1
|
Hernandez-Escribano L, Morales Clemente MT, Fariña-Flores D, Raposo R. A delayed response in phytohormone signaling and production contributes to pine susceptibility to Fusarium circinatum. BMC PLANT BIOLOGY 2024; 24:727. [PMID: 39080528 PMCID: PMC11289988 DOI: 10.1186/s12870-024-05342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Fusarium circinatum is the causal agent of pine pitch canker disease, which affects Pinus species worldwide, causing significant economic and ecological losses. In Spain, two Pinus species are most affected by the pathogen; Pinus radiata is highly susceptible, while Pinus pinaster has shown moderate resistance. In F. circinatum-Pinus interactions, phytohormones are known to play a crucial role in plant defense. By comparing species with different degrees of susceptibility, we aimed to elucidate the fundamental mechanisms underlying resistance to the pathogen. For this purpose, we used an integrative approach by combining gene expression and metabolomic phytohormone analyses at 5 and 10 days post inoculation. RESULTS Gene expression and metabolite phytohormone contents suggested that the moderate resistance of P. pinaster to F. circinatum is determined by the induction of phytohormone signaling and hormone rearrangement beginning at 5 dpi, when symptoms are still not visible. Jasmonic acid was the hormone that showed the greatest increase by 5 dpi, together with the active gibberellic acid 4 and the cytokinin dehydrozeatin; there was also an increase in abscisic acid and salicylic acid by 10 dpi. In contrast, P. radiata hormonal changes were delayed until 10 dpi, when symptoms were already visible; however, this increase was not as high as that in P. pinaster. Indeed, in P. radiata, no differences in jasmonic acid or salicylic acid production were found. Gene expression analysis supported the hormonal data, since the activation of genes related to phytohormone synthesis was observed earlier in P. pinaster than in the susceptible P. radiata. CONCLUSIONS We determine that the moderate resistance of P. pinaster to F. circinatum is in part a result of early and strong activation of plant phytohormone-based defense responses before symptoms become visible. We suggest that jasmonic acid signaling and production are strongly associated with F. circinatum resistance. In contrast, P. radiata susceptibility was attributed to a delayed response to the fungus at the moment when symptoms were visible. Our results contribute to a better understanding of the phytohormone-based defense mechanism involved in the Pinus-F. circinatum interactions and provide insight into the development of new strategies for disease mitigation.
Collapse
Affiliation(s)
- Laura Hernandez-Escribano
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, Madrid, 28040, Spain.
| | | | - David Fariña-Flores
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, Madrid, 28040, Spain
- Departamento de Biotecnología-Biología Vegetal, E.T.S. de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Rosa Raposo
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera Coruña km 7.5, Madrid, 28040, Spain.
| |
Collapse
|
2
|
Zakaria MAT, Sakimin SZ, Ismail MR, Ahmad K, Kasim S. Growth Enhancement and Resistance of Banana Plants to Fusarium Wilt Disease as Affected by Silicate Compounds and Application Frequency. PLANTS (BASEL, SWITZERLAND) 2024; 13:542. [PMID: 38498542 PMCID: PMC10892973 DOI: 10.3390/plants13040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 03/20/2024]
Abstract
The amendment of soils with silicate (Si) compounds is essential to promote growth performance and control Fusarium wilt disease in bananas. Two successive greenhouse trials were conducted at the experimental farm of the University of Putra Malaysia. The treatments were arranged in split plots using a randomized complete block design (RCBD) with four replicates to investigate the effects of Si compounds and application frequency on controlling FOC. Si compounds were used at a constant concentration of 0.1%: T0 (control), T1 (13% SiO2:20% K2O), T2 (26.6% SiO2:13.4% K2O) and T3 (36.2% SiO2:17% Na2O). There were three application frequencies by day intervals (DI): 0DI (without any application), 7DI (12× within 12 weeks after transplanting (WAT)), 15DI (6× within 12 WAT) and 30DI (3× within 12 WAT). From these findings, we observed that the photosynthesis rate started to increase from 10.6 to 19.4 µmol CO2 m-2s-1, when the total chlorophyll content started to increase from 3.85 to 7.61 mgcm-2. The transpiration rate started to increase from a value of 1.94 to 4.31 mmol H2O m-2s-1, when the stomata conductance started to increase from 0.237 to 0.958 mmol m-2s-1. The proline content started to increase from 22.89 to 55.07 µmg-1, when the relative water content started to increase from 42.92 to 83.57%.
Collapse
Affiliation(s)
- Md Aiman Takrim Zakaria
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.T.Z.); (M.R.I.)
| | - Siti Zaharah Sakimin
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.T.Z.); (M.R.I.)
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Razi Ismail
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.T.Z.); (M.R.I.)
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Susilawati Kasim
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
3
|
García-Campa L, Valledor L, Pascual J. The Integration of Data from Different Long-Read Sequencing Platforms Enhances Proteoform Characterization in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:511. [PMID: 36771596 PMCID: PMC9920879 DOI: 10.3390/plants12030511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The increasing availability of massive omics data requires improving the quality of reference databases and their annotations. The combination of full-length isoform sequencing (Iso-Seq) with short-read transcriptomics and proteomics has been successfully used for increasing proteoform characterization, which is a main ongoing goal in biology. However, the potential of including Oxford Nanopore Technologies Direct RNA Sequencing (ONT-DRS) data has not been explored. In this paper, we analyzed the impact of combining Iso-Seq- and ONT-DRS-derived data on the identification of proteoforms in Arabidopsis MS proteomics data. To this end, we selected a proteomics dataset corresponding to senescent leaves and we performed protein searches using three different protein databases: AtRTD2 and AtRTD3, built from the homonymous transcriptomes, regarded as the most complete and up-to-date available for the species; and a custom hybrid database combining AtRTD3 with publicly available ONT-DRS transcriptomics data generated from Arabidopsis leaves. Our results show that the inclusion and combination of long-read sequencing data from Iso-Seq and ONT-DRS into a proteogenomic workflow enhances proteoform characterization and discovery in bottom-up proteomics studies. This represents a great opportunity to further investigate biological systems at an unprecedented scale, although it brings challenges to current protein searching algorithms.
Collapse
Affiliation(s)
- Lara García-Campa
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| | - Jesús Pascual
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| |
Collapse
|
4
|
Utilizing volatile organic compounds for early detection of Fusarium circinatum. Sci Rep 2022; 12:21661. [PMID: 36522407 PMCID: PMC9755288 DOI: 10.1038/s41598-022-26078-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Fusarium circinatum, a fungal pathogen deadly to many Pinus species, can cause significant economic and ecological losses, especially if it were to become more widely established in Europe. Early detection tools with high-throughput capacity can increase our readiness to implement mitigation actions against new incursions. This study sought to develop a disease detection method based on volatile organic compound (VOC) emissions to detect F. circinatum on different Pinus species. The complete pipeline applied here, entailing gas chromatography-mass spectrometry of VOCs, automated data analysis and machine learning, distinguished diseased from healthy seedlings of Pinus sylvestris and Pinus radiata. In P. radiata, this distinction was possible even before the seedlings became visibly symptomatic, suggesting the possibility for this method to identify latently infected, yet healthy looking plants. Pinus pinea, which is known to be relatively resistant to F. circinatum, remained asymptomatic and showed no changes in VOCs over 28 days. In a separate analysis of in vitro VOCs collected from different species of Fusarium, we showed that even closely related Fusarium spp. can be readily distinguished based on their VOC profiles. The results further substantiate the potential for volatilomics to be used for early disease detection and diagnostic recognition.
Collapse
|
5
|
Maiden NA, Syd Ali N, Ahmad K, Atan S, Wong MY. Growth and physiological responses of Hevea brasiliensis to Rigidoporus microporus infection. J RUBBER RES 2022. [DOI: 10.1007/s42464-022-00156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Zamora-Ballesteros C, Martín-García J, Suárez-Vega A, Diez JJ. Genome-wide identification and characterization of Fusarium circinatum-responsive lncRNAs in Pinus radiata. BMC Genomics 2022; 23:194. [PMID: 35264109 PMCID: PMC8908662 DOI: 10.1186/s12864-022-08408-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background One of the most promising strategies of Pine Pitch Canker (PPC) management is the use of reproductive plant material resistant to the disease. Understanding the complexity of plant transcriptome that underlies the defence to the causal agent Fusarium circinatum, would greatly facilitate the development of an accurate breeding program. Long non-coding RNAs (lncRNAs) are emerging as important transcriptional regulators under biotic stresses in plants. However, to date, characterization of lncRNAs in conifer trees has not been reported. In this study, transcriptomic identification of lncRNAs was carried out using strand-specific paired-end RNA sequencing, from Pinus radiata samples inoculated with F. circinatum at an early stage of infection. Results Overall, 13,312 lncRNAs were predicted through a bioinformatics approach, including long intergenic non-coding RNAs (92.3%), antisense lncRNAs (3.3%) and intronic lncRNAs (2.9%). Compared with protein-coding RNAs, pine lncRNAs are shorter, have lower expression, lower GC content and harbour fewer and shorter exons. A total of 164 differentially expressed (DE) lncRNAs were identified in response to F. circinatum infection in the inoculated versus mock-inoculated P. radiata seedlings. The predicted cis-regulated target genes of these pathogen-responsive lncRNAs were related to defence mechanisms such as kinase activity, phytohormone regulation, and cell wall reinforcement. Co-expression network analysis of DE lncRNAs, DE protein-coding RNAs and lncRNA target genes also indicated a potential network regulating pectinesterase activity and cell wall remodelling. Conclusions This study presents the first comprehensive genome-wide analysis of P. radiata lncRNAs and provides the basis for future functional characterizations of lncRNAs in relation to pine defence responses against F. circinatum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08408-9.
Collapse
Affiliation(s)
- Cristina Zamora-Ballesteros
- Department of Vegetal Production and Forest Resources, University of Valladolid, Av Madrid 44, 34004 Palencia, Spain. .,Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain.
| | - Jorge Martín-García
- Department of Vegetal Production and Forest Resources, University of Valladolid, Av Madrid 44, 34004 Palencia, Spain.,Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, University of León, Campus de Vegazana s/n, 24071 León, Spain
| | - Julio Javier Diez
- Department of Vegetal Production and Forest Resources, University of Valladolid, Av Madrid 44, 34004 Palencia, Spain.,Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| |
Collapse
|
7
|
Leitão F, Pinto G, Amaral J, Monteiro P, Henriques I. New insights into the role of constitutive bacterial rhizobiome and phenolic compounds in two Pinus spp. with contrasting susceptibility to pine pitch canker. TREE PHYSIOLOGY 2022; 42:600-615. [PMID: 34508603 DOI: 10.1093/treephys/tpab119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 05/24/2023]
Abstract
The rhizobiome is being increasingly acknowledged as a key player in plant health and breeding strategies. The pine pitch canker (PPC), caused by the fungus Fusarium circinatum, affects pine species with varying susceptibility degrees. Our aims were to explore the bacterial rhizobiome of a susceptible (Pinus radiata) and a resistant (Pinus pinea) species together with other physiological traits, and to analyze shifts upon F. circinatum inoculation. Pinus seedlings were stem inoculated with F. circinatum spores and needle gas exchange and antioxidant-related parameters were analyzed in non-inoculated and inoculated plants. Rhizobiome structure was evaluated through 16S rRNA gene massive parallel sequencing. Species (non-inoculated plants) harbored distinct rhizobiomes (<40% similarity), where P. pinea displayed a rhizobiome with increased abundance of taxa described in suppressive soils, displaying plant growth promoting (PGP) traits and/or anti-fungal activity. Plants of this species also displayed higher levels of phenolic compounds. F. circinatum induced slight changes in the rhizobiome of both species and a negative impact in photosynthetic-related parameters in P. radiata. We concluded that the rhizobiome of each pine species is distinct and higher abundance of bacterial taxa associated to disease protection was registered for the PPC-resistant species. Furthermore, differences in the rhizobiome are paralleled by a distinct content in phenolic compounds, which are also linked to plants' resistance against PPC. This study unveils a species-specific rhizobiome and provides insights to exploit the rhizobiome for plant selection in nurseries and for rhizobiome-based plant-growth-promoting strategies, boosting environmentally friendly disease control strategies.
Collapse
Affiliation(s)
- Frederico Leitão
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Glória Pinto
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Joana Amaral
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Pedro Monteiro
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Isabel Henriques
- Faculty of Science and Technology, Department of Life Sciences and CESAM, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Amaral J, Valledor L, Alves A, Martín-García J, Pinto G. Studying tree response to biotic stress using a multi-disciplinary approach: The pine pitch canker case study. FRONTIERS IN PLANT SCIENCE 2022; 13:916138. [PMID: 36160962 PMCID: PMC9501998 DOI: 10.3389/fpls.2022.916138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/18/2022] [Indexed: 05/09/2023]
Abstract
In an era of climate change and global trade, forests sustainability is endangered by several biotic threats. Pine pitch canker (PPC), caused by Fusarium circinatum, is one of the most important disease affecting conifers worldwide. To date, no effective control measures have been found for this disease. Earlier studies on PPC were mainly focused on the pathogen itself or on determining the levels of susceptibility of different hosts to F. circinatum infection. However, over the last years, plenty of information on the mechanisms that may explain the susceptibility or resistance to PPC has been published. This data are useful to better understand tree response to biotic stress and, most importantly, to aid the development of innovative and scientific-based disease control measures. This review gathers and discusses the main advances on PPC knowledge, especially focusing on multi-disciplinary studies investigating the response of pines with different levels of susceptibility to PPC upon infection. After an overview of the general knowledge of the disease, the importance of integrating information from physiological and Omics studies to unveil the mechanisms behind PPC susceptibility/resistance and to develop control strategies is explored. An extensive review of the main host responses to PPC was performed, including changes in water relations, signalling (ROS and hormones), primary metabolism, and defence (resin, phenolics, and PR proteins). A general picture of pine response to PPC is suggested according to the host susceptibility level and the next steps and gaps on PPC research are pointed out.
Collapse
Affiliation(s)
- Joana Amaral
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
- *Correspondence: Joana Amaral,
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Jorge Martín-García
- Department of Vegetal Production and Forest Resources, University of Valladolid, Palencia, Spain
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia, Spain
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
- Glória Pinto,
| |
Collapse
|
9
|
Amaral J, Lamelas L, Valledor L, Castillejo MÁ, Alves A, Pinto G. Comparative proteomics of Pinus-Fusarium circinatum interactions reveal metabolic clues to biotic stress resistance. PHYSIOLOGIA PLANTARUM 2021; 173:2142-2154. [PMID: 34537969 DOI: 10.1111/ppl.13563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 05/24/2023]
Abstract
Fusarium circinatum, causing pine pitch canker (PPC), affects conifers productivity and health worldwide. Selection and breeding for resistance arises as the most promising approach to fight PPC. Therefore, it is crucial to explore the response of hosts with varying levels of susceptibility to PPC to unveil the genes/pathways behind these phenotypes. We evaluated the dynamics of the needle proteome of a susceptible (Pinus radiata) and a relatively resistant (Pinus pinea) species upon F. circinatum inoculation by GeLC-MS/MS. Integration with physiological data and validation of key genes by qPCR allowed to identify core pathways regulating these contrasting responses. In P. radiata, the pathogen may target both the secondary metabolism to negatively regulate immune response and chloroplast redox proteins to increase energy-producing pathways for amino acid production in its favour. In contrast, chloroplast redox regulation may assure redox homeostasis in P. pinea, as well as nonenzymatic antioxidants. The presence of membrane trafficking-related proteins exclusively in P. pinea likely explains its defence response against F. circinatum. A crosstalk between abscisic acid and epigenetic regulation of gene expression is also proposed in PPC response. These results are useful to support breeding programs aiming to achieve PPC resistance.
Collapse
Affiliation(s)
- Joana Amaral
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Co-Infections by Fusarium circinatum and Phytophthora spp. on Pinus radiata: Complex Phenotypic and Molecular Interactions. PLANTS 2021; 10:plants10101976. [PMID: 34685785 PMCID: PMC8537148 DOI: 10.3390/plants10101976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022]
Abstract
This study investigated the complex phenotypic and genetic response of Monterey pine (Pinus radiata) seedlings to co-infections by F. circinatum, the causal agent of pine pitch canker disease, and the oomycetes Phytophthora xcambivora and P. parvispora. Monterey pine seedlings were wound-inoculated with each single pathogen and with the combinations F. circinatum/P. xcambivora and F. circinatum/P. parvispora. Initially, seedlings inoculated only with F. circinatum showed less severe symptoms than seedlings co-inoculated or inoculated only with P. xcambivora or P. parvispora. However, 30 days post-inoculation (dpi), all inoculated seedlings, including those inoculated only with F. circinatum, showed severe symptoms with no significant differences among treatments. The transcriptomic profiles of three genes encoding pathogenesis-related proteins, i.e., chitinase (PR3), thaumatin-like protein (PR5), phenylalanine ammonia-lyase (PAL), and the pyruvate decarboxylase (PDC)-encoding gene were analyzed at various time intervals after inoculation. In seedlings inoculated with single pathogens, F. circinatum stimulated the up-regulation of all genes, while between the two oomycetes, only P. xcambivora induced significant up-regulations. In seedlings co-inoculated with F. circinatum and P.xcambivora or P. parvispora none of the genes showed a significant over-expression 4 dpi. In contrast, at 11 dpi, significant up-regulation was observed for PR5 in the combination F. circinatum/P.xcambivora and PDC in the combination F. circinatum/P. parvispora, thus suggesting a possible synergism of multiple infections in triggering this plant defense mechanism.
Collapse
|
11
|
Zamora-Ballesteros C, Pinto G, Amaral J, Valledor L, Alves A, Diez JJ, Martín-García J. Dual RNA-Sequencing Analysis of Resistant ( Pinus pinea) and Susceptible ( Pinus radiata) Hosts during Fusarium circinatum Challenge. Int J Mol Sci 2021; 22:5231. [PMID: 34063405 PMCID: PMC8156185 DOI: 10.3390/ijms22105231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Fusarium circinatum causes one of the most important diseases of conifers worldwide, the pine pitch canker (PPC). However, no effective field intervention measures aiming to control or eradicate PPC are available. Due to the variation in host genetic resistance, the development of resistant varieties is postulated as a viable and promising strategy. By using an integrated approach, this study aimed to identify differences in the molecular responses and physiological traits of the highly susceptible Pinus radiata and the highly resistant Pinus pinea to F. circinatum at an early stage of infection. Dual RNA-Seq analysis also allowed to evaluate pathogen behavior when infecting each pine species. No significant changes in the physiological analysis were found upon pathogen infection, although transcriptional reprogramming was observed mainly in the resistant species. The transcriptome profiling of P. pinea revealed an early perception of the pathogen infection together with a strong and coordinated defense activation through the reinforcement and lignification of the cell wall, the antioxidant activity, the induction of PR genes, and the biosynthesis of defense hormones. On the contrary, P. radiata had a weaker response, possibly due to impaired perception of the fungal infection that led to a reduced downstream defense signaling. Fusarium circinatum showed a different transcriptomic profile depending on the pine species being infected. While in P. pinea, the pathogen focused on the degradation of plant cell walls, active uptake of the plant nutrients was showed in P. radiata. These findings present useful knowledge for the development of breeding programs to manage PPC.
Collapse
Affiliation(s)
- Cristina Zamora-Ballesteros
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| | - Gloria Pinto
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Joana Amaral
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain;
| | - Artur Alves
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Julio J. Diez
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| | - Jorge Martín-García
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| |
Collapse
|
12
|
Amaral J, Correia B, Escandón M, Jesus C, Serôdio J, Valledor L, Hancock RD, Dinis LT, Gomez-Cadenas A, Alves A, Pinto G. Temporal physiological response of pine to Fusarium circinatum infection is dependent on host susceptibility level: the role of ABA catabolism. TREE PHYSIOLOGY 2021; 41:801-816. [PMID: 33150950 DOI: 10.1093/treephys/tpaa143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 05/24/2023]
Abstract
Pine pitch canker (PPC), caused by Fusarium circinatum Nirenberg and O'Donnell, represents an important threat to conifer forests worldwide, being associated with significant economic losses. Although essential to develop disease mitigation strategies, little research focused on host susceptibility/resistance mechanisms has been conducted. We aimed to explore the response of a highly susceptible (Pinus radiata D. Don) and a relatively resistant (Pinus pinea L.) species to F. circinatum infection at different stages of infection. Morpho-physiological, hormonal and oxidative stress-related changes were assessed for each pine species and sampling point. Most of the changes found occurred in symptomatic P. radiata, for which an increased susceptibility to photoinhibition was detected together with decreased superoxide dismutase activity. Abscisic acid catabolism was activated by F. circinatum inoculation in both pine species, leading to the accumulation of the inactive dihydrophaseic acid in P. radiata and of the less-active phaseic acid in P. pinea. Hormone confocal analysis revealed that this strategy may be of particular importance at 6 d.p.i. in P. pinea, which together with photosynthesis maintenance to fuel defense mechanism, could in part explain the species resistance to PPC. These results are of great interest for the development of hormone-based breeding strategies or for the use of hormone application as inducers of resistance to F. circinatum infection.
Collapse
Affiliation(s)
- Joana Amaral
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Barbara Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
- Department of Applied Sciences, Frenchay Campus, University of West England (UWE), Bristol BS16 1QY, UK
| | - Mónica Escandón
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba 14014, Spain
| | - Cláudia Jesus
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo 33071, Spain
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Lia-Tânia Dinis
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real 5000-801, Portugal
| | - Aurelio Gomez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón de la Plana 12071, Spain
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
13
|
Rodrigues AM, Carrasquinho I, António C. Primary Metabolite Adjustments Associated With Pinewood Nematode Resistance in Pinus pinaster. FRONTIERS IN PLANT SCIENCE 2021; 12:777681. [PMID: 34950168 PMCID: PMC8691400 DOI: 10.3389/fpls.2021.777681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
The pinewood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of the pine wilt disease (PWD) and represents one of the major threats to conifer forests. The detection of the PWN in Portugal, associated with Pinus pinaster, increased the concern of its spread to European forests. Despite its susceptibility to PWD, genetic variability found among P. pinaster populations has been associated with heritable PWD resistance. Understanding the mechanisms underlying tree resistance constitutes a valuable resource for breeding programs toward more resilient forest plantations. This study investigated changes in anatomy, chlorophyll a fluorescence (ChlF), and primary metabolism in susceptible and resistant P. pinaster half-sib plants, after PWN inoculation. Susceptible plants showed a general shutdown of central metabolism, osmolyte accumulation, photosynthetic inhibition, and a decrease in the plant water status. The ChlF transient rise (OJIP curve) revealed the appearance of L- and K-bands, indicators of environmental stress. In contrast, resistant plants revealed a regulated defense response and were able to restrict PWN migration and cellular damage. Furthermore, the accumulation of γ-aminobutyric acid (GABA) and succinate suggested a role of these metabolites in PWD resistance and the possible activation of the GABA shunt. Altogether, these results provide new insights to the role of primary metabolism in PWD resistance and in the selection of resistant phenotypes for disease mitigation.
Collapse
Affiliation(s)
- Ana M. Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel Carrasquinho
- Instituto Nacional Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: Carla António,
| |
Collapse
|