1
|
Justamante MS, Larriba E, Zavala-González EA, Aranda-Martínez A, Pérez-Pérez JM. Transcriptional Profiling to Assess the Effects of Biological Stimulant Atlanticell Micomix on Tomato Seedlings Under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1198. [PMID: 40284086 PMCID: PMC12030531 DOI: 10.3390/plants14081198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Recent environmental changes in the Mediterranean region, attributable to anthropogenic climate change, present a substantial challenge to the adaptive evaluation of crops and the development of novel improvement strategies. In this study, we established a hydroponic tomato cultivation protocol under in vitro conditions to analyze the transcriptomic profile of seedlings exposed to salinity stress. The study also examined the impact of Atlanticell Micomix, a biological stimulant derived from a mixture of mycorrhizal microorganisms and rhizobacteria, on plant growth and development under standard conditions and in response to moderate salinity. Our transcriptomic analysis indicated a differential effect of biostimulant inoculation compared to the effect induced by salinity stress, involving genes such as GOX3 or DIR1, which are associated with the plant's defense response to adverse conditions. In addition, the presence of a cross-regulatory module between jasmonic acid and auxin, involving potential orthologs of IAA29 and JAZ, was proposed. The application of the biostimulant demonstrated a potential priming effect on the tomato seedlings, which might be useful in reversing the transcriptomic effects caused by salt stress. A comprehensive analysis of the pathways differentially affected by the treatments facilitates further investigation into the mechanisms underlying these effects.
Collapse
Affiliation(s)
- María Salud Justamante
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (E.L.)
| | - Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (E.L.)
| | | | | | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (E.L.)
| |
Collapse
|
2
|
López-Ruíz BA, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER, Urrutia AO, Garay-Arroyo A. Genome-wide association studies meta-analysis uncovers NOJO and SGS3 novel genes involved in Arabidopsis thaliana primary root development and plasticity. Mol Biol Rep 2024; 51:763. [PMID: 38874813 PMCID: PMC11178574 DOI: 10.1007/s11033-024-09623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Arabidopsis thaliana primary root growth has become a model for evo-devo studies due to its simplicity and facility to record cell proliferation and differentiation. To identify new genetic components relevant to primary root growth, we used a Genome-Wide Association Studies (GWAS) meta-analysis approach using data published in the last decade. In this work, we performed intra and inter-studies analyses to discover new genetic components that could participate in primary root growth. METHODS AND RESULTS We used 639 accessions from nine different studies under control conditions and performed different GWAS tests. We found that primary root growth changes were associated with 41 genes, of which six (14.6%) have been previously described as inhibitors or promoters of primary root growth. The knockdown lines of two genes, Suppressor of Gene Silencing (SGS3), involved in tasiRNA processing, and a gene with a Sterile Alpha Motif (SAM) motif named NOJOCH MOOTS (NOJO), confirmed their role as repressors of primary root growth, none has been shown to participate in this developmental process before. CONCLUSIONS In summary, our GWAS analysis of different available studies identified new genes that participate in primary root growth; two of them were identified as repressors of primary root growth.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruíz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), C. U. CDMX, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), C. U. CDMX, México
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), C. U. CDMX, México
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), C. U. CDMX, México
- Centro de Ciencias de la Complejidad, UNAM, CDMX, México
| | - Araxi O Urrutia
- Laboratorio de Genómica Evolutiva y Funcional, Instituto de Ecología, UNAM, Mexico City, México.
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), C. U. CDMX, México.
- Centro de Ciencias de la Complejidad, UNAM, CDMX, México.
| |
Collapse
|
3
|
Control of lateral root initiation by DA3 in Arabidopsis. Cell Rep 2023; 42:111913. [PMID: 36640335 DOI: 10.1016/j.celrep.2022.111913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/02/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Lateral root (LR) initiation is controlled by the pericycle and the neighboring endodermis in Arabidopsis. Here, we demonstrate that UBIQUITIN-SPECIFIC PROTEASE14/DA3 regulates LR initiation by modulating auxin signaling in the pericycle and endodermis. DA3 negatively affects the mRNA and protein levels of AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 in the pericycle and endodermis but positively regulates the protein stability of SHORT HYPOCOTYL 2 (SHY2/IAA3), an auxin signaling repressor, in the endodermis. We show that DA3 interacts with ARF7 and ARF19, inhibiting their binding to the locus of LATERAL ORGAN BOUNDARY DOMAIN16 (LBD16) to repress its expression in the pericycle. SHY2 also interacts with ARF7 and ARF19 in the endodermis and enhances the DA3 repressive effect on ARF7 and ARF19, thus modulating LBD16 expression in the pericycle. Overall, our findings show that DA3 acts with SHY2, ARF7, and ARF19 to coordinate auxin signaling in the pericycle and endodermis to control LR initiation in Arabidopsis.
Collapse
|
4
|
López-Ruiz BA, Quezada-Rodríguez EH, Piñeyro-Nelson A, Tovar H, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. Combined Approach of GWAS and Phylogenetic Analyses to Identify New Candidate Genes That Participate in Arabidopsis thaliana Primary Root Development Using Cellular Measurements and Primary Root Length. PLANTS (BASEL, SWITZERLAND) 2022; 11:3162. [PMID: 36432890 PMCID: PMC9697774 DOI: 10.3390/plants11223162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Genome-wide association studies (GWAS) have allowed the identification of different loci associated with primary root (PR) growth, and Arabidopsis is an excellent model for these studies. The PR length is controlled by cell proliferation, elongation, and differentiation; however, the specific contribution of proliferation and differentiation in the control of PR growth is still poorly studied. To this end, we analyzed 124 accessions and used a GWAS approach to identify potential causal genomic regions related to four traits: PR length, growth rate, cell proliferation and cell differentiation. Twenty-three genes and five statistically significant SNPs were identified. The SNP with the highest score mapped to the fifth exon of NAC048 and this change makes a missense variant in only 33.3% of the accessions with a large PR, compared with the accessions with a short PR length. Moreover, we detected five more SNPs in this gene and in NAC3 that allow us to discover closely related accessions according to the phylogenetic tree analysis. We also found that the association between genetic variants among the 18 genes with the highest scores in our GWAS and the phenotypic classes into which we divided our accessions are not straightforward and likely follow historical patterns.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Elsa H. Quezada-Rodríguez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México 04510, Mexico
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Hugo Tovar
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Ahmad N, Ibrahim S, Tian Z, Kuang L, Wang X, Wang H, Dun X. Quantitative trait loci mapping reveals important genomic regions controlling root architecture and shoot biomass under nitrogen, phosphorus, and potassium stress in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:994666. [PMID: 36172562 PMCID: PMC9511887 DOI: 10.3389/fpls.2022.994666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Plants rely on root systems for nutrient uptake from soils. Marker-assisted selection helps breeders to select desirable root traits for effective nutrient uptake. Here, 12 root and biomass traits were investigated at the seedling stage under low nitrogen (LN), low phosphorus (LP), and low potassium (LK) conditions, respectively, in a recombinant inbred line (RIL) population, which was generated from Brassica napus L. Zhongshuang11 and 4D122 with significant differences in root traits and nutrient efficiency. Significant differences for all the investigated traits were observed among RILs, with high heritabilities (0.43-0.74) and high correlations between the different treatments. Quantitative trait loci (QTL) mapping identified 57, 27, and 36 loci, explaining 4.1-10.9, 4.6-10.8, and 4.9-17.4% phenotypic variances under LN, LP, and LK, respectively. Through QTL-meta analysis, these loci were integrated into 18 significant QTL clusters. Four major QTL clusters involved 25 QTLs that could be repeatedly detected and explained more than 10% phenotypic variances, including two NPK-common and two specific QTL clusters (K and NK-specific), indicating their critical role in cooperative nutrients uptake of N, P, and K. Moreover, 264 genes within the four major QTL clusters having high expressions in roots and SNP/InDel variations between two parents were identified as potential candidate genes. Thirty-eight of them have been reported to be associated with root growth and development and/or nutrient stress tolerance. These key loci and candidate genes lay the foundation for deeper dissection of the NPK starvation response mechanisms in B. napus.
Collapse
Affiliation(s)
- Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| |
Collapse
|