1
|
Liu Y, Li W, Zhang L, Huang Q, Hou X, Li Q, Lei Z, Zeng Y. HaNAC146 from sunflower overexpression enhances plant growth and stress tolerance. PLANT CELL REPORTS 2025; 44:59. [PMID: 39969670 DOI: 10.1007/s00299-024-03391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/26/2024] [Indexed: 02/20/2025]
Abstract
KEY MESSAGE This study mined a gene, HaNAC146, holds promise as a valuable candidate gene for developing crops with improved stress tolerance and high production potential. NAC (NAM/ATAF/CUC) is one of the largest transcription factor families. They play important roles in regulating plant development, aging, morphogenesis, as well as biotic and abiotic stress. There is a delicate balance between stress resistance and plant growth and development. To date, few genes have been identified in crops that can simultaneously enhance resistance and increase production. Sunflower, as a pioneering crop in saline-alkali soils, exhibit a certain level of tolerance to drought, barren, and saline-alkali stress. In this study, we identified a transcription factor gene, HaNAC146, which can improve both the growth and abiotic stress tolerance in transgenic Arabidopsis thaliana. Our main findings indicated that HaNAC146 is induced in sunflower by various abiotic stress and some plant hormones. It is localized in the nucleus and has transcriptional activation activity. HaNAC146 can promote growth, and increase seed production by enhancing photosynthesis in transgenic Arabidopsis. Utilizing a transient transformation system in sunflower and a stable transformation platform in Arabidopsis, we demonstrated that HaNAC146 can enhance the resistance of both sunflower seedlings and Arabidopsis to salt and drought stress. This enhancement is achieved through multiple pathways, including increasing antioxidant capacity, accumulating osmotic modulating substances, improving photosynthetic efficiency, activating the expression of downstream stress-responsive genes and promoting stomatal closure with plant sensitivity to abscisic acid (ABA). These results also indicated that robust growth is a key factor in plant resistance to abiotic stress. This unique stress-responsive transcription factor, HaNAC146, holds promise as a valuable candidate gene for developing crops with improved stress tolerance and high production potential.
Collapse
Affiliation(s)
- Yuxin Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Wenhui Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Lingling Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Qixiu Huang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Xianfei Hou
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qiang Li
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Zhonghua Lei
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China.
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| |
Collapse
|
2
|
Wu X, Hu X, Bao Q, Sun Q, Yu P, Qi J, Zhang Z, Luo C, Wang Y, Lu W, Wu X. Genome-Wide Identification and Expression Analysis of NAC Gene Family Members in Seashore Paspalum Under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3595. [PMID: 39771292 PMCID: PMC11678376 DOI: 10.3390/plants13243595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
The NAC gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. Paspalum Vaginatum, a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the NAC gene family in seashore paspalum remains poorly understood. In this study, genome-wide screening and identification were conducted based on the NAC (NAM) domain hidden Markov model in seashore paspalum, resulting in the identification of 168 PvNAC genes. A phylogenetic tree was constructed, and the genes were classified into 18 groups according to their topological structure. The physicochemical properties of the PvNAC gene family proteins, their conserved motifs and structural domains, cis-acting elements, intraspecific collinearity analysis, GO annotation analysis, and protein-protein interaction networks were analyzed. The results indicated that the majority of PvNAC proteins are hydrophilic and predominantly localized in the nucleus. The promoter regions of PvNACs are primarily enriched with light-responsive elements, ABRE motifs, MYB motifs, and others. Intraspecific collinearity analysis suggests that PvNACs may have experienced a large-scale gene duplication event. GO annotation indicated that PvNAC genes were essential for transcriptional regulation, organ development, and responses to environmental stimuli. Furthermore, the protein interaction network predicted that PvNAC73 interacts with proteins such as BZIP8 and DREB2A to form a major regulatory hub. The transcriptomic analysis investigates the expression patterns of NAC genes in both leaves and roots under varying durations of salt stress. The expression levels of 8 PvNACs in roots and leaves under salt stress were examined and increased to varying degrees under salt stress. The qRT-PCR results demonstrated that the expression levels of the selected genes were consistent with the FPKM value trends observed in the RNA-seq data. This study established a theoretical basis for understanding the molecular functions and regulatory mechanisms of the NAC gene family in seashore paspalum under salt stress.
Collapse
Affiliation(s)
- Xuanyang Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Xiaochen Hu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Qinyan Bao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730050, China
| | - Qi Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Pan Yu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Junxiang Qi
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Zixuan Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Chunrong Luo
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Yuzhu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Wenjie Lu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Xueli Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
- Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Li Y, He W, Liu Y, Mei C, Wang H, Song X. ClBRN1 from Chrysanthemum lavandulifolium enhances the stress resistance of transgenic Arabidopsis. PeerJ 2024; 12:e18620. [PMID: 39677964 PMCID: PMC11646423 DOI: 10.7717/peerj.18620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Background Chrysanthemum (Chrysanthemum×morifolium Ramat.) is a particularly important autumn perennial flower for potted plant, flower bed and border, and cut flower with high ornamental value. However, abiotic stress can affect the ornamental quality of Chrysanthemum. NAC (NAM, ATAF1-2, and CUC2) transcription factors (TFs) play an important role in regulating plant growth and development, as well as responding to abiotic stresses. Methods In this study, the ClBRN1 (Chrysanthemum lavandulifolium BEARSKIN gene) was isolated from the Chrysanthemum model plant C. lavandulifolium. And analyze the function of the gene through bioinformatics, subcellular localization and overexpression. Results Bioinformatics analysis showed that the ClBRN1 gene was a member of the NAC TFs family, with a CDS (coding sequence) length of 1,080 bp and encoding 359 amino acids. The subcellular localization results found that the gene was located in the nucleus and cell membrane. Furthermore, the transgenic results in Arabidopsis thaliana showed that the gene significantly reduces plant height while improving salt and low temperature tolerance. Observation of paraffin sections of Arabidopsis stems also revealed that the secondary cell wall of overexpressing Arabidopsis stems was significantly thicker than that of wild-type. The above results indicate that the ClBRN1 gene may play an important role in regulating plant resistance to abiotic stress. This study will provide new insights for molecular breeding of resistant chrysanthemums in the future.
Collapse
Affiliation(s)
- Yanxi Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenting He
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yueyue Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chendi Mei
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hai Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xuebin Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Liu C, Bai Z, Luo Y, Zhang Y, Wang Y, Liu H, Luo M, Huang X, Chen A, Ma L, Chen C, Yuan J, Xu Y, Zhu Y, Mu J, An R, Yang C, Chen H, Chen J, Li Z, Li X, Dong Y, Zhao J, Shen X, Jiang L, Feng X, Yu P, Wang D, Chen X, Li N. Multiomics dissection of Brassica napus L. lateral roots and endophytes interactions under phosphorus starvation. Nat Commun 2024; 15:9732. [PMID: 39523413 PMCID: PMC11551189 DOI: 10.1038/s41467-024-54112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Many plants associate with endophytic microbes that improve root phosphorus (P) uptake. Understanding the interactions between roots and endophytes can enable efforts to improve P utilization. Here, we characterize the interactions between lateral roots of endophytes in a core collection of 50 rapeseed (Brassica napus L.) genotypes with differing sensitivities to low P conditions. With the correlation analysis result between bacterial abundance and plant physiological indices of rapeseeds, and inoculation experiments on plates and soil, we identify one Flavobacterium strain (C2) that significantly alleviates the P deficiency phenotype of rapeseeds. The underlying mechanisms are explored by performing the weighted gene coexpression network analysis (WGCNA), and conducting genome-wide association studies (GWAS) using Flavobacterium abundance as a quantitative trait. Under P-limited conditions, C2 regulates fatty acid and lipid metabolic pathways. For example, C2 improves metabolism of linoleic acid, which mediates root suberin biosynthesis, and enhances P uptake efficiency. In addition, C2 suppresses root jasmonic acid biosynthesis, which depends on α-linolenic acid metabolism, improving C2 colonization and activating P uptake. This study demonstrates that adjusting the endophyte composition can modulate P uptake in B. napus plants, providing a basis for developing agricultural microbial agents.
Collapse
Affiliation(s)
- Can Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Zhen Bai
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Luo
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Yongfeng Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Hexin Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Meng Luo
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Xiaofang Huang
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Anle Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Lige Ma
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Chen Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jinwei Yuan
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ying Xu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Cuiling Yang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Hao Chen
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Jiajie Chen
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Zaifang Li
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Xiaodan Li
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Yachen Dong
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Jianhua Zhao
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Xingxing Shen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianzhong Feng
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
- Plant Genetics, School of Life Sciences, Technical University of Munich, Freising, D-85354, Germany.
| | - Daojie Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China.
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
| | - Nannan Li
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| |
Collapse
|
5
|
Tang Q, Tillmann M, Cohen JD. Analytical methods for stable isotope labeling to elucidate rapid auxin kinetics in Arabidopsis thaliana. PLoS One 2024; 19:e0303992. [PMID: 38776314 PMCID: PMC11111016 DOI: 10.1371/journal.pone.0303992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
The phytohormone auxin plays a critical role in plant growth and development. Despite significant progress in elucidating metabolic pathways of the primary bioactive auxin, indole-3-acetic acid (IAA), over the past few decades, key components such as intermediates and enzymes have not been fully characterized, and the dynamic regulation of IAA metabolism in response to environmental signals has not been completely revealed. In this study, we established a protocol employing a highly sensitive liquid chromatography-mass spectrometry (LC-MS) instrumentation and a rapid stable isotope labeling approach. We treated Arabidopsis seedlings with two stable isotope labeled precursors ([13C6]anthranilate and [13C8, 15N1]indole) and monitored the label incorporation into proposed indolic compounds involved in IAA biosynthetic pathways. This Stable Isotope Labeled Kinetics (SILK) method allowed us to trace the turnover rates of IAA pathway precursors and product concurrently with a time scale of seconds to minutes. By measuring the entire pathways over time and using different isotopic tracer techniques, we demonstrated that these methods offer more detailed information about this complex interacting network of IAA biosynthesis, and should prove to be useful for studying auxin metabolic network in vivo in a variety of plant tissues and under different environmental conditions.
Collapse
Affiliation(s)
- Qian Tang
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jerry D. Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
6
|
Wang R, Wang Y, Yao W, Ge W, Jiang T, Zhou B. Transcriptome Sequencing and WGCNA Reveal Key Genes in Response to Leaf Blight in Poplar. Int J Mol Sci 2023; 24:10047. [PMID: 37373194 DOI: 10.3390/ijms241210047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Leaf blight is a fungal disease that mainly affects the growth and development of leaves in plants. To investigate the molecular mechanisms of leaf blight defense in poplar, we performed RNA-Seq and enzyme activity assays on the Populus simonii × Populus nigra leaves inoculated with Alternaria alternate fungus. Through weighted gene co-expression network analysis (WGCNA), we obtained co-expression gene modules significantly associated with SOD and POD activities, containing 183 and 275 genes, respectively. We then constructed a co-expression network of poplar genes related to leaf blight resistance based on weight values. Additionally, we identified hub transcription factors (TFs) and structural genes in the network. The network was dominated by 15 TFs, and four out of them, including ATWRKY75, ANAC062, ATMYB23 and ATEBP, had high connectivity in the network, which might play important functions in leaf blight defense. In addition, GO enrichment analysis revealed a total of 44 structural genes involved in biotic stress, resistance, cell wall and immune-related biological processes in the network. Among them, there were 16 highly linked structural genes in the central part, which may be directly involved in poplar resistance to leaf blight. The study explores key genes associated with leaf blight defense in poplar, which further gains an understanding of the molecular mechanisms of biotic stress response in plants.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yuting Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Wengong Ge
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
7
|
He Z, Tian Z, Zhang Q, Wang Z, Huang R, Xu X, Wang Y, Ji X. Genome-wide identification, expression and salt stress tolerance analysis of the GRAS transcription factor family in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2022; 13:1022076. [PMID: 36352865 PMCID: PMC9638169 DOI: 10.3389/fpls.2022.1022076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The GRAS gene family is a plant-specific family of transcription factors and play a vital role in many plant growth processes and abiotic stress responses. Nevertheless, the functions of the GRAS gene family in woody plants, especially in Betula platyphylla (birch), are hardly known. In this study, we performed a genome-wide analysis of 40 BpGRAS genes (BpGRASs) and identified typical GRAS domains of most BpGRASs. The BpGRASs were unevenly distributed on 14 chromosomes of birch and the phylogenetic analysis of six species facilitated the clustering of 265 GRAS proteins into 17 subfamilies. We observed that closely related GRAS homologs had similar conserved motifs according to motif analysis. Besides, an analysis of the expression patterns of 26 BpGRASs showed that most BpGRASs were highly expressed in the leaves and responded to salt stress. Six BpGRASs were selected for cis-acting element analysis because of their significant upregulation under salt treatment, indicating that many elements were involved in the response to abiotic stress. This result further confirmed that these BpGRASs might participate in response to abiotic stress. Transiently transfected birch plants with transiently overexpressed 6 BpGRASs and RNAi-silenced 6 BpGRASs were generated for gain- and loss-of-function analysis, respectively. In addition, overexpression of BpGRAS34 showed phenotype resistant to salt stress, decreased the cell death and enhanced the reactive oxygen species (ROS) scavenging capabilities and proline content under salt treatment, consistent with the results in transiently transformed birch plants. This study is a systematic analysis of the GRAS gene family in birch plants, and the results provide insight into the molecular mechanism of the GRAS gene family responding to abiotic stress in birch plants.
Collapse
Affiliation(s)
- Zihang He
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zengzhi Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qun Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ruikun Huang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xin Xu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoyu Ji
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
8
|
Bioactive Nitrosylated and Nitrated N-(2-hydroxyphenyl)acetamides and Derived Oligomers: An Alternative Pathway to 2-Amidophenol-Derived Phytotoxic Metabolites. Molecules 2022; 27:molecules27154786. [PMID: 35897961 PMCID: PMC9330447 DOI: 10.3390/molecules27154786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Incubation of Aminobacter aminovorans, Paenibacillus polymyxa, and Arthrobacter MPI764 with the microbial 2-benzoxazolinone (BOA)-degradation-product 2-acetamido-phenol, produced from 2-aminophenol, led to the recently identified N-(2-hydroxy-5-nitrophenyl) acetamide, to the hitherto unknown N-(2-hydroxy-5-nitrosophenyl)acetamide, and to N-(2-hydroxy-3-nitrophenyl)acetamide. As an alternative to the formation of phenoxazinone derived from aminophenol, dimers- and trimers-transformation products have been found. Identification of the compounds was carried out by LC/HRMS and MS/MS and, for the new structure N-(2-hydroxy-5-nitrosophenyl)acetamide, additionally by 1D- and 2D-NMR. Incubation of microorganisms, such as the soil bacteria Pseudomonas laurentiana, Arthrobacter MPI763, the yeast Papiliotrema baii and Pantoea ananatis, and the plants Brassica oleracea var. gongylodes L. (kohlrabi) and Arabidopsis thaliana Col-0, with N-(2-hydroxy-5-nitrophenyl) acetamide, led to its glucoside derivative as a prominent detoxification product; in the case of Pantoea ananatis, this was together with the corresponding glucoside succinic acid ester. In contrast, Actinomucor elegans consortium synthesized 2-acetamido-4-nitrophenyl sulfate. 1 mM bioactive N-(2-hydroxy-5-nitrophenyl) acetamide elicits alterations in the Arabidopsis thaliana expression profile of several genes. The most responsive upregulated gene was pathogen-inducible terpene synthase TPS04. The bioactivity of the compound is rapidly annihilated by glucosylation.
Collapse
|
9
|
Srivastava R, Kobayashi Y, Koyama H, Sahoo L. Overexpression of cowpea NAC transcription factors promoted growth and stress tolerance by boosting photosynthetic activity in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111251. [PMID: 35487661 DOI: 10.1016/j.plantsci.2022.111251] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 05/07/2023]
Abstract
ATAF-like NAC transcription factors are bonafide regulators of stress-signaling. However, their overexpression often exerts growth-retardation by activating ABA-hypersensitivity, chloroplast-degradation, or carbon-starvation. To improve tolerance to multiple stress complying with growth sustainability, we examined two ATAF orthologs, VuNAC1 and VuNAC2, isolated from a drought-hardy cowpea genotype, for a harmonized regulation of stress and growth signaling. The genes were induced by dehydration, NaCl, polyethylene glycol, heat, cold, ABA, and light. Analysis of the promoter-elements and regulatory network corroborated the integration of circadian, hormonal, stress, developmental, and nutrition signals, being VuNAC1/2 the central transcriptional-switch interfacing growth and stress responses. The constitutive gene overexpression in Arabidopsis resulted in an improved embryonic, rosette, and inflorescence growth, under optimum as well as limiting nutrition, in association with increased photosynthetic activity and stomatal-density. The transgenic seedlings manifested tolerance to dehydration, salinity, aluminum, cadmium, and H2O2 toxicity, in addition to ABA-mediated seed dormancy and hypersensitivity. The soil-grown plants survived severe drought and hypersalinity by maintaining the water-status and membrane integrity through the accumulation of stress protectants, such as proline, glutathione, and ascorbate. Unlike their orthologs from other species, VuNAC1/2 conferred tolerance to multiple abiotic stresses in line with improved growth attributes via regulation of photosynthetic controls and nutritional balance, suggesting growth being a crucial component of stress-tolerance and recovery. Such unique stress-responsive transcription factors, which also confer photosynthetic gain, could be sustainable biotechnological tools for developing stress-tolerant crops and translating the improved growth into yield without unintended trade-offs.
Collapse
Affiliation(s)
- Richa Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
10
|
O’Rourke JA, Morrisey MJ, Merry R, Espina MJ, Lorenz AJ, Stupar RM, Graham MA. Mining Fiskeby III and Mandarin (Ottawa) Expression Profiles to Understand Iron Stress Tolerant Responses in Soybean. Int J Mol Sci 2021; 22:11032. [PMID: 34681702 PMCID: PMC8537376 DOI: 10.3390/ijms222011032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | - Ryan Merry
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Mary Jane Espina
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Aaron J. Lorenz
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Robert M. Stupar
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | | |
Collapse
|
11
|
NAC Transcription Factor PwNAC11 Activates ERD1 by Interaction with ABF3 and DREB2A to Enhance Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2021; 22:ijms22136952. [PMID: 34203360 PMCID: PMC8269012 DOI: 10.3390/ijms22136952] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors are ubiquitously distributed in eukaryotes and play significant roles in stress response. However, the functional verifications of NACs in Picea (P.) wilsonii remain largely uncharacterized. Here, we identified the NAC transcription factor PwNAC11 as a mediator of drought stress, which was significantly upregulated in P. wilsonii under drought and abscisic acid (ABA) treatments. Yeast two-hybrid assays showed that both the full length and C-terminal of PwNAC11 had transcriptional activation activity and PwNAC11 protein cannot form a homodimer by itself. Subcellular observation demonstrated that PwNAC11 protein was located in nucleus. The overexpression of PwNAC11 in Arabidopsis obviously improved the tolerance to drought stress but delayed flowering time under nonstress conditions. The steady-state level of antioxidant enzymes' activities and light energy conversion efficiency were significantly increased in PwNAC11 transgenic lines under dehydration compared to wild plants. PwNAC11 transgenic lines showed hypersensitivity to ABA and PwNAC11 activated the expression of the downstream gene ERD1 by binding to ABA-responsive elements (ABREs) instead of drought-responsive elements (DREs). Genetic evidence demonstrated that PwNAC11 physically interacted with an ABA-induced protein-ABRE Binding Factor3 (ABF3)-and promoted the activation of ERD1 promoter, which implied an ABA-dependent signaling cascade controlled by PwNAC11. In addition, qRT-PCR and yeast assays showed that an ABA-independent gene-DREB2A-was also probably involved in PwNAC11-mediated drought stress response. Taken together, our results provide the evidence that PwNAC11 plays a dominant role in plants positively responding to early drought stress and ABF3 and DREB2A synergistically regulate the expression of ERD1.
Collapse
|
12
|
Barros NLF, Marques DN, Tadaiesky LBA, de Souza CRB. Halophytes and other molecular strategies for the generation of salt-tolerant crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:581-591. [PMID: 33773233 DOI: 10.1016/j.plaphy.2021.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/13/2021] [Indexed: 05/27/2023]
Abstract
The current increase in salinity can intensify the disparity between potential and actual crop yields, thus affecting economies and food security. One of the mitigating alternatives is plant breeding via biotechnology, where advances achieved so far are significant. Considering certain aspects when developing studies related to plant breeding can determine the success and accuracy of experimental design. Besides this strategy, halophytes with intrinsic and efficient abilities against salinity can be used as models for improving the response of crops to salinity stress. As crops are mostly glycophytes, it is crucial to point out the molecular differences between these two groups of plants, which may be the key to guiding and optimizing the transformation of glycophytes with halophytic tolerance genes. Therefore, this can broaden perspectives in the trajectory of research towards the cultivation, commercialization, and consumption of salt-tolerant crops on a large scale.
Collapse
Affiliation(s)
| | - Deyvid Novaes Marques
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, SP, CEP 13418-900, Brazil
| | - Lorene Bianca Araújo Tadaiesky
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, CEP 66075-110, Brazil; Programa de Pós-Graduação em Agronomia, Universidade Federal Rural da Amazônia, Belém, PA, CEP 66077-530, Brazil
| | | |
Collapse
|
13
|
Jiang Y, Tong S, Chen N, Liu B, Bai Q, Chen Y, Bi H, Zhang Z, Lou S, Tang H, Liu J, Ma T, Liu H. The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in Populus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1258-1273. [PMID: 33264467 DOI: 10.1111/tpj.15109] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
High salinity, one of the most widespread abiotic stresses, inhibits photosynthesis, reduces vegetation growth, blocks respiration and disrupts metabolism in plants. In order to survive their long-term lifecycle, trees, such as Populus species, recruit the abscisic acid (ABA) signaling pathway to adapt to a saline environment. However, the molecular mechanism behind the ABA-mediated salt stress response in woody plants remains elusive. We have isolated a WRKY transcription factor gene, PalWRKY77, from Populus alba var. pyramidalis (poplar), the expression of which is repressed by salt stress. PalWRKY77 decreases salt tolerance in poplar. Furthermore, PalWRKY77 negatively regulated ABA-responsive genes and relieved ABA-mediated growth inhibition, indicating that PalWRKY77 is a repressor of the ABA response. In vivo and in vitro assays revealed that PalWRKY77 targets the ABA- and salt-induced PalNAC002 and PalRD26 genes by binding to the W-boxes in their promoters. In addition, overexpression of both PalNAC002 and PalRD26 could elevate salt tolerance in transgenic poplars. These findings reveal a novel negative regulation mechanism for the ABA signaling pathway mediated by PalWRKY77 that results in more sensitivity to salt stress in poplar. This deepens our understanding of the complex responses of woody species to salt stress.
Collapse
Affiliation(s)
- Yuanzhong Jiang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Shaofei Tong
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Ningning Chen
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Bao Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Qiuxian Bai
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Yang Chen
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Hao Bi
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Zhiyang Zhang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Shangling Lou
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Hu Tang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ma
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Yang P, Liu Z, Zhao Y, Cheng Y, Li J, Ning J, Yang Y, Huang J. Comparative study of vegetative and reproductive growth of different tea varieties response to different fluoride concentrations stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:419-428. [PMID: 32652445 DOI: 10.1016/j.plaphy.2020.05.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The amount of fluoride accumulation in tea leaves was gradually increase as the matures of tea plants, and the excessive fluoride intake can threaten people's health. Based on years of field investigations, a low level of fluoride variety Xiangbo Lǜ (XBL) and a high level of fluoride variety Zhenong 139 (ZN139) were selected. RESULTS In this study, the root, 1st and the 5th leaf of the two-year-old tea trees were used for morphological, physiological and comparative transcriptomics analysis to understand the different features of "XBL" and "ZN139" under fluoride stress conditions. The color of the 1st and 5th leaves of XBL were yellower, the activity of peroxidase, catalase and antioxidant enzyme were lower than ZN139 under the high-fluoride stress. Transcriptomics analysis indicated that core genes involved in photosynthesis rates regulation showed no significantly exchanged expression, the co-downregulation of magnesium ions transportation, while the ROS scavenging, vegetative growth and self-compatibility between the two varieties were different. Crucial genes' expression were also identified by the real-time RT-PCR. CONCLUSION The tea tree is one of the few plants that has a high-fluoride content, but the different varieties respond differently to fluoride stress. High-fluoride tea tree varieties, such as ZN139, have stronger ROS scavenging abilities through the use of both their non-enzymatic and enzymatic antioxidant systems which act by increasing the expression levels of inositol-1-monophosphatases and peroxidases, among others. ZN139 can also compensate for the decrease in photosynthetic rate that is associated with the ionic imbalance caused by the reduced consumption of light energy during long-periods of high fluoride stress. Reproductive development was protected in ZN139 by the up-regulated expression of S-locus glycoprotein, Mildew resistance locus o and Phospholipase D under fluoride stress, while the vegetative development of low-fluoride varieties such as XBL was retarded. More starch and cellulose were redistributed to glucose by increasing the expression levels of glycosyl transferases and hydrolases to provide more energy for processes involved in the response and tolerance towards fluoride stress.
Collapse
Affiliation(s)
- Peidi Yang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Key Lab of Tea Science of Education Ministry, Hunan Agricultural University, Changsha, 410128, China; Hunan Sub Center of National Tea Improvement Center, Tea Research Institute of Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zhen Liu
- Hunan Sub Center of National Tea Improvement Center, Tea Research Institute of Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yang Zhao
- Hunan Sub Center of National Tea Improvement Center, Tea Research Institute of Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yang Cheng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Key Lab of Tea Science of Education Ministry, Hunan Agricultural University, Changsha, 410128, China; Hunan Sub Center of National Tea Improvement Center, Tea Research Institute of Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Juan Li
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Key Lab of Tea Science of Education Ministry, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Ning
- Hunan Sub Center of National Tea Improvement Center, Tea Research Institute of Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yang Yang
- Hunan Sub Center of National Tea Improvement Center, Tea Research Institute of Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Jian'an Huang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Key Lab of Tea Science of Education Ministry, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
15
|
Physiological Characterization and Transcriptome Analysis of Camellia oleifera Abel. during Leaf Senescence. FORESTS 2020. [DOI: 10.3390/f11080812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Camellia (C.) oleifera Abel. is an evergreen small arbor with high economic value for producing edible oil that is well known for its high level of unsaturated fatty acids. The yield formation of tea oil extracted from fruit originates from the leaves, so leaf senescence, the final stage of leaf development, is an important agronomic trait affecting the production and quality of tea oil. However, the physiological characteristics and molecular mechanism underlying leaf senescence of C. oleifera are poorly understood. In this study, we performed physiological observation and de novo transcriptome assembly for annual leaves and biennial leaves of C. oleifera. The physiological assays showed that the content of chlorophyll (Chl), soluble protein, and antioxidant enzymes including superoxide dismutase, peroxide dismutase, and catalase in senescing leaves decreased significantly, while the proline and malondialdehyde concentration increased. By analyzing RNA-Seq data, we identified 4645 significantly differentially expressed unigenes (DEGs) in biennial leaves with most associated with flavonoid and phenylpropanoid biosynthesis and phenylalanine metabolism pathways. Among these DEGs, 77 senescence-associated genes (SAGs) including NOL, ATAF1, MDAR, and SAG12 were classified to be related to Chl degradation, plant hormone, and oxidation pathways. The further analysis of the 77 SAGs based on the Spearman correlation algorithm showed that there was a significant expression correlation between these SAGs, suggesting the potential connections between SAGs in jointly regulating leaf senescence. A total of 162 differentially expressed transcription factors (TFs) identified during leaf senescence were mostly distributed in MYB (myeloblastosis), ERF (Ethylene-responsive factor), WRKY, and NAC (NAM, ATAF1/2 and CUCU2) families. In addition, qRT-PCR analysis of 19 putative SAGs were in accordance with the RNA-Seq data, further confirming the reliability and accuracy of the RNA-Seq. Collectively, we provide the first report of the transcriptome analysis of C. oleifera leaves of two kinds of age and a basis for understanding the molecular mechanism of leaf senescence.
Collapse
|