats to global wheat production. Only a few wheat genotypes show moderate resistance to these root and crown rot fungal diseases, and the genetic determinants of wheat resistance to these devastating diseases are poorly understood. This review summarizes recent results of genetic studies of wheat resistance to common root rot, Fusarium crown rot, and sharp eyespot. Wheat germplasm with relatively higher resistance are highlighted and genetic loci controlling the resistance to each disease are summarized.
Collapse
Affiliation(s)
- Jun Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jiaojie Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Mengyu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuyong Pang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Wenchao Zhen
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Shisheng Chen
- Institute of Advanced Agricultural Sciences, Peking University, Weifang, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science, Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
23
|
AlTameemi R, Gill HS, Ali S, Ayana G, Halder J, Sidhu JS, Gill US, Turnipseed B, Hernandez JLG, Sehgal SK. Genome-wide association analysis permits characterization of Stagonospora nodorum blotch (SNB) resistance in hard winter wheat. Sci Rep 2021; 11:12570. [PMID: 34131169 PMCID: PMC8206080 DOI: 10.1038/s41598-021-91515-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
Stagonospora nodorum blotch (SNB) is an economically important wheat disease caused by the necrotrophic fungus Parastagonospora nodorum. SNB resistance in wheat is controlled by several quantitative trait loci (QTLs). Thus, identifying novel resistance/susceptibility QTLs is crucial for continuous improvement of the SNB resistance. Here, the hard winter wheat association mapping panel (HWWAMP) comprising accessions from breeding programs in the Great Plains region of the US, was evaluated for SNB resistance and necrotrophic effectors (NEs) sensitivity at the seedling stage. A genome-wide association study (GWAS) was performed to identify single‐nucleotide polymorphism (SNP) markers associated with SNB resistance and effectors sensitivity. We found seven significant associations for SNB resistance/susceptibility distributed over chromosomes 1B, 2AL, 2DS, 4AL, 5BL, 6BS, and 7AL. Two new QTLs for SNB resistance/susceptibility at the seedling stage were identified on chromosomes 6BS and 7AL, whereas five QTLs previously reported in diverse germplasms were validated. Allele stacking analysis at seven QTLs explained the additive and complex nature of SNB resistance. We identified accessions (‘Pioneer-2180’ and ‘Shocker’) with favorable alleles at five of the seven identified loci, exhibiting a high level of resistance against SNB. Further, GWAS for sensitivity to NEs uncovered significant associations for SnToxA and SnTox3, co-locating with previously identified host sensitivity genes (Tsn1 and Snn3). Candidate region analysis for SNB resistance revealed 35 genes of putative interest with plant defense response-related functions. The QTLs identified and validated in this study could be easily employed in breeding programs using the associated markers to enhance the SNB resistance in hard winter wheat.
Collapse
Affiliation(s)
- Rami AlTameemi
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Shaukat Ali
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Girma Ayana
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jagdeep S Sidhu
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Upinder S Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Brent Turnipseed
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jose L Gonzalez Hernandez
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
24
|
Louriki S, Rehman S, El Hanafi S, Bouhouch Y, Al-Jaboobi M, Amri A, Douira A, Tadesse W. Identification of Resistance Sources and Genome-Wide Association Mapping of Septoria Tritici Blotch Resistance in Spring Bread Wheat Germplasm of ICARDA. FRONTIERS IN PLANT SCIENCE 2021; 12:600176. [PMID: 34113358 PMCID: PMC8185176 DOI: 10.3389/fpls.2021.600176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Septoria tritici blotch (STB) of wheat, caused by the ascomycete Zymoseptoria tritici (formerly Mycosphaerella graminicola), is one of the most important foliar diseases of wheat. In Morocco, STB is a devastating disease in temperate wheat-growing regions, and the yield losses can exceed up to 50% under favorable conditions. The aims of this study were to identify sources of resistance to STB in Septoria Association Mapping Panel (SAMP), which is composed of 377 advanced breeding lines (ABLs) from spring bread wheat breeding program of ICARDA, and to identify loci associated with resistance to STB at seedling (SRT) as well as at the adult plant (APS) stages using genome-wide association mapping (GWAM). Seedling resistance was evaluated under controlled conditions with two virulent isolates of STB (SAT-2 and 71-R3) from Morocco, whereas adult plant resistance was assessed at two hot spot locations in Morocco (Sidi Allal Tazi, Marchouch) under artificial inoculation with a mixture of STB isolates. At seedling stage, 45 and 32 ABLs were found to be resistant to 71-R3 and SAT-2 isolates of STB, respectively. At adult plant stage, 50 ABLs were found to be resistant at hot spot locations in Morocco. Furthermore, 10 genotypes showed resistance in both locations during two cropping seasons. GWAM was conducted with 9,988 SNP markers using phenotypic data for seedling and the adult plant stage. MLM model was employed in TASSEL 5 (v 5.2.53) using principal component analysis and Kinship Matrix as covariates. The GWAM analysis indicated 14 quantitative trait loci (QTL) at the seedling stage (8 for isolate SAT-2 and 6 for isolate 71-R3), while 23 QTL were detected at the adult plant stage resistance (4 at MCH-17, 16 at SAT-17, and 3 at SAT-18). SRT QTL explained together 33.3% of the phenotypic variance for seedling resistance to STB isolate SAT-2 and 28.3% for 71-R3, respectively. QTL for adult plant stage resistance explained together 13.1, 68.6, and 11.9% of the phenotypic variance for MCH-17, SAT-17, and SAT-18, respectively. Identification of STB-resistant spring bread wheat germplasm in combination with QTL detected both at SRT and APS stage will serve as an important resource in STB resistance breeding efforts.
Collapse
Affiliation(s)
- Sara Louriki
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Laboratoire de Productions Végétales, Animales et Agro-industrie, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Kenitra, Morocco
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Samira El Hanafi
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Physiology Plant Biotechnology Unit, Bio-bio Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Yassine Bouhouch
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Muamar Al-Jaboobi
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Ahmed Amri
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Allal Douira
- Laboratoire de Productions Végétales, Animales et Agro-industrie, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Kenitra, Morocco
| | - Wuletaw Tadesse
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| |
Collapse
|
25
|
Gahtyari NC, Roy C, He X, Roy KK, Reza MMA, Hakim MA, Malaker PK, Joshi AK, Singh PK. Identification of QTLs for Spot Blotch Resistance in Two Bi-Parental Mapping Populations of Wheat. PLANTS 2021; 10:plants10050973. [PMID: 34068273 PMCID: PMC8153151 DOI: 10.3390/plants10050973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Spot blotch (SB) disease caused by the hemibiotrophic pathogen Bipolaris sorokiniana inflicting major losses to the wheat grown in warm and highly humid areas of the Indian subcontinent, including Bangladesh, necessitates identification of QTLs stably expressing in Indian subcontinent conditions. Thus, two RIL mapping populations, i.e., WC (WUYA × CIANO T79) and KC (KATH × CIANO T79), were phenotyped at Dinajpur, Bangladesh for three consecutive years (2013-2015) and genotyped on a DArTseq genotyping by sequencing (GBS) platform at CIMMYT, Mexico. In both populations, quantitative inheritance along with transgressive segregation for SB resistance was identified. The identified QTLs were mostly minor and were detected on 10 chromosomes, i.e., 1A, 1B, 2A, 2B, 2D, 4B, 4D, 5A, 5D, and 7B. The phenotypic variation explained by the identified QTLs ranged from 2.3–15.0%, whereby QTLs on 4B (13.7%) and 5D (15.0%) were the largest in effect. The identified QTLs upon stacking showed an additive effect in lowering the SB score in both populations. The probable presence of newly identified Sb4 and durable resistance gene Lr46 in the identified QTL regions indicates the importance of these genes in breeding for SB resistance in Bangladesh and the whole of South Asia.
Collapse
Affiliation(s)
- Navin C. Gahtyari
- ICAR—Vivekanand Parvatiya Krishi Anushandhan Sansthan, Almora, Uttarakhand 263601, India;
| | - Chandan Roy
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour, Bihar 813210, India;
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico;
| | - Krishna K. Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Mohamed M. A. Reza
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Md. A. Hakim
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Paritosh K. Malaker
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Arun K. Joshi
- CIMMYT/Borlaug Institute for South Asia, NASC Complex, DPS Marg, New Delhi 110012, India;
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico;
- Correspondence:
| |
Collapse
|
26
|
Al-Sadi AM. Bipolaris sorokiniana-Induced Black Point, Common Root Rot, and Spot Blotch Diseases of Wheat: A Review. Front Cell Infect Microbiol 2021; 11:584899. [PMID: 33777829 PMCID: PMC7991903 DOI: 10.3389/fcimb.2021.584899] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Wheat is among the ten top and most widely grown crops in the world. Several diseases cause losses in wheat production in different parts of the world. Bipolaris sorokiniana (teleomorph, Cochliobolus sativus) is one of the wheat pathogens that can attack all wheat parts, including seeds, roots, shoots, and leaves. Black point, root rot, crown rot and spot blotch are the main diseases caused by B. sorokiniana in wheat. Seed infection by B. sorokiniana can result in black point disease, reducing seed quality and seed germination and is considered a main source of inoculum for diseases such as common root rot and spot blotch. Root rot and crown rot diseases, which result from soil-borne or seed-borne inoculum, can result in yield losses in wheat. Spot blotch disease affects wheat in different parts of the world and cause significant losses in grain yield. This review paper summarizes the latest findings on B. sorokiniana, with a specific emphasis on management using genetic, chemical, cultural, and biological control measures.
Collapse
Affiliation(s)
- Abdullah M Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Alkhoud, Oman
| |
Collapse
|
27
|
Tomar V, Singh D, Dhillon GS, Singh RP, Poland J, Joshi AK, Singh PK, Bhati PK, Kumar S, Rahman M, Tiwari BS, Kumar U. New QTLs for Spot Blotch Disease Resistance in Wheat ( Triticum aestivum L.) Using Genome-Wide Association Mapping. Front Genet 2021; 11:613217. [PMID: 33519916 PMCID: PMC7841440 DOI: 10.3389/fgene.2020.613217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Spot blotch disease caused by Bipolaris sorokiniana is a major constraint for wheat production in tropics and subtropics. The introgression of spot blotch resistance alleles to the disease susceptible lines is critical to securing the wheat production in these regions. Although genome-wide association studies (GWASs) for spot blotch were attempted earlier, the present study focused on identifying new quantitative trait loci (QTLs) for spot blotch under natural disease pressure in diverse field conditions. A total of 139 advanced spring wheat lines were evaluated in three environments (three years and two locations) in India and Bangladesh. The GWAS using 14,063 polymorphic genotyping-by-sequencing (GBS) markers identified eight QTLs associated with spot blotch disease resistance belonging to eight chromosomes across the wheat genome. Here, we report the identified marker–trait associations (MTAs), along with the allele effects associated with the disease. The functional annotation of the significant markers identified NBS-LRR, MADS-box transcription factor, and 34 other plant-related protein families across multiple chromosomal regions. The results indicate four promising new QTLs on chromosomes 1A (497.2 Mb), 1D (89.84 Mb), 2B (421.92 Mb), and 6D (6.84 Mb) associated with several disease resistance protein families. These results provide insights into new genomic regions associated with spot blotch disease, and with additional validation, could be utilized in disease resistance breeding efforts in wheat development.
Collapse
Affiliation(s)
- Vipin Tomar
- Borlaug Institute for South Asia, Ludhiana, India.,Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Daljit Singh
- The Climate Corporation, Bayer Crop Science, Creve Coeur, MO, United States
| | - Guriqbal Singh Dhillon
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Ravi Prakash Singh
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia, Ludhiana, India.,International Maize and Wheat Improvement Centre, New Delhi, India
| | - Pawan Kumar Singh
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Suneel Kumar
- Borlaug Institute for South Asia, Ludhiana, India
| | - Mokhlesur Rahman
- Wheat Research Center, Regional Agricultural Research Station, Bangladesh Agricultural Research Institute, Jamalpur, Bangladesh
| | | | - Uttam Kumar
- Borlaug Institute for South Asia, Ludhiana, India.,Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
28
|
Abou-Zeid MA, Mourad AMI. Genomic regions associated with stripe rust resistance against the Egyptian race revealed by genome-wide association study. BMC PLANT BIOLOGY 2021; 21:42. [PMID: 33446120 PMCID: PMC7809828 DOI: 10.1186/s12870-020-02813-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/22/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Wheat stripe rust (caused by Puccinia striiformis f. sp. Tritici), is a major disease that causes huge yield damage. New pathogen races appeared in the last few years and caused a broke down in the resistant genotypes. In Egypt, some of the resistant genotypes began to be susceptible to stripe rust in recent years. This situation increases the need to produce new genotypes with durable resistance. Besides, looking for a new resistant source from the available wheat genotypes all over the world help in enhancing the breeding programs. RESULTS In the recent study, a set of 103-spring wheat genotypes from different fourteen countries were evaluated to their field resistant to stripe rust for two years. These genotypes included 17 Egyptian genotypes from the old and new cultivars. The 103-spring wheat genotypes were reported to be well adapted to the Egyptian environmental conditions. Out of the tested genotypes, eight genotypes from four different countries were found to be resistant in both years. Genotyping was carried out using genotyping-by-sequencing and a set of 26,703 SNPs were used in the genome-wide association study. Five SNP markers, located on chromosomes 2A and 4A, were found to be significantly associated with the resistance in both years. Three gene models associated with disease resistance and underlying these significant SNPs were identified. One immune Iranian genotype, with the highest number of different alleles from the most resistant Egyptian genotypes, was detected. CONCLUSION the high variation among the tested genotypes in their resistance to the Egyptian stripe rust race confirming the possible improvement of stripe rust resistance in the Egyptian wheat genotypes. The identified five SNP markers are stable and could be used in marker-assisted selection after validation in different genetic backgrounds. Crossing between the immune Iranian genotype and the Egyptian genotypes will improve stripe rust resistance in Egypt.
Collapse
Affiliation(s)
- Mohamed A. Abou-Zeid
- Wheat Disease Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Amira M. I. Mourad
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
29
|
Roy C, Gahtyari NC, He X, Mishra VK, Chand R, Joshi AK, Singh PK. Dissecting Quantitative Trait Loci for Spot Blotch Resistance in South Asia Using Two Wheat Recombinant Inbred Line Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:641324. [PMID: 33747021 PMCID: PMC7969869 DOI: 10.3389/fpls.2021.641324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 05/13/2023]
Abstract
Spot blotch (SB) disease causes significant yield loss in wheat production in the warm and humid regions of the eastern Gangetic plains (EGP) of South Asia (SA). Most of the cultivated varieties in the eastern part of SA are affected by SB under favorable climatic conditions. To understand the nature of SB resistance and map the underlying resistant loci effective in SA, two bi-parental mapping populations were evaluated for 3 years, i.e., 2013-2015 for the BARTAI × CIANO T79 population (denoted as BC) and 2014-2016 for the CASCABEL × CIANO T79 population (CC), at Varanasi, Uttar Pradesh, India. DArTSeq genotyping-by-sequencing (GBS) platform was used for genotyping of the populations. Distribution of disease reaction of genotypes in both populations was continuous, revealing the quantitative nature of resistance. Significant "genotype," "year," and "genotype × year" interactions for SB were observed. Linkage map with the genome coverage of 8,598.3 and 9,024.7 cM in the BC and CC population, respectively, was observed. Two quantitative trait loci (QTLs) were detected on chromosomes 1A and 4D in the BC population with an average contribution of 4.01 and 12.23% of the total phenotypic variation (PV), respectively. Seven stable QTLs were detected on chromosomes 1B, 5A, 5B, 6A, 7A, and 7B in the CC population explaining 2.89-10.32% of PV and collectively 39.91% of the total PV. The QTL detected at the distal end of 5A chromosome contributed 10.32% of the total PV. The QTLs on 6A and 7B in CC could be new, and the one on 5B may represent the Sb2 gene. These QTLs could be used in SB resistance cultivar development for SA.
Collapse
Affiliation(s)
- Chandan Roy
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour, India
| | - Navin C. Gahtyari
- ICAR–Vivekanand Parvatiya Krishi Anushandhan Sansthan, Almora, India
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Vinod K. Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Ramesh Chand
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Arun K. Joshi
- CIMMYT-India/Borlaug Institute for South Asia, New Delhi, India
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
- *Correspondence: Pawan K. Singh,
| |
Collapse
|
30
|
Kaur J, Kaur J, Dhillon GS, Kaur H, Singh J, Bala R, Srivastava P, Kaur S, Sharma A, Chhuneja P. Characterization and Mapping of Spot Blotch in Triticum durum-Aegilops speltoides Introgression Lines Using SNP Markers. FRONTIERS IN PLANT SCIENCE 2021; 12:650400. [PMID: 34122476 PMCID: PMC8193842 DOI: 10.3389/fpls.2021.650400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/20/2021] [Indexed: 05/17/2023]
Abstract
Spot blotch (SB) of wheat is emerging as a major threat to successful wheat production in warm and humid areas of the world. SB, also called leaf blight, is caused by Bipolaris sorokiniana, and is responsible for high yield losses in Eastern Gangetic Plains Zone in India. More recently, SB is extending gradually toward cooler, traditional wheat-growing North-Western part of the country which is a major contributor to the national cereal basket. Deployment of resistant cultivars is considered as the most economical and ecologically sound measure to avoid losses due to this disease. In the present study, 89 backcross introgression lines (DSBILs) derived from Triticum durum (cv. PDW274-susceptible) × Aegilops speltoides (resistant) were evaluated against SB for four consecutive years, 2016-2020. Phenotypic evaluation of these lines showed a continuous variation in disease severity indicating that the resistance to SB is certainly quantitative in nature. Phenotypic data of DSBILs were further used for mapping QTLs using SNPs obtained by genotyping by sequencing. To identify QTLs stable across the environments, Best Linear Unbiased Estimates (BLUEs) and Predictions (BLUPs) were used for mapping QTLs based on stepwise regression-based Likelihood Ratio Test (RSTEP-LRT) for additive effect of markers and single marker analysis (SMA). Five QTLs, Q.Sb.pau-2A, Q.Sb.pau-2B, Q.Sb.pau-3B, Q.Sb.pau-5B, and Q.Sb.pau-6A, linked to SB resistance were mapped across chromosomes 2A, 2B, 3B, 5B, and 6A. Genes found adjacent to the SNP markers linked to these QTLs were literature mined to identify possible candidate genes by studying their role in plant pathogenesis. Further, highly resistant DSBIL (DSBIL-13) was selected to cross with a susceptible hexaploidy cultivar (HD3086) generating BC2F1 population. The QTL Q.Sb.pau-5B, linked to SNP S5B_703858864, was validated on this BC2F1 population and thus, may prove to be a potential diagnostic marker for SB resistance.
Collapse
Affiliation(s)
- Jashanpreet Kaur
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | - Jaspal Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Harmandeep Kaur
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | - Jasvir Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ritu Bala
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Parveen Chhuneja,
| |
Collapse
|
31
|
He X, Dreisigacker S, Sansaloni C, Duveiller E, Singh RP, Singh PK. Quantitative Trait Loci Mapping for Spot Blotch Resistance in Two Biparental Mapping Populations of Bread Wheat. PHYTOPATHOLOGY 2020; 110:1980-1987. [PMID: 32635797 DOI: 10.1094/phyto-05-20-0197-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Spot blotch (SB), caused by Bipolaris sorokiniana, is a major fungal disease of wheat in South Asia and South America. Two biparental mapping populations with 232 F2:7 progenies each were generated, with CIMMYT breeding lines CASCABEL and KATH as resistant parents and CIANO T79 as the common susceptible parent. The two populations were evaluated for field SB resistance in CIMMYT's Agua Fria station for three consecutive cropping seasons, with artificial inoculation. Genotyping was done with the DArTseq platform and approximately 1,500 high quality and nonredundant markers were used for quantitative trait loci (QTL) mapping. In both populations, a major QTL was found on chromosome 5A in the Vrn-A1 region, explaining phenotypic variations of 13.5 to 25.9%, which turned up to be less- or nonsignificant when days to heading and plant height were used as covariates in the analysis, implying a disease escape mechanism. Another major QTL was located on chromosome 5B in CASCABEL, accounting for 8.9 to 21.4% of phenotypic variation. Minor QTL were found on 4A and 4B in CASCABEL; 1B, 4B, and 4D in KATH; and 1B, 2B, and 4B in CIANO T79. Through an analysis of QTL projection onto the IWGSC Chinese Spring reference genome, the 5B QTL in CASCABEL was mapped in the Sb2 region, delimited by the single nucleotide polymorphism marker wsnp_Ku_c50354_55979952 and the simple sequence repeat marker gwm213, with a physical distance of about 14 Mb to the Tsn1 locus.
Collapse
Affiliation(s)
- Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico
| | - Etienne Duveiller
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico
| |
Collapse
|
32
|
Ayalew H, Sorrells ME, Carver BF, Baenziger PS, Ma XF. Selection signatures across seven decades of hard winter wheat breeding in the Great Plains of the United States. THE PLANT GENOME 2020; 13:e20032. [PMID: 33217215 DOI: 10.1002/tpg2.20032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Classical plant breeding has been instrumental in changing the genetic makeup of crop plants for better ecological adaptation and improved quality. This paper provides insights of the genomic changes effected in hard winter wheat (Triticum aestivum L.) through decades of breeding and selection in the Great Plains of the United States. Population structure and differentiation analyses were conducted on 185 wheat cultivars released from 1943 to 2013. Cultivars were grouped into four distinct clusters using discriminant analysis of principal components (DAPC). One of the clusters was unique in that 15 out of the 18 individuals were recent releases (2000-2010), while 12 of the 18 shared the cultivar 'Jagger' in their genetic background. Jagger carries a 2NS/2AS translocation segment from Aegilops ventricosa, an important segment for resistance to several foliar diseases. Using the outlier approach, Wright's population fixation index (Fst) identified 450 loci that were directionally selected. The largest signature of selection was found on chromosome 2A. Genetic diversity was high while the inbreeding coefficient was low, indicating extensive hybridization and germplasm exchange among breeding programs within the region. Foliar disease pressure and selection for resistance helped shape the microevolution of wheat in the southern Great Plains. The results showed that high genetic diversity remains in hard winter wheat cultivars adapted to the Great Plains of the USA, and modern plant breeding did not cause any sizable reduction in genetic diversity of the crop in this region.
Collapse
Affiliation(s)
| | - Mark E Sorrells
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Brett F Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - P Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Xue-Feng Ma
- Noble Research Institute, Ardmore, OK, 73401, USA
| |
Collapse
|
33
|
The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr Opin Biotechnol 2020; 70:15-22. [PMID: 33038780 DOI: 10.1016/j.copbio.2020.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
Abstract
Modern agriculture and food production systems are facing increasing pressures from climate change, land and water availability, and, more recently, a pandemic. These factors are threatening the environmental and economic sustainability of current and future food supply systems. Scientific and technological innovations are needed more than ever to secure enough food for a fast-growing global population. Scientific advances have led to a better understanding of how various components of the agricultural system interact, from the cell to the field level. Despite incredible advances in genetic tools over the past few decades, our ability to accurately assess crop status in the field, at scale, has been severely lacking until recently. Thanks to recent advances in remote sensing and Artificial Intelligence (AI), we can now quantify field scale phenotypic information accurately and integrate the big data into predictive and prescriptive management tools. This review focuses on the use of recent technological advances in remote sensing and AI to improve the resilience of agricultural systems, and we will present a unique opportunity for the development of prescriptive tools needed to address the next decade's agricultural and human nutrition challenges.
Collapse
|
34
|
Navrotskyi S, Belamkar V, Baenziger PS, Rose DJ. Insights into the Genetic Architecture of Bran Friability and Water Retention Capacity, Two Important Traits for Whole Grain End-Use Quality in Winter Wheat. Genes (Basel) 2020; 11:E838. [PMID: 32717821 PMCID: PMC7466047 DOI: 10.3390/genes11080838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Bran friability (particle size distribution after milling) and water retention capacity (WRC) impact wheat bran functionality in whole grain milling and baking applications. The goal of this study was to identify genomic regions and underlying genes that may be responsible for these traits. The Hard Winter Wheat Association Mapping Panel, which comprised 299 lines from breeding programs in the Great Plains region of the US, was used in a genome-wide association study. Bran friability ranged from 34.5% to 65.9% (median, 51.1%) and WRC ranged from 159% to 458% (median, 331%). Two single-nucleotide polymorphisms (SNPs) on chromosome 5D were significantly associated with bran friability, accounting for 11-12% of the phenotypic variation. One of these SNPs was located within the Puroindoline-b gene, which is known for influencing endosperm texture. Two SNPs on chromosome 4A were tentatively associated with WRC, accounting for 4.6% and 4.4% of phenotypic variation. The favorable alleles at the SNP sites were present in only 15% (friability) and 34% (WRC) of lines, indicating a need to develop new germplasm for these whole-grain end-use quality traits. Validation of these findings in independent populations will be useful for breeding winter wheat cultivars with improved functionality for whole grain food applications.
Collapse
Affiliation(s)
- Sviatoslav Navrotskyi
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Vikas Belamkar
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Devin J. Rose
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
35
|
Molecular genetic analysis of spring wheat core collection using genetic diversity, population structure, and linkage disequilibrium. BMC Genomics 2020; 21:434. [PMID: 32586286 PMCID: PMC7318758 DOI: 10.1186/s12864-020-06835-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Wheat (Triticum aestivium L.) is an important crop globally which has a complex genome. To identify the parents with useful agronomic characteristics that could be used in the various breeding programs, it is very important to understand the genetic diversity among global wheat genotypes. Also, understanding the genetic diversity is useful in breeding studies such as marker-assisted selection (MAS), genome-wide association studies (GWAS), and genomic selection. Results To understand the genetic diversity in wheat, a set of 103 spring wheat genotypes which represented five different continents were used. These genotypes were genotyped using 36,720 genotyping-by-sequencing derived SNPs (GBS-SNPs) which were well distributed across wheat chromosomes. The tested 103-wheat genotypes contained three different subpopulations based on population structure, principle coordinate, and kinship analyses. A significant variation was found within and among the subpopulations based on the AMOVA. Subpopulation 1 was found to be the more diverse subpopulation based on the different allelic patterns (Na, Ne, I, h, and uh). No high linkage disequilibrium was found between the 36,720 SNPs. However, based on the genomic level, D genome was found to have the highest LD compared with the two other genomes A and B. The ratio between the number of significant LD/number of non-significant LD suggested that chromosomes 2D, 5A, and 7B are the highest LD chromosomes in their genomes with a value of 0.08, 0.07, and 0.05, respectively. Based on the LD decay, the D genome was found to be the lowest genome with the highest number of haplotype blocks on chromosome 2D. Conclusion The recent study concluded that the 103-spring wheat genotypes and their GBS-SNP markers are very appropriate for GWAS studies and QTL-mapping. The core collection comprises three different subpopulations. Genotypes in subpopulation 1 are the most diverse genotypes and could be used in future breeding programs if they have desired traits. The distribution of LD hotspots across the genome was investigated which provides useful information on the genomic regions that includes interesting genes.
Collapse
|
36
|
Sidhu JS, Singh D, Gill HS, Brar NK, Qiu Y, Halder J, Al Tameemi R, Turnipseed B, Sehgal SK. Genome-Wide Association Study Uncovers Novel Genomic Regions Associated With Coleoptile Length in Hard Winter Wheat. Front Genet 2020; 10:1345. [PMID: 32117410 PMCID: PMC7025573 DOI: 10.3389/fgene.2019.01345] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023] Open
Abstract
Successful seedling establishment depends on the optimum depth of seed placement especially in drought-prone conditions, providing an opportunity to exploit subsoil water and increase winter survival in winter wheat. Coleoptile length is a key determinant for the appropriate depth at which seed can be sown. Thus, understanding the genetic basis of coleoptile length is necessary and important for wheat breeding. We conducted a genome-wide association study (GWAS) using a diverse panel of 298 winter wheat genotypes to dissect the genetic architecture of coleoptile length. We identified nine genomic regions associated with the coleoptile length on seven different chromosomes. Of the nine genomic regions, five have been previously reported in various studies, including one mapped to previously known Rht-B1 region. Three novel quantitative trait loci (QTLs), QCL.sdsu-2AS, QCL.sdsu-4BL, and QCL.sdsu-5BL were identified in our study. QCL.sdsu-5BL has a large substitution effect which is comparable to Rht-B1's effect and could be used to compensate for the negative effect of Rht-B1 on coleoptile length. In total, the nine QTLs explained 59% of the total phenotypic variation. Cultivars 'Agate' and 'MT06103' have the longest coleoptile length and interestingly, have favorable alleles at nine and eight coleoptile loci, respectively. These lines could be a valuable germplasm for longer coleoptile breeding. Gene annotations in the candidate regions revealed several putative proteins of specific interest including cytochrome P450-like, expansins, and phytochrome A. The QTLs for coleoptile length linked to single-nucleotide polymorphism (SNP) markers reported in this study could be employed in marker-assisted breeding for longer coleoptile in wheat. Thus, our study provides valuable insights into the genetic and molecular regulation of the coleoptile length in winter wheat.
Collapse
Affiliation(s)
- Jagdeep Singh Sidhu
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Dilkaran Singh
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Harsimardeep Singh Gill
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Navreet Kaur Brar
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Yeyan Qiu
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Rami Al Tameemi
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Brent Turnipseed
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Sunish Kumar Sehgal
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
37
|
Halder J, Zhang J, Ali S, Sidhu JS, Gill HS, Talukder SK, Kleinjan J, Turnipseed B, Sehgal SK. Mining and genomic characterization of resistance to tan spot, Stagonospora nodorum blotch (SNB), and Fusarium head blight in Watkins core collection of wheat landraces. BMC PLANT BIOLOGY 2019; 19:480. [PMID: 31703626 PMCID: PMC6839225 DOI: 10.1186/s12870-019-2093-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/21/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND In the late 1920s, A. E. Watkins collected about 7000 landrace cultivars (LCs) of bread wheat (Triticum aestivum L.) from 32 different countries around the world. Among which 826 LCs remain viable and could be a valuable source of superior/favorable alleles to enhance disease resistance in wheat. In the present study, a core set of 121 LCs, which captures the majority of the genetic diversity of Watkins collection, was evaluated for identifying novel sources of resistance against tan spot, Stagonospora nodorum blotch (SNB), and Fusarium Head Blight (FHB). RESULTS A diverse response was observed in 121 LCs for all three diseases. The majority of LCs were moderately susceptible to susceptible to tan spot Ptr race 1 (84%) and FHB (96%) whereas a large number of LCs were resistant or moderately resistant against tan spot Ptr race 5 (95%) and SNB (54%). Thirteen LCs were identified in this study could be a valuable source for multiple resistance to tan spot Ptr races 1 and 5, and SNB, and another five LCs could be a potential source for FHB resistance. GWAS analysis was carried out using disease phenotyping score and 8807 SNPs data of 118 LCs, which identified 30 significant marker-trait associations (MTAs) with -log10 (p-value) > 3.0. Ten, five, and five genomic regions were found to be associated with resistance to tan spot Ptr race 1, race 5, and SNB, respectively in this study. In addition to Tsn1, several novel genomic regions Q.Ts1.sdsu-4BS and Q.Ts1.sdsu-5BS (tan spot Ptr race 1) and Q.Ts5.sdsu-1BL, Q.Ts5.sdsu-2DL, Q.Ts5.sdsu-3AL, and Q.Ts5.sdsu-6BL (tan spot Ptr race 5) were also identified. Our results indicate that these putative genomic regions contain several genes that play an important role in plant defense mechanisms. CONCLUSION Our results suggest the existence of valuable resistant alleles against leaf spot diseases in Watkins LCs. The single-nucleotide polymorphism (SNP) markers linked to the quantitative trait loci (QTLs) for tan spot and SNB resistance along with LCs harboring multiple disease resistance could be useful for future wheat breeding.
Collapse
Affiliation(s)
- Jyotirmoy Halder
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jinfeng Zhang
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Shaukat Ali
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jagdeep S Sidhu
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Shyamal K Talukder
- California Cooperative Rice Research Foundation, Inc., Rice Experiment Station, Biggs, CA, 95917, USA
| | - Jonathan Kleinjan
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Brent Turnipseed
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
38
|
Genome-Wide Association Study for Multiple Biotic Stress Resistance in Synthetic Hexaploid Wheat. Int J Mol Sci 2019; 20:ijms20153667. [PMID: 31357467 PMCID: PMC6696463 DOI: 10.3390/ijms20153667] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022] Open
Abstract
Genetic resistance against biotic stress is a major goal in many wheat breeding programs. However, modern wheat cultivars have a limited genetic variation for disease and pest resistance and there is always a possibility of the evolution of new diseases and pests to overcome previously identified resistance genes. A total of 125 synthetic hexaploid wheats (SHWs; 2n = 6x = 42, AABBDD, Triticum aestivum L.) were characterized for resistance to fungal pathogens that cause wheat rusts (leaf; Puccinia triticina, stem; P. graminis f.sp. tritici, and stripe; P. striiformis f.sp. tritici) and crown rot (Fusarium spp.); cereal cyst nematode (Heterodera spp.); and Hessian fly (Mayetiola destructor). A wide range of genetic variation was observed among SHWs for multiple (two to five) biotic stresses and 17 SHWs that were resistant to more than two stresses. The genomic regions and potential candidate genes conferring resistance to these biotic stresses were identified from a genome-wide association study (GWAS). This GWAS study identified 124 significant marker-trait associations (MTAs) for multiple biotic stresses and 33 of these were found within genes. Furthermore, 16 of the 33 MTAs present within genes had annotations suggesting their potential role in disease resistance. These results will be valuable for pyramiding novel genes/genomic regions conferring resistance to multiple biotic stresses from SHWs into elite bread wheat cultivars and providing further insights on a wide range of stress resistance in wheat.
Collapse
|
39
|
Ramakrishnan SM, Sidhu JS, Ali S, Kaur N, Wu J, Sehgal SK. Molecular characterization of bacterial leaf streak resistance in hard winter wheat. PeerJ 2019; 7:e7276. [PMID: 31341737 PMCID: PMC6637926 DOI: 10.7717/peerj.7276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/07/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial leaf streak (BLS) caused by Xanthomonas campestris pv. translucens is one of the major bacterial diseases threatening wheat production in the United States Northern Great Plains (NGP) region. It is a sporadic but widespread wheat disease that can cause significant loss in grain yield and quality. Identification and characterization of genomic regions in wheat that confer resistance to BLS will help track resistance genes/QTLs in future wheat breeding. In this study, we evaluated a hard winter wheat association mapping panel (HWWAMP) containing 299 hard winter wheat lines from the US hard winter wheat growing region for their reactions to BLS. We observed a range of BLS responses among the lines, importantly, we identified ten genotypes that showed a resistant reaction both in greenhouse and field evaluation. -Genome-wide association analysis with 15,990 SNPs was conducted using an exponentially compressed mixed linear model. Five genomic regions (p < 0.001) that regulate the resistance to BLS were identified on chromosomes 1AL, 1BS, 3AL, 4AL, and 7AS. The QTLs Q.bls.sdsu-1AL, Q.bls.sdsu-1BS, Q.bls.sdsu-3AL, Q.bls.sdsu-4AL, and Q.bls.sdsu-7AS explain a total of 42% of the variation. In silico analysis of sequences in the candidate regions on chromosomes 1AL, 1BS, 3AL, 4AL, and 7AS identified 10, 25, 22, eight, and nine genes, respectively with known plant defense-related functions. Comparative analysis with rice showed two syntenic regions in rice that harbor genes for bacterial leaf streak resistance. The ten BLS resistant genotypes and SNP markers linked to the QTLs identified in our study could facilitate breeding for BLS resistance in winter wheat.
Collapse
Affiliation(s)
- Sai Mukund Ramakrishnan
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Jagdeep Singh Sidhu
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Shaukat Ali
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Navjot Kaur
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Jixiang Wu
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
40
|
Assessing the genetic diversity and characterizing genomic regions conferring Tan Spot resistance in cultivated rye. PLoS One 2019; 14:e0214519. [PMID: 30921415 PMCID: PMC6438500 DOI: 10.1371/journal.pone.0214519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/14/2019] [Indexed: 11/19/2022] Open
Abstract
Rye (Secale cereale L.) is known for its wide adaptation due to its ability to tolerate harsh environments in semiarid areas. To assess the diversity in rye we genotyped a panel of 178 geographically diverse accessions of four Secale sp. from U.S. National Small Grains Collection using 4,037 high-quality SNPs (single nucleotide polymorphisms) developed by genotyping-by-sequencing (GBS). PCA and STRUCTURE analysis revealed three major clusters that separate S. cereale L. from S. strictum and S. sylvestre, however, genetic clusters did not correlate with geographic origins and growth habit (spring/winter). The panel was evaluated for response to Pyrenophora tritici-repentis race 5 (PTR race 5) and nearly 59% accessions showed resistance or moderate resistance. Genome-wide association study (GWAS) was performed on S. cereale subsp. cereale using the 4,037 high-quality SNPs. Two QTLs (QTs.sdsu-5R and QTs.sdsu-2R) on chromosomes 5R and 2R were identified conferring resistance to PTR race 5 (p < 0.001) that explained 13.1% and 11.6% of the phenotypic variation, respectively. Comparative analysis showed a high degree of synteny between rye and wheat with known rearrangements as expected. QTs.sdsu-2R was mapped in the genomic region corresponding to wheat chromosome group 2 and QTs.sdsu-5R was mapped to a small terminal region on chromosome 4BL. Based on the genetic diversity, a set of 32 accessions was identified to represents more than 99% of the allelic diversity with polymorphic information content (PIC) of 0.25. This set can be utilized for genetic characterization of useful traits and genetic improvement of rye, triticale, and wheat.
Collapse
|
41
|
Long L, Yao F, Yu C, Ye X, Cheng Y, Wang Y, Wu Y, Li J, Wang J, Jiang Q, Li W, Ma J, Liu Y, Deng M, Wei Y, Zheng Y, Chen G. Genome-Wide Association Study for Adult-Plant Resistance to Stripe Rust in Chinese Wheat Landraces ( Triticum aestivum L.) From the Yellow and Huai River Valleys. FRONTIERS IN PLANT SCIENCE 2019; 10:596. [PMID: 31156668 PMCID: PMC6532019 DOI: 10.3389/fpls.2019.00596] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 05/21/2023]
Abstract
Stripe rust (also known as yellow rust), caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), is a common and serious fungal disease of wheat (Triticum aestivum L.) worldwide. To identify effective stripe rust resistance loci, a genome-wide association study was performed using 152 wheat landraces from the Yellow and Huai River Valleys in China based on Diversity Arrays Technology and simple sequence repeat markers. Phenotypic evaluation of the degree of resistance to stripe rust at the adult-plant stage under field conditions was carried out in five environments. In total, 19 accessions displayed stable, high degrees of resistance to stripe rust development when exposed to mixed races of Pst at the adult-plant stage in multi-environment field assessments. A marker-trait association analysis indicated that 51 loci were significantly associated with adult-plant resistance to stripe rust. These loci included 40 quantitative trait loci (QTL) regions for adult-plant resistance. Twenty identified resistance QTL were linked closely to previously reported yellow rust resistance genes or QTL regions, which were distributed across chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 4A, 4B, 5B, 6B, 7A, 7B, and 7D. Six multi-trait QTL were detected on chromosomes 1B, 1D, 2B, 3A, 3B, and 7D. Twenty QTL were mapped to chromosomes 1D, 2A, 2D, 4B, 5B, 6A, 6B, 6D, 7A, 7B, and 7D, distant from previously identified yellow rust resistance genes. Consequently, these QTL are potentially novel loci for stripe rust resistance. Among the 20 potentially novel QTL, five (QDS.sicau-2A, QIT.sicau-4B, QDS.sicau-4B.2, QDS.sicau-6A.3, and QYr.sicau-7D) were associated with field responses at the adult-plant stage in at least two environments, and may have large effects on stripe rust resistance. The novel effective QTL for adult-plant resistance to stripe rust will improve understanding of the genetic mechanisms that control the spread of stripe rust, and will aid in the molecular marker-assisted selection-based breeding of wheat for stripe rust resistance.
Collapse
Affiliation(s)
- Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Xueling Ye
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - YaXi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Guoyue Chen,
| |
Collapse
|
42
|
Lozada D, Godoy JV, Murray TD, Ward BP, Carter AH. Genetic Dissection of Snow Mold Tolerance in US Pacific Northwest Winter Wheat Through Genome-Wide Association Study and Genomic Selection. FRONTIERS IN PLANT SCIENCE 2019; 10:1337. [PMID: 31736994 PMCID: PMC6830427 DOI: 10.3389/fpls.2019.01337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/25/2019] [Indexed: 05/23/2023]
Abstract
Snow mold is a yield-limiting disease of wheat in the Pacific Northwest (PNW) region of the US, where there is prolonged snow cover. The objectives of this study were to identify genomic regions associated with snow mold tolerance in a diverse panel of PNW winter wheat lines in a genome-wide association study (GWAS) and to evaluate the usefulness of genomic selection (GS) for snow mold tolerance. An association mapping panel (AMP; N = 458 lines) was planted in Mansfield and Waterville, WA in 2017 and 2018 and genotyped using the Illumina® 90K single nucleotide polymorphism (SNP) array. GWAS identified 100 significant markers across 17 chromosomes, where SNPs on chromosomes 5A and 5B coincided with major freezing tolerance and vernalization loci. Increased number of favorable alleles was related to improved snow mold tolerance. Independent predictions using the AMP as a training population (TP) to predict snow mold tolerance of breeding lines evaluated between 2015 and 2018 resulted in a mean accuracy of 0.36 across models and marker sets. Modeling nonadditive effects improved accuracy even in the absence of a close genetic relatedness between the TP and selection candidates. Selecting lines based on genomic estimated breeding values and tolerance scores resulted in a 24% increase in tolerance. The identified genomic regions associated with snow mold tolerance demonstrated the genetic complexity of this trait and the difficulty in selecting tolerant lines using markers. GS was validated and showed potential for use in PNW winter wheat for selecting on complex traits such tolerance to snow mold.
Collapse
Affiliation(s)
- Dennis Lozada
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Jayfred V. Godoy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Timothy D. Murray
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Brian P. Ward
- USDA-ARS Plant Science Research Unit, Raleigh, NC, United States
| | - Arron H. Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
43
|
Singh PK, He X, Sansaloni CP, Juliana P, Dreisigacker S, Duveiller E, Kumar U, Joshi AK, Singh RP. Resistance to Spot Blotch in Two Mapping Populations of Common Wheat Is Controlled by Multiple QTL of Minor Effects. Int J Mol Sci 2018; 19:ijms19124054. [PMID: 30558200 PMCID: PMC6321084 DOI: 10.3390/ijms19124054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
Spot blotch (SB) is an important fungal disease of wheat in South Asia and South America. Host resistance is regarded as an economical and environmentally friendly approach of controlling SB, and the inheritance of resistance is mostly quantitative. In order to gain a better understanding on the SB resistance mechanism in CIMMYT germplasm, two bi-parental mapping populations were generated, both comprising 232 F2:7 progenies. Elite CIMMYT breeding lines, BARTAI and WUYA, were used as resistant parents, whereas CIANO T79 was used as susceptible parent in both populations. The two populations were evaluated for field SB resistance at CIMMYT’s Agua Fria station for three consecutive years, from the 2012–2013 to 2014–2015 cropping seasons. Phenological traits like plant height (PH) and days to heading (DH) were also determined. Genotyping was performed using the DArTSeq genotyping-by-sequencing (GBS) platform, and a few D-genome specific SNPs and those for phenological traits were integrated for analysis. The most prominent quantitative trait locus (QTL) in both populations was found on chromosome 5AL at the Vrn-A1 locus, explaining phenotypic variations of 7–27%. Minor QTL were found on chromosomes 1B, 3A, 3B, 4B, 4D, 5B and 6D in BARTAI and on chromosomes 1B, 2A, 2D and 4B in WUYA, whereas minor QTL contributed by CIANO T79 were identified on chromosome 1B, 1D, 3A, 4B and 7A. In summary, resistance to SB in the two mapping populations was controlled by multiple minor QTL, with strong influence from Vrn-A1.
Collapse
Affiliation(s)
- Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Carolina Paola Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Etienne Duveiller
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Uttam Kumar
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Arun Kumar Joshi
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| | - Ravi Prakash Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico.
| |
Collapse
|