1
|
Ostermeier M, Garibay-Hernández A, Holzer VJC, Schroda M, Nickelsen J. Structure, biogenesis, and evolution of thylakoid membranes. THE PLANT CELL 2024; 36:4014-4035. [PMID: 38567528 PMCID: PMC11448915 DOI: 10.1093/plcell/koae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Cyanobacteria and chloroplasts of algae and plants harbor specialized thylakoid membranes (TMs) that convert sunlight into chemical energy. These membranes house PSII and I, the vital protein-pigment complexes that drive oxygenic photosynthesis. In the course of their evolution, TMs have diversified in structure. However, the core machinery for photosynthetic electron transport remained largely unchanged, with adaptations occurring primarily in the light-harvesting antenna systems. Whereas TMs in cyanobacteria are relatively simple, they become more complex in algae and plants. The chloroplasts of vascular plants contain intricate networks of stacked grana and unstacked stroma thylakoids. This review provides an in-depth view of TM architectures in phototrophs and the determinants that shape their forms, as well as presenting recent insights into the spatial organization of their biogenesis and maintenance. Its overall goal is to define the underlying principles that have guided the evolution of these bioenergetic membranes.
Collapse
Affiliation(s)
| | | | | | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Cutolo EA, Caferri R, Guardini Z, Dall'Osto L, Bassi R. Analysis of state 1-state 2 transitions by genome editing and complementation reveals a quenching component independent from the formation of PSI-LHCI-LHCII supercomplex in Arabidopsis thaliana. Biol Direct 2023; 18:49. [PMID: 37612770 PMCID: PMC10463614 DOI: 10.1186/s13062-023-00406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The light-harvesting antennae of photosystem (PS) I and PSII are pigment-protein complexes responsible of the initial steps of sunlight conversion into chemical energy. In natural environments plants are constantly confronted with the variability of the photosynthetically active light spectrum. PSII and PSI operate in series but have different optimal excitation wavelengths. The prompt adjustment of light absorption by photosystems is thus crucial to ensure efficient electron flow needed to sustain downstream carbon fixing reactions. Fast structural rearrangements equilibrate the partition of excitation pressure between PSII and PSI following the enrichment in the red (PSII-favoring) or far-red (PSI-favoring) spectra. Redox imbalances trigger state transitions (ST), a photoacclimation mechanism which involves the reversible phosphorylation/dephosphorylation of light harvesting complex II (LHCII) proteins by the antagonistic activities of the State Transition 7 (STN7) kinase/TAP38 phosphatase enzyme pair. During ST, a mobile PSII antenna pool associates with PSI increasing its absorption cross section. LHCII consists of assorted trimeric assemblies of Lhcb1, Lhcb2 and Lhcb3 protein isoforms (LHCII), several being substrates of STN7. However, the precise roles of Lhcb phosphorylation during ST remain largely elusive. RESULTS We inactivated the complete Lhcb1 and Lhcb2 gene clades in Arabidopsis thaliana and reintroduced either wild type Lhcb1.3 and Lhcb2.1 isoforms, respectively, or versions lacking N-terminal phosphorylatable residues proposed to mediate state transitions. While the substitution of Lhcb2.1 Thr-40 prevented the formation of the PSI-LHCI-LHCII complex, replacement of Lhcb1.3 Thr-38 did not affect the formation of this supercomplex, nor did influence the amplitude or kinetics of PSII fluorescence quenching upon state 1-state 2 transition. CONCLUSIONS Phosphorylation of Lhcb2 Thr-40 by STN7 alone accounts for ≈ 60% of PSII fluorescence quenching during state transitions. Instead, the presence of Thr-38 phosphosite in Lhcb1.3 was not required for the formation of the PSI-LHCI-LHCII supercomplex nor for re-equilibration of the plastoquinone redox state. The Lhcb2 phosphomutant was still capable of ≈ 40% residual fluorescence quenching, implying that a yet uncharacterized, STN7-dependent, component of state transitions, which is unrelated to Lhcb2 Thr-40 phosphorylation and to the formation of the PSI-LHCI-LHCII supercomplex, contributes to the equilibration of the PSI/PSII excitation pressure upon plastoquinone over-reduction.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Zeno Guardini
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Luca Dall'Osto
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
- Accademia Nazionale dei Lincei, Palazzo Corsini, Via Della Lungara, 10, 00165, Rome, Italy.
| |
Collapse
|
3
|
Liu WJ, Liu H, Chen YE, Yin Y, Zhang ZW, Song J, Chang LJ, Zhang FL, Wang D, Dai XH, Wei C, Xiong M, Yuan S, Zhao J. Chloroplastic photoprotective strategies differ between bundle sheath and mesophyll cells in maize ( Zea mays L.) Under drought. FRONTIERS IN PLANT SCIENCE 2022; 13:885781. [PMID: 35909748 PMCID: PMC9330506 DOI: 10.3389/fpls.2022.885781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/27/2022] [Indexed: 05/24/2023]
Abstract
Bundle sheath cells play a crucial role in photosynthesis in C4 plants, but the structure and function of photosystem II (PSII) in these cells is still controversial. Photoprotective roles of bundle sheath chloroplasts at the occurrence of environmental stresses have not been investigated so far. Non-photochemical quenching (NPQ) of chlorophyll a fluorescence is the photoprotective mechanism that responds to a changing energy balance in chloroplasts. In the present study, we found a much higher NPQ in bundle sheath chloroplasts than in mesophyll chloroplasts under a drought stress. This change was accompanied by a more rapid dephosphorylation of light-harvesting complex II (LHCII) subunits and a greater increase in PSII subunit S (PsbS) protein abundance than in mesophyll cell chloroplasts. Histochemical staining of reactive oxygen species (ROS) suggested that the high NPQ may be one of the main reasons for the lower accumulation of ROS in bundle sheath chloroplasts. This may maintain the stable functioning of bundle sheath cells under drought condition. These results indicate that the superior capacity for dissipation of excitation energy in bundle sheath chloroplasts may be an environmental adaptation unique to C4 plants.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hao Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yan Yin
- Plant Science Facility of the Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Zhang
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Song
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Li-Juan Chang
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Fu-Li Zhang
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Dong Wang
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiao-Hang Dai
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chao Wei
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Mei Xiong
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Sárvári É, Gellén G, Sági-Kazár M, Schlosser G, Solymosi K, Solti Á. Qualitative and quantitative evaluation of thylakoid complexes separated by Blue Native PAGE. PLANT METHODS 2022; 18:23. [PMID: 35241118 PMCID: PMC8895881 DOI: 10.1186/s13007-022-00858-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/12/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Blue Native polyacrylamide gel electrophoresis (BN PAGE) followed by denaturing PAGE is a widely used, convenient and time efficient method to separate thylakoid complexes and study their composition, abundance, and interactions. Previous analyses unravelled multiple monomeric and dimeric/oligomeric thylakoid complexes but, in certain cases, the separation of complexes was not proper. Particularly, the resolution of super- and megacomplexes, which provides important information on functional interactions, still remained challenging. RESULTS Using a detergent mixture of 1% (w/V) n-dodecyl-β-D-maltoside plus 1% (w/V) digitonin for solubilisation and 4.3-8% gel gradients for separation as methodological improvements in BN PAGE, several large photosystem (PS) I containing bands were detected. According to BN(/BN)/SDS PAGE and mass spectrometry analyses, these PSI bands proved to be PSI-NADH dehydrogenase-like megacomplexes more discernible in maize bundle sheath thylakoids, and PSI complexes with different light-harvesting complex (LHC) complements (PSI-LHCII, PSI-LHCII*) more abundant in mesophyll thylakoids of lincomycin treated maize. For quantitative determination of the complexes and their comparison across taxa and physiological conditions, sample volumes applicable to the gel, correct baseline determination of the densitograms, evaluation methods to resolve complexes running together, calculation of their absolute/relative amounts and distribution among their different forms are proposed. CONCLUSIONS Here we report our experience in Blue/Clear-Native polyacrylamide gel electrophoretic separation of thylakoid complexes, their identification, quantitative determination and comparison in different samples. The applied conditions represent a powerful methodology for the analysis of thylakoid mega- and supercomplexes.
Collapse
Affiliation(s)
- Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| | - Gabriella Gellén
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | - Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| |
Collapse
|
5
|
Hommel E, Liebers M, Offermann S, Pfannschmidt T. Effectiveness of Light-Quality and Dark-White Growth Light Shifts in Short-Term Light Acclimation of Photosynthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 12:615253. [PMID: 35046964 PMCID: PMC8761940 DOI: 10.3389/fpls.2021.615253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2021] [Indexed: 05/23/2023]
Abstract
Photosynthesis needs to run efficiently under permanently changing illumination. To achieve this, highly dynamic acclimation processes optimize photosynthetic performance under a variety of rapidly changing light conditions. Such acclimation responses are acting by a complex interplay of reversible molecular changes in the photosynthetic antenna or photosystem assemblies which dissipate excess energy and balance uneven excitation between the two photosystems. This includes a number of non-photochemical quenching processes including state transitions and photosystem II remodeling. In the laboratory such processes are typically studied by selective illumination set-ups. Two set-ups known to be effective in a highly similar manner are (i) light quality shifts (inducing a preferential excitation of one photosystem over the other) or (ii) dark-light shifts (inducing a general off-on switch of the light harvesting machinery). Both set-ups result in similar effects on the plastoquinone redox state, but their equivalence in induction of photosynthetic acclimation responses remained still open. Here, we present a comparative study in which dark-light and light-quality shifts were applied to samples of the same growth batches of plants. Both illumination set-ups caused comparable effects on the phosphorylation of LHCII complexes and, hence, on the performance of state transitions, but generated different effects on the degree of state transitions and the formation of PSII super-complexes. The two light set-ups, thus, are not fully equivalent in their physiological effectiveness potentially leading to different conclusions in mechanistic models of photosynthetic acclimation. Studies on the regulation of photosynthetic light acclimation, therefore, requires to regard the respective illumination test set-up as a critical parameter that needs to be considered in the discussion of mechanistic and regulatory aspects in this subject.
Collapse
Affiliation(s)
- Elisabeth Hommel
- Pflanzenphysiologie, Institut für Biologie, Universität Leipzig, Leipzig, Germany
| | - Monique Liebers
- Molekulare Pflanzenphysiologie, Institut für Pflanzenwissenschaften und Mikrobiologie, Universität Hamburg, Hamburg, Germany
| | - Sascha Offermann
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Leibniz-Universität Hannover, Hanover, Germany
| | - Thomas Pfannschmidt
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Leibniz-Universität Hannover, Hanover, Germany
| |
Collapse
|
6
|
Mazur R, Mostowska A, Kowalewska Ł. How to Measure Grana - Ultrastructural Features of Thylakoid Membranes of Plant Chloroplasts. FRONTIERS IN PLANT SCIENCE 2021; 12:756009. [PMID: 34691132 PMCID: PMC8527009 DOI: 10.3389/fpls.2021.756009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 06/11/2023]
Abstract
Granum is a basic structural unit of the thylakoid membrane network of plant chloroplasts. It is composed of multiple flattened membranes forming a stacked arrangement of a cylindrical shape. Grana membranes are composed of lipids and tightly packed pigment-protein complexes whose primary role is the catalysis of photosynthetic light reactions. These membranes are highly dynamic structures capable of adapting to changing environmental conditions by fine-tuning photochemical efficiency, manifested by the structural reorganization of grana stacks. Due to a nanometer length scale of the structural granum features, the application of high-resolution electron microscopic techniques is essential for a detailed analysis of the granum architecture. This mini-review overviews recent approaches to quantitative grana structure analyses from electron microscopy data, highlighting the basic manual measurements and semi-automated workflows. We outline and define structural parameters used by different authors, for instance, granum height and diameter, thylakoid thickness, end-membrane length, Stacking Repeat Distance, and Granum Lateral Irregularity. This article also presents insights into efficient and effective measurements of grana stacks visualized on 2D micrographs. The information on how to correctly interpret obtained data, taking into account the 3D nature of grana stacks projected onto 2D space of electron micrograph, is also given. Grana ultrastructural observations reveal key features of this intriguing membrane arrangement, broadening our knowledge of the thylakoid network's remarkable plasticity.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Singh U, Hur M, Dorman K, Wurtele ES. MetaOmGraph: a workbench for interactive exploratory data analysis of large expression datasets. Nucleic Acids Res 2020; 48:e23. [PMID: 31956905 PMCID: PMC7039010 DOI: 10.1093/nar/gkz1209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The diverse and growing omics data in public domains provide researchers with tremendous opportunity to extract hidden, yet undiscovered, knowledge. However, the vast majority of archived data remain unused. Here, we present MetaOmGraph (MOG), a free, open-source, standalone software for exploratory analysis of massive datasets. Researchers, without coding, can interactively visualize and evaluate data in the context of its metadata, honing-in on groups of samples or genes based on attributes such as expression values, statistical associations, metadata terms and ontology annotations. Interaction with data is easy via interactive visualizations such as line charts, box plots, scatter plots, histograms and volcano plots. Statistical analyses include co-expression analysis, differential expression analysis and differential correlation analysis, with significance tests. Researchers can send data subsets to R for additional analyses. Multithreading and indexing enable efficient big data analysis. A researcher can create new MOG projects from any numerical data; or explore an existing MOG project. MOG projects, with history of explorations, can be saved and shared. We illustrate MOG by case studies of large curated datasets from human cancer RNA-Seq, where we identify novel putative biomarker genes in different tumors, and microarray and metabolomics data from Arabidopsis thaliana. MOG executable and code: http://metnetweb.gdcb.iastate.edu/ and https://github.com/urmi-21/MetaOmGraph/.
Collapse
Affiliation(s)
- Urminder Singh
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Manhoi Hur
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Karin Dorman
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Chen YE, Wu N, Zhang ZW, Yuan M, Yuan S. Perspective of Monitoring Heavy Metals by Moss Visible Chlorophyll Fluorescence Parameters. FRONTIERS IN PLANT SCIENCE 2019; 10:35. [PMID: 30740119 PMCID: PMC6355700 DOI: 10.3389/fpls.2019.00035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/10/2019] [Indexed: 05/08/2023]
Abstract
Chlorophyll fluorescence measurements have been mainly applied to investigate the functioning of the photosynthetic apparatus in the diagnosis of environmental stress. Moss is sensitive to several abiotic stresses and is considered an environmental indicator. Therefore, moss chlorophyll fluorescence can be as a visual parameter applicable for monitoring heavy metal contaminants in water. Different from previous studies with value changes of chlorophyll fluorescence in mosses, we suggest that phenotypes with anthocyanin accumulation pattern and chlorosis pattern and colors of chlorophyll fluorescence images of the maximum efficiency of PSII photochemistry (Fv/Fm) and the quantum yield of PSII electron transport (ΦPSII) could reflect metal species groups and concentrations roughly. And we further indicated that Cr(III) and Cr(VI) could be monitored distinguishably according to the non-photochemical quenching (NPQ) fluorescence of sporadic purple and sporadic lavender images, respectively. It is interesting that the fluorescence color patterns were nearly the same for all treatment concentrations. This perspective provides additional data of chlorophyll fluorescence changes in moss under cold, heat, salinity, high light or osmotic stress. Only heat stress and high light have significant effects on the fluorescence parameters of Fv/Fm and ΦPSII. In contrast, mosses are less sensitive to short-term cold, salinity, and osmotic stress. While NPQ decreases rapidly under the osmotic stress. Nevertheless, heat stress, high light or osmotic stress does not usually co-occur in the place where the moss grows. Estimation through moss chlorophyll fluorescence color patterns is still a rapid and non-invasive method to monitor heavy metal pollutions in water.
Collapse
Affiliation(s)
- Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Nan Wu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Liu J, Lu Y, Hua W, Last RL. A New Light on Photosystem II Maintenance in Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:975. [PMID: 31417592 PMCID: PMC6685048 DOI: 10.3389/fpls.2019.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
Life on earth is sustained by oxygenic photosynthesis, a process that converts solar energy, carbon dioxide, and water into chemical energy and biomass. Sunlight is essential for growth and productivity of photosynthetic organisms. However, exposure to an excessive amount of light adversely affects fitness due to photooxidative damage to the photosynthetic machinery, primarily to the reaction center of the oxygen-evolving photosystem II (PSII). Photosynthetic organisms have evolved diverse photoprotective and adaptive strategies to avoid, alleviate, and repair PSII damage caused by high-irradiance or fluctuating light. Rapid and harmless dissipation of excess absorbed light within antenna as heat, which is measured by chlorophyll fluorescence as non-photochemical quenching (NPQ), constitutes one of the most efficient protective strategies. In parallel, an elaborate repair system represents another efficient strategy to maintain PSII reaction centers in active states. This article reviews both the reaction center-based strategy for robust repair of photodamaged PSII and the antenna-based strategy for swift control of PSII light-harvesting (NPQ). We discuss evolutionarily and mechanistically diverse strategies used by photosynthetic organisms to maintain PSII function for growth and productivity under static high-irradiance light or fluctuating light environments. Knowledge of mechanisms underlying PSII maintenance would facilitate bioengineering photosynthesis to enhance agricultural productivity and sustainability to feed a growing world population amidst climate change.
Collapse
Affiliation(s)
- Jun Liu
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Jun Liu,
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Wei Hua
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Wei Hua
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|