1
|
Drapek C, Rizza A, Mohd-Radzman NA, Schiessl K, Dos Santos Barbosa F, Wen J, Oldroyd GED, Jones AM. Gibberellin dynamics governing nodulation revealed using GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula lateral organs. THE PLANT CELL 2024; 36:4442-4456. [PMID: 39012965 PMCID: PMC11449112 DOI: 10.1093/plcell/koae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.
Collapse
Affiliation(s)
- Colleen Drapek
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | | | | | | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Stillwater, OK 73401, USA
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB3 0LE, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| |
Collapse
|
2
|
Berrabah F, Benaceur F, Yin C, Xin D, Magne K, Garmier M, Gruber V, Ratet P. Defense and senescence interplay in legume nodules. PLANT COMMUNICATIONS 2024; 5:100888. [PMID: 38532645 PMCID: PMC11009364 DOI: 10.1016/j.xplc.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence has been extensively studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discuss recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Fathi Berrabah
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria.
| | - Farouk Benaceur
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Chaoyan Yin
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Dawei Xin
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Morère-Le Paven MC, Clochard T, Limami AM. NPF and NRT2 from Pisum sativum Potentially Involved in Nodule Functioning: Lessons from Medicago truncatula and Lotus japonicus. PLANTS (BASEL, SWITZERLAND) 2024; 13:322. [PMID: 38276779 PMCID: PMC10820289 DOI: 10.3390/plants13020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
In addition to absorbing nitrogen from the soil, legumes have the ability to use atmospheric N2 through symbiotic nitrogen fixation. Therefore, legumes have developed mechanisms regulating nodulation in response to the amount of nitrate in the soil; in the presence of high nitrate concentrations, nodulation is inhibited, while low nitrate concentrations stimulate nodulation and nitrogen fixation. This allows the legumes to switch from soil nitrogen acquisition to symbiotic nitrogen fixation. Recently, particular interest has been given to the nitrate transporters, such as Nitrate Transporter1/Peptide transporter Family (NPF) and Nitrate Transporter 2 (NRT2), having a role in the functioning of nodules. Nitrate transporters of the two model plants, Lotus japonicus and Medicago truncatula, shown to have a positive and/or a negative role in nodule functioning depending on nitrate concentration, are presented in this article. In particular, the following transporters were thoroughly studied: (i) members of NPF transporters family, such as LjNPF8.6 and LjNPF3.1 in L. japonicus and MtNPF1.7 and MtNPF7.6 in M. truncatula, and (ii) members of NRT2 transporters family, such as LjNRT2.4 and LjNRT2.1 in L. japonicus and MtNRT2.1 in M. truncatula. Also, by exploiting available genomic and transcriptomic data in the literature, we have identified the complete PsNPF family in Pisum sativum (69 sequences previously described and 21 new that we have annotated) and putative nitrate transporters candidate for playing a role in nodule functioning in P. sativum.
Collapse
|
4
|
Shumilina J, Soboleva A, Abakumov E, Shtark OY, Zhukov VA, Frolov A. Signaling in Legume-Rhizobia Symbiosis. Int J Mol Sci 2023; 24:17397. [PMID: 38139226 PMCID: PMC10743482 DOI: 10.3390/ijms242417397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Legumes represent an important source of food protein for human nutrition and animal feed. Therefore, sustainable production of legume crops is an issue of global importance. It is well-known that legume-rhizobia symbiosis allows an increase in the productivity and resilience of legume crops. The efficiency of this mutualistic association strongly depends on precise regulation of the complex interactions between plant and rhizobia. Their molecular dialogue represents a complex multi-staged process, each step of which is critically important for the overall success of the symbiosis. In particular, understanding the details of the molecular mechanisms behind the nodule formation and functioning might give access to new legume cultivars with improved crop productivity. Therefore, here we provide a comprehensive literature overview on the dynamics of the signaling network underlying the development of the legume-rhizobia symbiosis. Thereby, we pay special attention to the new findings in the field, as well as the principal directions of the current and prospective research. For this, here we comprehensively address the principal signaling events involved in the nodule inception, development, functioning, and senescence.
Collapse
Affiliation(s)
- Julia Shumilina
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
| | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Evgeny Abakumov
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Oksana Y. Shtark
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
5
|
Serova TA, Kusakin PG, Kitaeva AB, Seliverstova EV, Gorshkov AP, Romanyuk DA, Zhukov VA, Tsyganova AV, Tsyganov VE. Effects of Elevated Temperature on Pisum sativum Nodule Development: I-Detailed Characteristic of Unusual Apical Senescence. Int J Mol Sci 2023; 24:17144. [PMID: 38138973 PMCID: PMC10742560 DOI: 10.3390/ijms242417144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Despite global warming, the influence of heat on symbiotic nodules is scarcely studied. In this study, the effects of heat stress on the functioning of nodules formed by Rhizobium leguminosarum bv. viciae strain 3841 on pea (Pisum sativum) line SGE were analyzed. The influence of elevated temperature was analyzed at histological, ultrastructural, and transcriptional levels. As a result, an unusual apical pattern of nodule senescence was revealed. After five days of exposure, a senescence zone with degraded symbiotic structures was formed in place of the distal nitrogen fixation zone. There was downregulation of various genes, including those associated with the assimilation of fixed nitrogen and leghemoglobin. After nine days, the complete destruction of the nodules was demonstrated. It was shown that nodule recovery was possible after exposure to elevated temperature for 3 days but not after 5 days (which coincides with heat wave duration). At the same time, the exposure of plants to optimal temperature during the night leveled the negative effects. Thus, the study of the effects of elevated temperature on symbiotic nodules using a well-studied pea genotype and Rhizobium strain led to the discovery of a novel positional response of the nodule to heat stress.
Collapse
Affiliation(s)
- Tatiana A Serova
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, Saint Petersburg 196608, Russia
| | - Pyotr G Kusakin
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, Saint Petersburg 196608, Russia
| | - Anna B Kitaeva
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, Saint Petersburg 196608, Russia
| | - Elena V Seliverstova
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, Saint Petersburg 196608, Russia
| | - Artemii P Gorshkov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, Saint Petersburg 196608, Russia
| | - Daria A Romanyuk
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, Saint Petersburg 196608, Russia
| | - Vladimir A Zhukov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, Saint Petersburg 196608, Russia
| | - Anna V Tsyganova
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, Saint Petersburg 196608, Russia
| | - Viktor E Tsyganov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, Saint Petersburg 196608, Russia
| |
Collapse
|
6
|
Kitaeva AB, Serova TA, Kusakin PG, Tsyganov VE. Effects of Elevated Temperature on Pisum sativum Nodule Development: II-Phytohormonal Responses. Int J Mol Sci 2023; 24:17062. [PMID: 38069383 PMCID: PMC10707278 DOI: 10.3390/ijms242317062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
High temperature is one of the most important factors limiting legume productivity. We have previously shown the induction of senescence in the apical part of nodules of the pea SGE line, formed by Rhizobium leguminosarum bv. viciae strain 3841, when they were exposed to elevated temperature (28 °C). In this study, we analyzed the potential involvement of abscisic acid (ABA), ethylene, and gibberellins in apical senescence in pea nodules under elevated temperature. Immunolocalization revealed an increase in ABA and 1-aminocyclopropane-1-carboxylic acid (ACC, the precursor of ethylene biosynthesis) levels in cells of the nitrogen fixation zone in heat-stressed nodules in 1 day of exposure compared to heat-unstressed nodules. Both ABA and ethylene appear to be involved in the earliest responses of nodules to heat stress. A decrease in the gibberellic acid (GA3) level in heat-stressed nodules was observed. Exogenous GA3 treatment induced a delay in the degradation of the nitrogen fixation zone in heat-stressed nodules. At the same time, a decrease in the expression level of many genes associated with nodule senescence, heat shock, and defense responses in pea nodules treated with GA3 at an elevated temperature was detected. Therefore, apical senescence in heat-stressed nodules is regulated by phytohormones in a manner similar to natural senescence. Gibberellins can be considered as negative regulators, while ABA and ethylene can be considered positive regulators.
Collapse
Affiliation(s)
| | | | | | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (T.A.S.); (P.G.K.)
| |
Collapse
|
7
|
Mechanical Stimulation Decreases Auxin and Gibberellic Acid Synthesis but Does Not Affect Auxin Transport in Axillary Buds; It Also Stimulates Peroxidase Activity in Petunia × atkinsiana. Molecules 2023; 28:molecules28062714. [PMID: 36985685 PMCID: PMC10053601 DOI: 10.3390/molecules28062714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Thigmomorphogenesis (or mechanical stimulation-MS) is a term created by Jaffe and means plant response to natural stimuli such as the blow of the wind, strong rain, or touch, resulting in a decrease in length and an increase of branching as well as an increase in the activity of axillary buds. MS is very well known in plant morphology, but physiological processes controlling plant growth are not well discovered yet. In the current study, we tried to find an answer to the question if MS truly may affect auxin synthesis or transport in the early stage of plant growth, and which physiological factors may be responsible for growth arrest in petunia. According to the results of current research, we noticed that MS affects plant growth but does not block auxin transport from the apical bud. MS arrests IAA and GA3 synthesis in MS-treated plants over the longer term. The main factor responsible for the thickening of cell walls and the same strengthening of vascular tissues and growth arrestment, in this case, is peroxidase (POX) activity, but special attention should be also paid to AGPs as signaling molecules which also are directly involved in growth regulation as well as in cell wall modifications.
Collapse
|
8
|
Sauviac L, Rémy A, Huault E, Dalmasso M, Kazmierczak T, Jardinaud MF, Legrand L, Moreau C, Ruiz B, Cazalé AC, Valière S, Gourion B, Dupont L, Gruber V, Boncompagni E, Meilhoc E, Frendo P, Frugier F, Bruand C. A dual legume-rhizobium transcriptome of symbiotic nodule senescence reveals coordinated plant and bacterial responses. PLANT, CELL & ENVIRONMENT 2022; 45:3100-3121. [PMID: 35781677 DOI: 10.1111/pce.14389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Senescence determines plant organ lifespan depending on aging and environmental cues. During the endosymbiotic interaction with rhizobia, legume plants develop a specific organ, the root nodule, which houses nitrogen (N)-fixing bacteria. Unlike earlier processes of the legume-rhizobium interaction (nodule formation, N fixation), mechanisms controlling nodule senescence remain poorly understood. To identify nodule senescence-associated genes, we performed a dual plant-bacteria RNA sequencing approach on Medicago truncatula-Sinorhizobium meliloti nodules having initiated senescence either naturally (aging) or following an environmental trigger (nitrate treatment or salt stress). The resulting data allowed the identification of hundreds of plant and bacterial genes differentially regulated during nodule senescence, thus providing an unprecedented comprehensive resource of new candidate genes associated with this process. Remarkably, several plant and bacterial genes related to the cell cycle and stress responses were regulated in senescent nodules, including the rhizobial RpoE2-dependent general stress response. Analysis of selected core nodule senescence plant genes allowed showing that MtNAC969 and MtS40, both homologous to leaf senescence-associated genes, negatively regulate the transition between N fixation and senescence. In contrast, overexpression of a gene involved in the biosynthesis of cytokinins, well-known negative regulators of leaf senescence, may promote the transition from N fixation to senescence in nodules.
Collapse
Affiliation(s)
- Laurent Sauviac
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Antoine Rémy
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Emeline Huault
- Institute of Plant Sciences-Paris Saclay (IPS2), Paris-Saclay University, CNRS, INRAE, Université de Paris, Gif-sur-Yvette, France
| | | | - Théophile Kazmierczak
- Institute of Plant Sciences-Paris Saclay (IPS2), Paris-Saclay University, CNRS, INRAE, Université de Paris, Gif-sur-Yvette, France
| | - Marie-Françoise Jardinaud
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Ludovic Legrand
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Corentin Moreau
- Institute of Plant Sciences-Paris Saclay (IPS2), Paris-Saclay University, CNRS, INRAE, Université de Paris, Gif-sur-Yvette, France
| | - Bryan Ruiz
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Anne-Claire Cazalé
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | | | - Benjamin Gourion
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | | | - Véronique Gruber
- Institute of Plant Sciences-Paris Saclay (IPS2), Paris-Saclay University, CNRS, INRAE, Université de Paris, Gif-sur-Yvette, France
| | | | - Eliane Meilhoc
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Pierre Frendo
- Université Côte d'Azur, INRAE, CNRS, ISA, Nice, France
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay (IPS2), Paris-Saclay University, CNRS, INRAE, Université de Paris, Gif-sur-Yvette, France
| | - Claude Bruand
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| |
Collapse
|
9
|
Velandia K, Reid JB, Foo E. Right time, right place: The dynamic role of hormones in rhizobial infection and nodulation of legumes. PLANT COMMUNICATIONS 2022; 3:100327. [PMID: 35605199 PMCID: PMC9482984 DOI: 10.1016/j.xplc.2022.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Many legume plants form beneficial associations with rhizobial bacteria that are hosted in new plant root organs, nodules, in which atmospheric nitrogen is fixed. This association requires the precise coordination of two separate programs, infection in the epidermis and nodule organogenesis in the cortex. There is extensive literature indicating key roles for plant hormones during nodulation, but a detailed analysis of the spatial and temporal roles of plant hormones during the different stages of nodulation is required. This review analyses the current literature on hormone regulation of infection and organogenesis to reveal the differential roles and interactions of auxin, cytokinin, brassinosteroids, ethylene, and gibberellins during epidermal infection and cortical nodule initiation, development, and function. With the exception of auxin, all of these hormones suppress infection events. By contrast, there is evidence that all of these hormones promote nodule organogenesis, except ethylene, which suppresses nodule initiation. This differential role for many of the hormones between the epidermal and cortical programs is striking. Future work is required to fully examine hormone interactions and create a robust model that integrates this knowledge into our understanding of nodulation pathways.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
10
|
Chu X, Su H, Hayashi S, Gresshoff PM, Ferguson BJ. Spatiotemporal changes in gibberellin content are required for soybean nodulation. THE NEW PHYTOLOGIST 2022; 234:479-493. [PMID: 34870861 DOI: 10.1111/nph.17902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The plant hormone gibberellin (GA) is required at different stages of legume nodule development, with its spatiotemporal distribution tightly regulated. Transcriptomic and bioinformatic analyses established that several key GA biosynthesis and catabolism enzyme encoding genes are critical to soybean (Glycine max) nodule formation. We examined the expression of several GA oxidase genes and used a Förster resonance energy transfer-based GA biosensor to determine the bioactive GA content of roots inoculated with DsRed-labelled Bradyrhizobium diazoefficiens. We manipulated the level of GA by genetically disrupting the expression of GA oxidase genes. Moreover, exogenous treatment of soybean roots with GA3 induced the expression of key nodulation genes and altered infection thread and nodule phenotypes. GmGA20ox1a, GmGA3ox1a, and GmGA2ox1a are upregulated in soybean roots inoculated with compatible B. diazoefficiens. GmGA20ox1a expression is predominately localized to the transient meristem of soybean nodules and coincides with the spatiotemporal distribution of bioactive GA occurring throughout nodule organogenesis. GmGA2ox1a exhibits a nodule vasculature-specific expression pattern, whereas GmGA3ox1a can be detected throughout the nodule and root. Disruptions in the level of GA resulted in aberrant rhizobia infection and reduced nodule numbers. Collectively, our results establish a central role for GAs in root hair infection by symbiotic rhizobia and in nodule organogenesis.
Collapse
Affiliation(s)
- Xitong Chu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - Huanan Su
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Satomi Hayashi
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
- Centre for Agriculture and Biocommodities, Queensland University of Technology, Brisbane, Qld, 4000, Australia
| | - Peter M Gresshoff
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - Brett J Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| |
Collapse
|
11
|
Ivanova KA, Chernova EN, Kulaeva OA, Tsyganova AV, Kusakin PG, Russkikh IV, Tikhonovich IA, Tsyganov VE. The Regulation of Pea ( Pisum sativum L.) Symbiotic Nodule Infection and Defense Responses by Glutathione, Homoglutathione, and Their Ratio. FRONTIERS IN PLANT SCIENCE 2022; 13:843565. [PMID: 35432395 PMCID: PMC9006610 DOI: 10.3389/fpls.2022.843565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, the roles of glutathione (GSH), homoglutathione (hGSH), and their ratio in symbiotic nodule development and functioning, as well as in defense responses accompanying ineffective nodulation in pea (Pisum sativum) were investigated. The expression of genes involved in (h)GSH biosynthesis, thiol content, and localization of the reduced form of GSH were analyzed in nodules of wild-type pea plants and mutants sym33-3 (weak allele, "locked" infection threads, occasional bacterial release, and defense reactions) and sym33-2 (strong allele, "locked" infection threads, defense reactions), and sym40-1 (abnormal bacteroids, oxidative stress, early senescence, and defense reactions). The effects of (h)GSH depletion and GSH treatment on nodule number and development were also examined. The GSH:hGSH ratio was found to be higher in nodules than in uninoculated roots in all genotypes analyzed, with the highest value being detected in wild-type nodules. Moreover, it was demonstrated, that a hGSHS-to-GSHS switch in gene expression in nodule tissue occurs only after bacterial release and leads to an increase in the GSH:hGSH ratio. Ineffective nodules showed variable GSH:hGSH ratios that correlated with the stage of nodule development. Changes in the levels of both thiols led to the activation of defense responses in nodules. The application of a (h)GSH biosynthesis inhibitor disrupted the nitrogen fixation zone in wild-type nodules, affected symbiosome formation in sym40-1 mutant nodules, and meristem functioning and infection thread growth in sym33-3 mutant nodules. An increase in the levels of both thiols following GSH treatment promoted both infection and extension of defense responses in sym33-3 nodules, whereas a similar increase in sym40-1 nodules led to the formation of infected cells resembling wild-type nitrogen-fixing cells and the disappearance of an early senescence zone in the base of the nodule. Meanwhile, an increase in hGSH levels in sym40-1 nodules resulting from GSH treatment manifested as a restriction of infection similar to that seen in untreated sym33-3 nodules. These findings indicated that a certain level of thiols is required for proper symbiotic nitrogen fixation and that changes in thiol content or the GSH:hGSH ratio are associated with different abnormalities and defense responses.
Collapse
Affiliation(s)
- Kira A. Ivanova
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Ekaterina N. Chernova
- Saint Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Olga A. Kulaeva
- Laboratory of Genetics of Plant-Microbe Interactions, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anna V. Tsyganova
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Pyotr G. Kusakin
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Iana V. Russkikh
- Saint Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Igor A. Tikhonovich
- Laboratory of Genetics of Plant-Microbe Interactions, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Viktor E. Tsyganov
- Laboratory of Molecular and Cellular Biology, Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Saint Petersburg Scientific Center of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
12
|
Basu S, Clark RE, Bera S, Casteel CL, Crowder DW. Responses of pea plants to multiple antagonists are mediated by order of attack and phytohormone crosstalk. Mol Ecol 2021; 30:4939-4948. [PMID: 34347913 DOI: 10.1111/mec.16103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
Plants are often attacked by multiple antagonists and traits of the attacking organisms and their order of arrival onto hosts may affect plant defences. However, few studies have assessed how multiple antagonists, and varying attack order, affect plant defence or nutrition. To address this, we assessed defensive and nutritional responses of Pisum sativum plants after attack by a vector herbivore (Acrythosiphon pisum), a nonvector herbivore (Sitona lineatus), and a pathogen (Pea enation mosaic virus, PEMV). We show viruliferous A. pisum induced several antipathogen plant defence signals, but these defences were inhibited by S. lineatus feeding on peas infected with PEMV. In contrast, S. lineatus feeding induced antiherbivore defence signals, and these plant defences were enhanced by PEMV. Sitona lineatus also increased abundance of plant amino acids, but only when they attacked after viruliferous A. pisum. Our results suggest that diverse communities of biotic antagonists alter defence and nutritional traits of plants through complex pathways that depend on the identity of attackers and their order of arrival onto hosts. Moreover, we show interactions among a group of biotic stressors can vary along a spectrum from antagonism to enhancement/synergism based on the identity and order of attackers, and these interactions are mediated by a multitude of phytohormone pathways.
Collapse
Affiliation(s)
- Saumik Basu
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Robert E Clark
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Sayanta Bera
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY, USA
| | - Clare L Casteel
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY, USA
| | - David W Crowder
- Department of Entomology, Washington State University, Pullman, WA, USA
| |
Collapse
|
13
|
Gibberellins Inhibit Flavonoid Biosynthesis and Promote Nitrogen Metabolism in Medicago truncatula. Int J Mol Sci 2021; 22:ijms22179291. [PMID: 34502200 PMCID: PMC8431309 DOI: 10.3390/ijms22179291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 01/21/2023] Open
Abstract
Bioactive gibberellic acids (GAs) are diterpenoid plant hormones that are biosynthesized through complex pathways and control various aspects of growth and development. Although GA biosynthesis has been intensively studied, the downstream metabolic pathways regulated by GAs have remained largely unexplored. We investigated Tnt1 retrotransposon insertion mutant lines of Medicago truncatula with a dwarf phenotype by forward and reverse genetics screening and phylogenetic, molecular, biochemical, proteomic and metabolomic analyses. Three Tnt1 retrotransposon insertion mutant lines of the gibberellin 3-beta-dioxygenase 1 gene (GA3ox1) with a dwarf phenotype were identified, in which the synthesis of GAs (GA3 and GA4) was inhibited. Phenotypic analysis revealed that plant height, root and petiole length of ga3ox1 mutants were shorter than those of the wild type (Medicago truncatula ecotype R108). Leaf size was also much smaller in ga3ox1 mutants than that in wild-type R108, which is probably due to cell-size diminution instead of a decrease in cell number. Proteomic and metabolomic analyses of ga3ox1/R108 leaves revealed that in the ga3ox1 mutant, flavonoid isoflavonoid biosynthesis was significantly up-regulated, while nitrogen metabolism was down-regulated. Additionally, we further demonstrated that flavonoid and isoflavonoid biosynthesis was induced by prohexadione calcium, an inhibitor of GA3ox enzyme, and inhibited by exogenous GA3. In contrast, nitrogen metabolism was promoted by exogenous GA3 but inhibited by prohexadione calcium. The results of this study further demonstrated that GAs play critical roles in positively regulating nitrogen metabolism and transport and negatively regulating flavonoid biosynthesis through GA-mediated signaling pathways in leaves.
Collapse
|
14
|
Broda M, Khan K, O’Leary B, Pružinská A, Lee CP, Millar AH, Van Aken O. Increased expression of ANAC017 primes for accelerated senescence. PLANT PHYSIOLOGY 2021; 186:2205-2221. [PMID: 33914871 PMCID: PMC8331134 DOI: 10.1093/plphys/kiab195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Recent studies in Arabidopsis (Arabidopsis thaliana) have reported conflicting roles for NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), a transcription factor regulating mitochondria-to-nuclear signaling, and its closest paralog NAC DOMAIN CONTAINING PROTEIN 16 (ANAC016), in leaf senescence. By synchronizing senescence in individually darkened leaves of knockout and overexpressing mutants from these contrasting studies, we demonstrate that elevated ANAC017 expression consistently causes accelerated senescence and cell death. A time-resolved transcriptome analysis revealed that senescence-associated pathways such as autophagy are not constitutively activated in ANAC017 overexpression lines, but require a senescence-stimulus to trigger accelerated induction. ANAC017 transcript and ANAC017-target genes are constitutively upregulated in ANAC017 overexpression lines, but surprisingly show a transient "super-induction" 1 d after senescence induction. This induction of ANAC017 and its target genes is observed during the later stages of age-related and dark-induced senescence, indicating the ANAC017 pathway is also activated in natural senescence. In contrast, knockout mutants of ANAC017 showed lowered senescence-induced induction of ANAC017 target genes during the late stages of dark-induced senescence. Finally, promoter binding analyses show that the ANAC016 promoter sequence is directly bound by ANAC017, so ANAC016 likely acts downstream of ANAC017 and is directly transcriptionally controlled by ANAC017 in a feed-forward loop during late senescence.
Collapse
Affiliation(s)
- Martyna Broda
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Kasim Khan
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Brendan O’Leary
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Adriana Pružinská
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Biology, Lund University, Lund 22362, Sweden
- Author for communication:
| |
Collapse
|
15
|
Vittozzi Y, Nadzieja M, Rogato A, Radutoiu S, Valkov VT, Chiurazzi M. The Lotus japonicus NPF3.1 Is a Nodule-Induced Gene That Plays a Positive Role in Nodule Functioning. FRONTIERS IN PLANT SCIENCE 2021; 12:688187. [PMID: 34220910 PMCID: PMC8253256 DOI: 10.3389/fpls.2021.688187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 05/26/2023]
Abstract
Nitrogen-fixing nodules are new organs formed on legume roots as a result of the beneficial interaction with the soil bacteria, rhizobia. Proteins of the nitrate transporter 1/peptide transporter family (NPF) are largely represented in the subcategory of nodule-induced transporters identified in mature nodules. The role of nitrate as a signal/nutrient regulating nodule functioning has been recently highlighted in the literature, and NPFs may play a central role in both the permissive and inhibitory pathways controlling N2-fixation efficiency. In this study, we present the characterization of the Lotus japonicus LjNPF3.1 gene. LjNPF3.1 is upregulated in mature nodules. Promoter studies show transcriptional activation confined to the cortical region of both roots and nodules. Under symbiotic conditions, Ljnpf3.1-knockout mutant's display reduced shoot development and anthocyanin accumulation as a result of nutrient deprivation. Altogether, LjNPF3.1 plays a role in maximizing the beneficial outcome of the root nodule symbiosis.
Collapse
Affiliation(s)
- Ylenia Vittozzi
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Vladimir Totev Valkov
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| |
Collapse
|
16
|
Characteristics and Research Progress of Legume Nodule Senescence. PLANTS 2021; 10:plants10061103. [PMID: 34070891 PMCID: PMC8227080 DOI: 10.3390/plants10061103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Delaying the nodule senescence of legume crops can prolong the time of nitrogen fixation and attenuate the lack of fertilizer in the later stage of legume crop cultivation, resulting in improved crop yield and reduced usage of nitrogen fertilizer. However, effective measures to delay the nodule senescence of legume crops in agriculture are relatively lacking. In the present review, we summarized the structural and physiological characteristics of nodule senescence, as well as the corresponding detection methods, providing technical support for the identification of nodule senescence phenotype. We then outlined the key genes currently known to be involved in the regulation of nodule senescence, offering the molecular genetic information for breeding varieties with delayed nodule senescence. In addition, we reviewed various abiotic factors affecting nodule senescence, providing a theoretical basis for the interaction between molecular genetics and abiotic factors in the regulation of nodule senescence. Finally, we briefly prospected research foci of nodule senescence in the future.
Collapse
|
17
|
Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads. Cells 2021; 10:cells10051050. [PMID: 33946779 PMCID: PMC8146911 DOI: 10.3390/cells10051050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.
Collapse
|
18
|
McGuiness PN, Reid JB, Foo E. The influence of ethylene, gibberellins and brassinosteroids on energy and nitrogen-fixation metabolites in nodule tissue. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110846. [PMID: 33691972 DOI: 10.1016/j.plantsci.2021.110846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 05/12/2023]
Abstract
Legume nodules are a unique plant organ that contain nitrogen-fixing rhizobial bacteria. For this interaction to be mutually beneficial, plant and bacterial metabolism must be precisely co-ordinated. Plant hormones are known to play essential roles during the establishment of legume-rhizobial symbioses but their role in subsequent nodule metabolism has not been explored in any depth. The plant hormones brassinosteroids, ethylene and gibberellins influence legume infection, nodule number and in some cases nodule function. In this paper, the influence of these hormones on nodule metabolism was examined in a series of well characterised pea mutants with altered hormone biosynthesis or response. A targeted set of metabolites involved in nutrient exchange and nitrogen fixation was examined in nodule tissue of mutant and wild type plants. Gibberellin-deficiency had a major negative impact on the level of several major dicarboxylates supplied to rhizobia by the plant and also led to a significant deficit in the amino acids involved in glutamine-aspartate transamination, consistent with the limited bacteroid development and low fixation rate of gibberellin-deficient na mutant nodules. In contrast, no major effects of brassinosteroid-deficiency or ethylene-insensitivity on the key metabolites in these pathways were found. Therefore, although all three hormones influence infection and nodule number, only gibberellin is important for the establishment of a functional nodule metabolome.
Collapse
Affiliation(s)
- Peter N McGuiness
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - James B Reid
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
19
|
Ali M, Miao L, Hou Q, Darwish DB, Alrdahe SS, Ali A, Benedito VA, Tadege M, Wang X, Zhao J. Overexpression of Terpenoid Biosynthesis Genes From Garden Sage ( Salvia officinalis) Modulates Rhizobia Interaction and Nodulation in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:783269. [PMID: 35003167 PMCID: PMC8733304 DOI: 10.3389/fpls.2021.783269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/24/2021] [Indexed: 05/17/2023]
Abstract
In legumes, many endogenous and environmental factors affect root nodule formation through several key genes, and the regulation details of the nodulation signaling pathway are yet to be fully understood. This study investigated the potential roles of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. We characterized six terpenoid synthesis genes from Salvia officinalis by overexpressing SoTPS6, SoNEOD, SoLINS, SoSABS, SoGPS, and SoCINS in soybean hairy roots and evaluating root growth and nodulation, and the expression of strigolactone (SL) biosynthesis and early nodulation genes. Interestingly, overexpression of some of the terpenoid and terpene genes increased nodule numbers, nodule and root fresh weight, and root length, while others inhibited these phenotypes. These results suggest the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. This study provides novel insights into epistatic interactions between terpenoids, root development, and nodulation in soybean root biology and open new avenues for soybean research.
Collapse
Affiliation(s)
- Mohammed Ali
- Egyptian Deserts Gene Bank, North Sinai Research Station, Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | - Long Miao
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Qiuqiang Hou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Doaa B. Darwish
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Salma Saleh Alrdahe
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed Ali
- Department of Plant Agricultural, Faculty of Agriculture Science, Al-Azhar University, Assiut, Egypt
| | - Vagner A. Benedito
- Plant and Soil Sciences Division, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, WV, United States
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, United States
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
- *Correspondence: Xiaobo Wang,
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Jian Zhao, ; orcid.org/0000-0002-4416-7334
| |
Collapse
|
20
|
Tsyganov VE, Tsyganova AV. Symbiotic Regulatory Genes Controlling Nodule Development in Pisum sativum L. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1741. [PMID: 33317178 PMCID: PMC7764586 DOI: 10.3390/plants9121741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Analyses of natural variation and the use of mutagenesis and molecular-biological approaches have revealed 50 symbiotic regulatory genes in pea (Pisum sativum L.). Studies of genomic synteny using model legumes, such as Medicago truncatula Gaertn. and Lotus japonicus (Regel) K. Larsen, have identified the sequences of 15 symbiotic regulatory genes in pea. These genes encode receptor kinases, an ion channel, a calcium/calmodulin-dependent protein kinase, transcription factors, a metal transporter, and an enzyme. This review summarizes and describes mutant alleles, their phenotypic manifestations, and the functions of all identified symbiotic regulatory genes in pea. Some examples of gene interactions are also given. In the review, all mutant alleles in genes with identified sequences are designated and still-unidentified symbiotic regulatory genes of great interest are considered. The identification of these genes will help elucidate additional components involved in infection thread growth, nodule primordium development, bacteroid differentiation and maintenance, and the autoregulation of nodulation. The significance of symbiotic mutants of pea as extremely fruitful genetic models for studying nodule development and for comparative cell biology studies of legume nodules is clearly demonstrated. Finally, it is noted that many more sequences of symbiotic regulatory genes remain to be identified. Transcriptomics approaches and genome-wide sequencing could help address this challenge.
Collapse
Affiliation(s)
- Viktor E. Tsyganov
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, 196608 Saint Petersburg, Russia;
| | | |
Collapse
|
21
|
Swarnalakshmi K, Yadav V, Tyagi D, Dhar DW, Kannepalli A, Kumar S. Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production. PLANTS 2020; 9:plants9111596. [PMID: 33213067 PMCID: PMC7698556 DOI: 10.3390/plants9111596] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/01/2023]
Abstract
Grain legumes are an important component of sustainable agri-food systems. They establish symbiotic association with rhizobia and arbuscular mycorrhizal fungi, thus reducing the use of chemical fertilizers. Several other free-living microbial communities (PGPR—plant growth promoting rhizobacteria) residing in the soil-root interface are also known to influence biogeochemical cycles and improve legume productivity. The growth and function of these microorganisms are affected by root exudate molecules secreted in the rhizosphere region. PGPRs produce the chemicals which stimulate growth and functions of leguminous crops at different growth stages. They promote plant growth by nitrogen fixation, solubilization as well as mineralization of phosphorus, and production of phytohormone(s). The co-inoculation of PGPRs along with rhizobia has shown to enhance nodulation and symbiotic interaction. The recent molecular tools are helpful to understand and predict the establishment and function of PGPRs and plant response. In this review, we provide an overview of various growth promoting mechanisms of PGPR inoculations in the production of leguminous crops.
Collapse
Affiliation(s)
| | - Vandana Yadav
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Deepti Tyagi
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Dolly Wattal Dhar
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Annapurna Kannepalli
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Shiv Kumar
- International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco
| |
Collapse
|
22
|
The Fungicide Tetramethylthiuram Disulfide Negatively Affects Plant Cell Walls, Infection Thread Walls, and Symbiosomes in Pea ( Pisum sativum L.) Symbiotic Nodules. PLANTS 2020; 9:plants9111488. [PMID: 33158267 PMCID: PMC7694270 DOI: 10.3390/plants9111488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
In Russia, tetramethylthiuram disulfide (TMTD) is a fungicide widely used in the cultivation of legumes, including the pea (Pisum sativum). Application of TMTD can negatively affect nodulation; nevertheless, its effect on the histological and ultrastructural organization of nodules has not previously been investigated. In this study, the effect of TMTD at three concentrations (0.4, 4, and 8 g/kg) on nodule development in three pea genotypes (laboratory lines Sprint-2 and SGE, and cultivar 'Finale') was examined. In SGE, TMTD at 0.4 g/kg reduced the nodule number and shoot and root fresh weights. Treatment with TMTD at 8 g/kg changed the nodule color from pink to green, indicative of nodule senescence. Light and transmission electron microscopy analyses revealed negative effects of TMTD on nodule structure in each genotype. 'Finale' was the most sensitive cultivar to TMTD and Sprint-2 was the most tolerant. The negative effects of TMTD on nodules included the appearance of a senescence zone, starch accumulation, swelling of cell walls accompanied by a loss of electron density, thickening of the infection thread walls, symbiosome fusion, and bacteroid degradation. These results demonstrate how TMTD adversely affects nodules in the pea and will be useful for developing strategies to optimize fungicide use on legume crops.
Collapse
|
23
|
Deng J, Zhu F, Liu J, Zhao Y, Wen J, Wang T, Dong J. Transcription Factor bHLH2 Represses CYSTEINE PROTEASE77 to Negatively Regulate Nodule Senescence. PLANT PHYSIOLOGY 2019; 181:1683-1703. [PMID: 31591150 PMCID: PMC6878008 DOI: 10.1104/pp.19.00574] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/23/2019] [Indexed: 05/12/2023]
Abstract
Legume-rhizobia symbiosis is a time-limited process due to the onset of senescence, which results in the degradation of host plant cells and symbiosomes. A number of transcription factors, proteases, and functional genes have been associated with nodule senescence; however, whether other proteases or transcription factors are involved in nodule senescence remains poorly understood. In this study, we identified an early nodule senescence mutant in Medicago truncatula, denoted basic helix-loop-helix transcription factor2 (bhlh2), that exhibits decreased nitrogenase activity, acceleration of plant programmed cell death (PCD), and accumulation of reactive oxygen species (ROS). The results suggest that MtbHLH2 plays a negative role in nodule senescence. Nodules of wild-type and bhlh2-TALEN mutant plants at 28 d postinoculation were used for transcriptome sequencing. The transcriptome data analysis identified a papain-like Cys protease gene, denoted MtCP77, that could serve as a potential target of MtbHLH2. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis demonstrated that MtbHLH2 directly binds to the promoter of MtCP77 to inhibit its expression. MtCP77 positively regulates nodule senescence by accelerating plant PCD and ROS accumulation. In addition, the expression of MtbHLH2 in the nodules gradually decreased from the meristematic zone to the nitrogen fixation zone, whereas the expression of MtCP77 showed enhancement. These results indicate that MtbHLH2 and MtCP77 have opposite functions in the regulation of nodule senescence. These results reveal significant roles for MtbHLH2 and MtCP77 in plant PCD, ROS accumulation, and nodule senescence, and improve our understanding of the regulation of the nodule senescence process.
Collapse
Affiliation(s)
- Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yafei Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
24
|
Tsyganova AV, Seliverstova EV, Brewin NJ, Tsyganov VE. Bacterial release is accompanied by ectopic accumulation of cell wall material around the vacuole in nodules of Pisum sativum sym33-3 allele encoding transcription factor PsCYCLOPS/PsIPD3. PROTOPLASMA 2019; 256:1449-1453. [PMID: 31020397 DOI: 10.1007/s00709-019-01383-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Pisum sativum symbiotic mutant SGEFix--2 carries the sym33-3 allele of the gene Sym33, encoding transcription factor PsCYCLOPS/PsIPD3. Previously, strong host cell defence reactions were identified in nodules of this mutant. In the present study, new manifestations of defence reactions were revealed in 28-day-old white nodules in which bacterial release had occurred. These nodules were investigated using histochemical staining of pectin and suberin and by immunogold localisation of three components of pectin: highly methyl-esterified homogalacturonan (HG) recognised by monoclonal antibody JIM7, low methyl-esterified HG recognised by JIM5 and linear (1-4)-β-D-galactan side-chain of rhamnogalacturonan I (RG I) recognised by LM5. In the mutant, but not in the wild-type, cell wall material was deposited around the vacuole in the uninfected cells, in cells containing infection threads and in the infected cells. The deposits around the vacuole were marked with JIM7 and LM5 antibodies but not with JIM5, suggesting that they contain newly formed cell wall material. Deposition was accompanied by suberin accumulation. This is the first report that deposition of cell wall material around the vacuole may be associated with the defence reaction in ineffective nodules. In addition, hypertrophic infection droplets labelled with JIM7 were identified. In the matrix of some infection threads, RG I recognised a pectic gel component. Callose deposits in the cell walls and in the walls of infection threads were occasionally observed. The observations suggest that an important function of transcriptional factor CYCLOPS/IPD3 is the suppression of defence reactions during establishment of the legume-rhizobial symbiosis.
Collapse
Affiliation(s)
- Anna V Tsyganova
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky chaussee 3, St. Petersburg, Russia, 196608
| | - Elena V Seliverstova
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky chaussee 3, St. Petersburg, Russia, 196608
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, pr. Torez 44, St. Petersburg, Russia, 194223
| | | | - Viktor E Tsyganov
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky chaussee 3, St. Petersburg, Russia, 196608.
| |
Collapse
|