1
|
Shahwar D, Khan Z, Park Y. Molecular Markers for Marker-Assisted Breeding for Biotic and Abiotic Stress in Melon ( Cucumis melo L.): A Review. Int J Mol Sci 2024; 25:6307. [PMID: 38928017 PMCID: PMC11204097 DOI: 10.3390/ijms25126307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Melon (Cucumis melo L.) is a globally grown crop renowned for its juice and flavor. Despite growth in production, the melon industry faces several challenges owing to a wide range of biotic and abiotic stresses throughout the growth and development of melon. The aim of the review article is to consolidate current knowledge on the genetic mechanism of both biotic and abiotic stress in melon, facilitating the development of robust, disease-resistant melon varieties. A comprehensive literature review was performed, focusing on recent genetic and molecular advancements related to biotic and abiotic stress responses in melons. The review emphasizes the identification and analysis of quantitative trait loci (QTLs), functional genes, and molecular markers in two sections. The initial section provides a comprehensive summary of the QTLs and major and minor functional genes, and the establishment of molecular markers associated with biotic (viral, bacterial, and fungal pathogens, and nematodes) and abiotic stress (cold/chilling, drought, salt, and toxic compounds). The latter section briefly outlines the molecular markers employed to facilitate marker-assisted backcrossing (MABC) and identify cultivars resistant to biotic and abiotic stressors, emphasizing their relevance in strategic marker-assisted melon breeding. These insights could guide the incorporation of specific traits, culminating in developing novel varieties, equipped to withstand diseases and environmental stresses by targeted breeding, that meet both consumer preferences and the needs of melon breeders.
Collapse
Affiliation(s)
- Durre Shahwar
- Plant Genomics and Molecular Breeding Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
| | - Zeba Khan
- Center for Agricultural Education, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Younghoon Park
- Plant Genomics and Molecular Breeding Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
2
|
Katuuramu DN, Levi A, Wechter WP. Mapping the genetic architecture of low-temperature stress tolerance in citron watermelon. THE PLANT GENOME 2024; 17:e20443. [PMID: 38462711 DOI: 10.1002/tpg2.20443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/02/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Sweet-fleshed watermelon (Citrullus lanatus) is an important vegetable crop of the tropical origin. It is widely grown and consumed around the world for its hydration and nutritional quality values. Low-temperature stress can affect early planting, seedling establishment, and expansion of crop production to new areas. A collection of 122 citron watermelon (Citrullus amarus) accessions were obtained from the USDA's National Plant Germplasm Repository System gene bank in Griffin, GA. The accessions were genotyped using whole genome resequencing to generate single nucleotide polymorphisms (SNPs) molecular markers and screened under cold-stressed and non-stressed control conditions. Four low-temperature stress tolerance related traits including shoot biomass, vine length, maximum quantum efficiency of photosystem II, and chlorophyll content were measured under cold-stressed and non-stressed control treatment conditions. Correlation analysis revealed the presence of positive relationships among traits. Broad-sense heritability for all traits ranged from 0.35 to 0.73, implying the presence of genetic contributions to the observed phenotypic variation. Genomic regions underlying these traits across several citron watermelon chromosomes were identified. Four low-temperature stress tolerance related putative candidate genes co-located with the peak SNPs from genome-wide association study. These genomic regions and marker information could potentially be used in molecular breeding to accelerate genetic improvements for low-temperature stress tolerance in watermelon.
Collapse
Affiliation(s)
| | - Amnon Levi
- USDS-ARS, U.S. Vegetable Laboratory, Charleston, South Carolina, USA
| | - William P Wechter
- USDS-ARS, U.S. Vegetable Laboratory, Charleston, South Carolina, USA
| |
Collapse
|
3
|
Li L, Zhang X, Ding F, Hou J, Wang J, Luo R, Mao W, Li X, Zhu H, Yang L, Li Y, Hu J. Genome-wide identification of the melon (Cucumis melo L.) response regulator gene family and functional analysis of CmRR6 and CmPRR3 in response to cold stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154160. [PMID: 38147808 DOI: 10.1016/j.jplph.2023.154160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
The response regulator (RR) gene family play crucial roles in cytokinin signal transduction, plant development, and resistance to abiotic stress. However, there are no reports on the identification and functional characterization of RR genes in melon. In this study, a total of 18 CmRRs were identified and classified into type A, type B, and clock PRRs, based on phylogenetic analysis. Most of the CmRRs displayed tissue-specific expression patterns, and some were induced by cold stress according to two RNA-seq datasets. The expression patterns of CmRR2/6/11/15 and CmPRR2/3 under cold treatment were confirmed by qRT-PCR. Subcellular localization assays indicated that CmRR6 and CmPRR3 were primarily localized in the nucleus and chloroplast. Furthermore, when either CmRR6 or CmPRR3 were silenced using tobacco ringspot virus (TRSV), the cold tolerance of the virus-induced gene silencing (VIGS) melon plants were significantly enhanced, as evidenced by measurements of chlorophyll fluorescence, ion leakage, reactive oxygen, proline, and malondialdehyde levels. Additionally, the expression levels of CmCBF1, CmCBF2, and CmCBF3 were significantly increased in CmRR6-silenced and CmPRR3-silenced plants under cold treatment. Our findings suggest that CmRRs contribute to cold stress responses and provide new insights for further pursuing the molecular mechanisms underlying CmRRs-mediated cold tolerance in melon.
Collapse
Affiliation(s)
- Lili Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuyue Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fei Ding
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juan Hou
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Jiyu Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Renren Luo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenwen Mao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Ying Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Li L, Li Q, Chen B, Wang J, Ding F, Wang P, Zhang X, Hou J, Luo R, Li X, Zheng J, Yang S, Yang L, Zhu L, Sun S, Ma C, Li Q, Li Y, Hu J. Identification of candidate genes that regulate the trade-off between seedling cold tolerance and fruit quality in melon ( Cucumis melo L.). HORTICULTURE RESEARCH 2023; 10:uhad093. [PMID: 37416729 PMCID: PMC10321389 DOI: 10.1093/hr/uhad093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/01/2023] [Indexed: 07/08/2023]
Abstract
Trade-offs between survival and growth are widely observed in plants. Melon is an annual, trailing herb that produces economically valuable fruits that are traditionally cultivated in early spring in China. Melon seedlings are sensitive to low temperatures, and thus usually suffer from cold stress during the early growth period. However, little is known about the mechanism behind the trade-offs between seedling cold tolerance and fruit quality in melon. In this study, a total of 31 primary metabolites were detected from the mature fruits of eight melon lines that differ with respect to seedling cold tolerance; these included 12 amino acids, 10 organic acids, and 9 soluble sugars. Our results showed that concentrations of most of the primary metabolites in the cold-resistant melons were generally lower than in the cold-sensitive melons; the greatest difference in metabolite levels was observed between the cold-resistant line H581 and the moderately cold-resistant line HH09. The metabolite and transcriptome data for these two lines were then subjected to weighted correlation network analysis, resulting in the identification of five key candidate genes underlying the balancing between seedling cold tolerance and fruit quality. Among these genes, CmEAF7 might play multiple roles in regulating chloroplast development, photosynthesis, and the ABA pathway. Furthermore, multi-method functional analysis showed that CmEAF7 can certainly improve both seedling cold tolerance and fruit quality in melon. Our study identified an agriculturally important gene, CmEAF7, and provides a new insight into breeding methods to develop melon cultivars with seedling cold tolerance and high fruit quality.
Collapse
Affiliation(s)
- Lili Li
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiong Li
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Bin Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiyu Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Fei Ding
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Panqiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuyue Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Juan Hou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Renren Luo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jingwen Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Changsheng Ma
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Qin Li
- The Seed Management Station of Zhengzhou City, Zhengzhou 450001, China
| | - Ying Li
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
A Large-Scale Genomic Association Analysis Identifies the Candidate Genes Regulating Salt Tolerance in Cucumber ( Cucumis sativus L.) Seedlings. Int J Mol Sci 2022; 23:ijms23158260. [PMID: 35897836 PMCID: PMC9332819 DOI: 10.3390/ijms23158260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Salt stress seriously restricts plant growth and development, affects yield and quality, and thus becomes an urgent problem to be solved in cucumber stress resistance breeding. Mining salt tolerance genes and exploring the molecular mechanism of salt tolerance could accelerate the breeding of cucumber germplasm with excellent salt stress tolerance. In this study, 220 cucumber core accessions were used for Genome-Wide Association Studies (GWAS) and the identification of salt tolerance genes. The salinity injury index that was collected in two years showed significant differences among the core germplasm. A total of seven loci that were associated with salt tolerance in cucumber seedlings were repeatedly detected, which were located on Chr.2 (gST2.1), Chr.3 (gST3.1 and gST3.2), Chr.4 (gST4.1 and gST4.2), Chr.5 (gST5.1), and Chr.6 (gST6.1). Within these loci, 62 genes were analyzed, and 5 candidate genes (CsaV3_2G035120, CsaV3_3G023710, CsaV3_4G033150, CsaV3_5G023530, and CsaV3_6G009810) were predicted via the functional annotation of Arabidopsis homologous genes, haplotype of extreme salt-tolerant accessions, and qRT-PCR. These results provide a guide for further research on salt tolerance genes and molecular mechanisms of cucumber seedlings.
Collapse
|
6
|
Hu Z, Shi X, Chen X, Zheng J, Zhang A, Wang H, Fu Q. Fine-mapping and identification of a candidate gene controlling seed coat color in melon (Cucumis melo L. var. chinensis Pangalo). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:803-815. [PMID: 34825925 DOI: 10.1007/s00122-021-03999-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
MELO3C019554 encoding a homeobox protein (PHD transcription factor) is a candidate gene that involved in the formation of seed coat color in melon. Seed coat color is related to flavonoid content which is closely related to seed dormancy. According to the genetic analysis of a six-generation population derived from two parents (IC2508 with a yellow seed coat and IC2518 with a brown seed coat), we discovered that the yellow seed coat trait in melon is controlled by a single dominant gene, named CmBS-1. Bulked segregant analysis sequencing (BSA-Seq) revealed that the gene is located at 11,860,000-15,890,000 bp (4.03 Mb) on Chr 6. The F2 population was genotyped using insertion-deletions (InDels), from which cleaved amplified polymorphic sequence (dCAPS) markers were derived to construct a genetic map. The gene was then fine-mapped to a 233.98 kb region containing 12 genes. Based on gene sequence analysis with two parents, we found that the MELO3C019554 gene encoding a homeobox protein (PHD transcription factor) had a nonsynonymous single nucleotide polymorphism (SNP) mutation in the coding sequence (CDS), and the SNP mutation resulted in the conversion of an amino acid (A → T) at residue 534. In addition, MELO3C019554 exhibited lower relative expression levels in the yellow seed coat than in the brown seed coat. Furthermore, we found that MELO3C019554 is related to 12 flavonoid metabolites. Thus, we predicted that MELO3C019554 is a candidate gene controlling seed coat color in melon. The study lays a foundation for further cloning projects and functional analysis of this gene, as well as marker-assisted selection breeding.
Collapse
Affiliation(s)
- Zhicheng Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyin Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuemiao Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aiai Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huaisong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Qiushi Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Aguado E, García A, Iglesias-Moya J, Romero J, Wehner TC, Gómez-Guillamón ML, Picó B, Garcés-Claver A, Martínez C, Jamilena M. Mapping a Partial Andromonoecy Locus in Citrullus lanatus Using BSA-Seq and GWAS Approaches. FRONTIERS IN PLANT SCIENCE 2020; 11:1243. [PMID: 32973825 PMCID: PMC7466658 DOI: 10.3389/fpls.2020.01243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 05/11/2023]
Abstract
The sexual expression of watermelon plants is the result of the distribution and occurrence of male, female, bisexual and hermaphrodite flowers on the main and secondary stems. Plants can be monoecious (producing male and female flowers), andromonoecious (producing male and hermaphrodite flowers), or partially andromonoecious (producing male, female, bisexual, and hermaphrodite flowers) within the same plant. Sex determination of individual floral buds and the distribution of the different flower types on the plant, are both controlled by ethylene. A single missense mutation in the ethylene biosynthesis gene CitACS4, is able to promote the conversion of female into hermaphrodite flowers, and therefore of monoecy (genotype MM) into partial andromonoecy (genotype Mm) or andromonoecy (genotype mm). We phenotyped and genotyped, for the M/m locus, a panel of 207 C. lanatus accessions, including five inbreds and hybrids, and found several accessions that were repeatedly phenotyped as PA (partially andromonoecious) in several locations and different years, despite being MM. A cosegregation analysis between a SNV in CitACS4 and the PA phenotype, demonstrated that the occurrence of bisexual and hermaphrodite flowers in a PA line is not dependent on CitACS4, but conferred by an unlinked recessive gene which we called pa. Two different approaches were performed to map the pa gene in the genome of C. lanatus: bulk segregant analysis sequencing (BSA-seq) and genome wide association analysis studies (GWAS). The BSA-seq study was performed using two contrasting bulks, the monoecious M-bulk and the partially andromonoecious PA-bulk, each one generated by pooling DNA from 20 F2 plants. For GWAS, 122 accessions from USDA gene bank, already re-sequenced by genotyping by sequencing (GBS), were used. The combination of the two approaches indicates that pa maps onto a genomic region expanding across 32.24-36.44 Mb in chromosome 1 of watermelon. Fine mapping narrowed down the pa locus to a 867 Kb genomic region containing 101 genes. A number of candidate genes were selected, not only for their function in ethylene biosynthesis and signalling as well as their role in flower development and sex determination, but also by the impact of the SNPs and indels differentially detected in the two sequenced bulks.
Collapse
Affiliation(s)
- Encarnación Aguado
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Alicia García
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Jessica Iglesias-Moya
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Jonathan Romero
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Todd C. Wehner
- Departament of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | | | - Belén Picó
- COMAV—Universidad Politécnica de Valencia, Valencia, Spain
| | | | - Cecilia Martínez
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| |
Collapse
|
8
|
Niu S, Koiwa H, Song Q, Qiao D, Chen J, Zhao D, Chen Z, Wang Y, Zhang T. Development of core-collections for Guizhou tea genetic resources and GWAS of leaf size using SNP developed by genotyping-by-sequencing. PeerJ 2020; 8:e8572. [PMID: 32206447 PMCID: PMC7075365 DOI: 10.7717/peerj.8572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/15/2020] [Indexed: 11/20/2022] Open
Abstract
An accurate depiction of the genetic relationship, the development of core collection, and genome-wide association analysis (GWAS) are key for the effective exploitation and utilization of genetic resources. Here, genotyping-by-sequencing (GBS) was used to characterize 415 tea accessions mostly collected from the Guizhou region in China. A total of 30,282 high-quality SNPs was used to estimate the genetic relationships, develop core collections, and perform GWAS. We suggest 198 and 148 accessions to represent the core set and mini-core set, which consist of 47% and 37% of the whole collection, respectively, and contain 93–95% of the total SNPs. Furthermore, the frequencies of all alleles and genotypes in the whole set were very well retained in the core set and mini-core set. The 415 accessions were clustered into 14 groups and the core and the mini-core collections contain accessions from each group, species, cultivation status and growth habit. By analyzing the significant SNP markers associated with multiple traits, nine SNPs were found to be significantly associated with four leaf size traits, namely MLL, MLW, MLA and MLSI (P < 1.655E−06). This study characterized the genetic distance and relationship of tea collections, suggested the core collections, and established an efficient GWAS analysis of GBS result.
Collapse
Affiliation(s)
- Suzhen Niu
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China.,The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, China
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, Texas, USA
| | - Qinfei Song
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering / College of Tea Science, Guizhou University, Guiyang, China
| | - Dahe Qiao
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Juan Chen
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Degang Zhao
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhengwu Chen
- Guiyang Station for DUS Testing Center of New Plant Varteties (MOA) / Institute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Ying Wang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Tianyuan Zhang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| |
Collapse
|
9
|
Cervera-Seco L, Marques MAC, Sanz-Carbonell A, Marquez-Molins J, Carbonell A, Darï S JA, Gomez G. Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon. PLANT & CELL PHYSIOLOGY 2019; 60:2382-2393. [PMID: 31290971 DOI: 10.1093/pcp/pcz131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/27/2019] [Indexed: 05/27/2023]
Abstract
Small interfering RNAs (siRNA) are key regulators of gene expression that play essential roles in diverse biological processes. Trans-acting siRNAs (tasiRNAs) are a class of plant-endogenous siRNAs that lead the cleavage of nonidentical transcripts. TasiRNAs are usually involved in fine-tuning development. However, increasing evidence supports that tasiRNAs may be involved in stress response. Melon is a crop of great economic importance extensively cultivated in semiarid regions frequently exposed to changing environmental conditions that limit its productivity. However, knowledge of the precise role of siRNAs in general, and of tasiRNAs in particular, in regulating the response to adverse environmental conditions is limited. Here, we provide the first comprehensive analysis of computationally inferred melon-tasiRNAs responsive to two biotic (viroid-infection) and abiotic (cold treatment) stress conditions. We identify two TAS3-loci encoding to length (TAS3-L) and short (TAS3-S) transcripts. The TAS candidates predicted from small RNA-sequencing data were characterized according to their chromosome localization and expression pattern in response to stress. The functional activity of cmTAS genes was validated by transcript quantification and degradome assays of the tasiRNA precursors and their predicted targets. Finally, the functionality of a representative cmTAS3-derived tasiRNA (TAS3-S) was confirmed by transient assays showing the cleavage of ARF target transcripts.
Collapse
Affiliation(s)
- Luis Cervera-Seco
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Marï A Carmen Marques
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Alejandro Sanz-Carbonell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Alberto Carbonell
- Instituto de Biolog�a Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cient�ficas (CSIC) Universitat Polit�cnica de Val�ncia, CPI 8E, Av. de los Naranjos s/n, Valencia, Spain
| | - Josï-Antonio Darï S
- Instituto de Biolog�a Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cient�ficas (CSIC) Universitat Polit�cnica de Val�ncia, CPI 8E, Av. de los Naranjos s/n, Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| |
Collapse
|