1
|
Kuo WH, Cunningham E, Guo E, Olsen KM. Genetics and plasticity of white leaf mark variegation in white clover (Trifolium repens L.). ANNALS OF BOTANY 2024; 134:949-958. [PMID: 39115051 PMCID: PMC11687625 DOI: 10.1093/aob/mcae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND AND AIMS Leaf variegation is common in plants and confers diverse adaptive functions. However, its genetic underpinnings remain largely unresolved; this is particularly true for variegation that arises through modified leaf tissue structure that affects light reflection. White clover is naturally polymorphic for structure-based white leaf mark variegation. It therefore provides a useful system in which to examine the genetic basis of this phenotype and to assess potential costs to photosynthetic efficiency resulting from modified leaf structures. In this study, we sought to map the loci controlling the white leaf mark in white clover and to evaluate the relationship between white leaf mark, leaf thickness and photosynthetic efficiency. METHODS We generated a high-density genetic linkage map from an F3 mapping population, using reference genome-based single nucleotide polymorphism markers. White leaf mark was quantified through detailed phenotypic evaluations alongside leaf thickness to test how tissue thickness might affect the variegation phenotype. Mapping of quantitative trait loci was performed to characterize their genetic basis. Photosynthetic efficiency measurements were used to test for physiological trade-offs between variegation and photosynthetic output. KEY RESULTS The V locus, a major gene responsible for the white leaf mark polymorphism, was mapped to the distal end of chromosome 5, and several modifier loci were also mapped that contribute additively to the intensity of variegation. The presence and intensity of white leaf mark were associated with greater leaf thickness; however, increased variegation did not affect photosynthetic efficiency detectably. CONCLUSIONS We have successfully mapped the major locus governing the white leaf mark in white clover, along with several modifier loci, revealing a complex basis for this structure-based variegation. The apparent absence of compromised photosynthesis in variegated leaves challenges the notion that variegation creates fitness trade-offs between photosynthetic efficiency and other adaptive functions. This finding suggests that other factors might maintain the white leaf mark polymorphism in white clover.
Collapse
Affiliation(s)
- Wen-Hsi Kuo
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eimear Cunningham
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily Guo
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Sullivan CN, Koski MH. An elevational cline in leaf variegation: Testing anti-herbivory and abiotic heterogeneity hypotheses in maintaining a polymorphism. AMERICAN JOURNAL OF BOTANY 2024; 111:e16411. [PMID: 39323053 DOI: 10.1002/ajb2.16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 09/27/2024]
Abstract
PREMISE While some studies have found leaf variegation to reduce photosynthetic capacity, others showed that it can increase photosynthesis. Thus, what maintains variegation remains an open question. Two primary hypotheses-the anti-herbivory and abiotic heterogeneity hypotheses-have been posited, yet little empirical research explicitly investigates the maintenance of naturally occurring variegation. METHODS We used field surveys, image analysis, and climatic associations to explore the anti-herbivory and abiotic heterogeneity hypotheses in 21 populations of Hexastylis heterophylla and H. shuttleworthii, both polymorphic for leaf variegation. We measured the frequency of variegated individuals, variegation intensity, and herbivory for each morph, assessed abiotic correlates with variegation, and measured photosynthetic efficiency. RESULTS We found a strong elevational cline in leaf variegation strongly linked with abiotic heterogeneity; variegation was more common in lower-elevation populations characterized by higher temperatures, UV-B exposure, seasonal light change, and drier, more basic soils. Variegated and nonvariegated individuals experienced similar levels of herbivory. Morphs had similar photosynthetic quantum yields. However, nonvariegated leaves experienced more nonphotochemical quenching, an indication of photoinhibition, and had higher surface temperatures under high light. CONCLUSIONS Our results suggest that variegation may serve as an adaptation to high temperatures and light conditions and can reduce photoinhibition in certain environmental contexts. Thus, abiotic factors can maintain variegation in wild populations and shape geographic clines in variegation.
Collapse
Affiliation(s)
- Cierra N Sullivan
- Department of Biological Sciences, Clemson University, Clemson, 29634, SC, USA
| | - Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, 29634, SC, USA
| |
Collapse
|
3
|
Qin H, Guo J, Jin Y, Li Z, Chen J, Bie Z, Luo C, Peng F, Yan D, Kong Q, Liang F, Zhang H, Hu X, Cui R, Cui X. Integrative analysis of transcriptome and metabolome provides insights into the mechanisms of leaf variegation in Heliopsis helianthoides. BMC PLANT BIOLOGY 2024; 24:731. [PMID: 39085772 PMCID: PMC11290119 DOI: 10.1186/s12870-024-05450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND In the field of ornamental horticulture, phenotypic mutations, particularly in leaf color, are of great interest due to their potential in developing new plant varieties. The introduction of variegated leaf traits in plants like Heliopsis helianthoides, a perennial herbaceous species with ecological adaptability, provides a rich resource for molecular breeding and research on pigment metabolism and photosynthesis. We aimed to explore the mechanism of leaf variegation of Heliopsis helianthoides (using HY2021F1-0915 variegated mutant named HY, and green-leaf control check named CK in 2020 April, May and June) by analyzing the transcriptome and metabolome. RESULTS Leaf color and physiological parameters were found to be significantly different between HY and CK types. Chlorophyll content of HY was lower than that of CK samples. Combined with the result of Weighted Gene Co-expression Network Analysis (WGCNA), 26 consistently downregulated differentially expressed genes (DEGs) were screened in HY compared to CK subtypes. Among the DEGs, 9 genes were verified to be downregulated in HY than CK by qRT-PCR. The reduction of chlorophyll content in HY might be due to the downregulation of FSD2. Low expression level of PFE2, annotated as ferritin-4, might also contribute to the interveinal chlorosis of HY. Based on metabolome data, differential metabolites (DEMs) between HY and CK samples were significantly enriched on ABC transporters in three months. By integrating DEGs and DEMs, they were enriched on carotenoids pathway. Downregulation of four carotenoid pigments might be one of the reasons for HY's light color. CONCLUSION FSD2 and PFE2 (ferritin-4) were identified as key genes which likely contribute to the reduced chlorophyll content and interveinal chlorosis observed in HY. The differential metabolites were significantly enriched in ABC transporters. Carotenoid biosynthesis pathway was highlighted with decreased pigments in HY individuals. These findings not only enhance our understanding of leaf variegation mechanisms but also offer valuable insights for future plant breeding strategies aimed at preserving and enhancing variegated-leaf traits in ornamental plants.
Collapse
Affiliation(s)
- Helan Qin
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China.
| | - Jia Guo
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Yingshan Jin
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Zijing Li
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Ju Chen
- Beijing Florascape Co., Ltd, No.2 Wenxing Dong Street, Xicheng District, Beijing, 100044, China
| | - Zhengwei Bie
- Beijing Qunfangpu Horticulture Co., Ltd, No.19 Madian East Road, Haidian District, Beijing, 100088, China
| | - Chunyu Luo
- Beijing Lv Xing Landscaping Co., Ltd, Zhangjiawan Town, Tongzhou District, Beijing, 101117, China
| | - Feitong Peng
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Dongyan Yan
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Qinggang Kong
- Beijing Florascape Co., Ltd, No.2 Wenxing Dong Street, Xicheng District, Beijing, 100044, China
| | - Fang Liang
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Hua Zhang
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Xuefan Hu
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Rongfeng Cui
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Xiuna Cui
- Beijing Florascape Co., Ltd, No.2 Wenxing Dong Street, Xicheng District, Beijing, 100044, China
| |
Collapse
|
4
|
Zhang M, Gao H, Chen S, Wang X, Mo W, Yang X, Wang X, Wang Z, Wang R. Linkages between stomatal density and minor leaf vein density across different altitudes and growth forms. FRONTIERS IN PLANT SCIENCE 2022; 13:1064344. [PMID: 36561450 PMCID: PMC9765094 DOI: 10.3389/fpls.2022.1064344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Water supply and demand in leaves are primarily determined by stomatal density (SD, water demand) and minor leaf vein density (VLA, water supply). Thus, covariation between them is essential for maintaining water balance. However, there is debate over whether these two traits vary in a coordinated way. Here, we gathered SD and VLA data from 194 species over four altitudinal gradients, and investigated their relationships across all species, growth forms, and different altitudes. Our findings demonstrated that SD and VLA were positively associated across all species, independent on plant phylogeny. Moreover, the reliability of this SD-VLA relationship increased with altitudes. Although the stomatal number per minor vein length (SV) remained stable across different altitudes and growth forms, the positive SD-VLA relationship was found only in shrubs and herbs, but not in trees. Differently, a strong coordination between total stomatal number and total leaf vein length was observed across all species, trees, shrubs and herbs. These findings suggested that coordinating stomatal number and minor vein length within one leaf, rather than stomatal and vein density, may be a common choice of plants in the fluctuating environment. Therefore, to explore the relationship between total number of stomata and total length of leaf veins seems to better reflect the linkage between stomata and leaf veins, especially when covering different growth forms.
Collapse
Affiliation(s)
- Ming Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Huirong Gao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuang Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaochun Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiyi Mo
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhibo Wang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Ruili Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Qinling National Forest Ecosystem Research Station, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Lev‐Yadun S. The phenomenon of red and yellow autumn leaves: Hypotheses, agreements and disagreements. J Evol Biol 2022; 35:1245-1282. [PMID: 35975328 PMCID: PMC9804425 DOI: 10.1111/jeb.14069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/02/2022] [Accepted: 07/10/2022] [Indexed: 01/05/2023]
Abstract
Yellow and red autumn leaves are typical of many temperate/boreal woody plants. Since the 19th century, it has been either considered the non-functional outcome of chlorophyll degradation that unmasks the pre-existing yellow and red pigments or that the de novo synthesis of red anthocyanins in autumn leaves indicated that it should have a physiological function, although it was commonly ignored. Defending free amino acids and various other resources released especially following the breakdown of the photosynthetic system, and mobilizing them for storage in other organs before leaf fall, is the cornerstone of both the physiological and anti-herbivory hypotheses about the functions of yellow and red autumn leaf colouration. The complicated phenomenon of conspicuous autumn leaf colouration has received significant attention since the year 2000, especially because ecologists started paying attention to its anti-herbivory potential. The obvious imperfection of the hypotheses put forth in several papers stimulated many other scientists. Hot debates among physiologists, among ecologists, and between physiologists and ecologists have been common since the year 2000, first because the various functions of yellow and red autumn leaf colouration are non-exclusive, and second because many scientists were trained to focus on a single subject. Here, I will review the debates, especially between the photoprotective and the anti-herbivory hypotheses, and describe both the progress in their understanding and the required progress.
Collapse
Affiliation(s)
- Simcha Lev‐Yadun
- Department of Biology & Environment, Faculty of Natural SciencesUniversity of HaifaTivonIsrael
| |
Collapse
|
6
|
Chen J, Li Y, He D, Bai M, Li B, Zhang Q, Luo L. Cytological, physiological and transcriptomic analysis of variegated Leaves in Primulina pungentisepala offspring. BMC PLANT BIOLOGY 2022; 22:419. [PMID: 36045322 PMCID: PMC9434889 DOI: 10.1186/s12870-022-03808-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Primulina pungentisepala is suitable for use as a potted plant because of its beautiful leaf variegation, which is significantly different in its selfed offspring. However, the mechanism of P. pungentisepala leaf variegation is unclear. In this study, two types of offspring showing the greatest differences were compared in terms of leaf structure, chlorophyll contents, chlorophyll fluorescence parameters and transcriptomes to provide a reference for studying the molecular mechanism of structural leaf variegation. RESULTS Air spaces were found between water storage tissue, and the palisade tissue cells were spherical in the white type. The content of chlorophyll a and total chlorophyll (chlorophyll a + b) was significantly lower in the white type, but there were no significant differences in the content of chlorophyll b, chlorophyll a/b or chlorophyll fluorescence parameters between the white and green types. We performed transcriptomic sequencing to identify differentially expressed genes (DEGs) involved in cell division and differentiation, chlorophyll metabolism and photosynthesis. Among these genes, the expression of the cell division- and differentiation-related leucine-rich repeat receptor-like kinases (LRR-RLKs), xyloglucan endotransglycosylase/hydrolase (XET/H), pectinesterase (PE), expansin (EXP), cellulose synthase-like (CSL), VARIEGATED 3 (VAR3), and ZAT10 genes were downregulated in the white type, which might have promoted the development air spaces and variant palisade cells. Chlorophyll biosynthesis-related hydroxymethylbilane synthase (HEMC) and the H subunit of magnesium chelatase (CHLH) were downregulated, while chlorophyll degradation-related chlorophyllase-2 (CHL2) was upregulated in the white type, which might have led to lower chlorophyll accumulation. CONCLUSION Leaf variegation in P. pungentisepala was caused by a combination of mechanisms involving structural variegation and low chlorophyll levels. Our research provides significant insights into the molecular mechanisms of structural leaf variegation.
Collapse
Affiliation(s)
- Jiancun Chen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Yueya Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Dong He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Meng Bai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Bo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| | - Le Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083 China
| |
Collapse
|
7
|
Transcriptome Analysis of Air Space-Type Variegation Formation in Trifolium pratense. Int J Mol Sci 2022; 23:ijms23147794. [PMID: 35887138 PMCID: PMC9322087 DOI: 10.3390/ijms23147794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Air space-type variegation is the most diverse among the species of known variegated leaf plants and is caused by conspicuous intercellular spaces between the epidermal and palisade cells and among the palisade cells at non-green areas. Trifolium pratense, a species in Fabaceae with V-shaped air space-type variegation, was selected to explore the application potential of variegated leaf plants and accumulate basic data on the molecular regulatory mechanism and evolutionary history of leaf variegation. We performed comparative transcriptome analysis on young and adult leaflets of variegated and green plants and identified 43 candidate genes related to air space-type variegation formation. Most of the genes were related to cell-wall structure modification (CESA, CSL, EXP, FLA, PG, PGIP, PLL, PME, RGP, SKS, and XTH family genes), followed by photosynthesis (LHCB subfamily, RBCS, GOX, and AGT family genes), redox (2OG and GSH family genes), and nitrogen metabolism (NodGS family genes). Other genes were related to photooxidation, protein interaction, and protease degradation systems. The downregulated expression of light-responsive LHCB subfamily genes and the upregulated expression of the genes involved in cell-wall structure modification were important conditions for air space-type variegation formation in T. pratense. The upregulated expression of the ubiquitin-protein ligase enzyme (E3)-related genes in the protease degradation systems were conducive to air space-type variegation formation. Because these family genes are necessary for plant growth and development, the mechanism of the leaf variegation formation in T. pratense might be a widely existing regulation in air space-type variegation in nature.
Collapse
|
8
|
Moraes TS, Rossi ML, Martinelli AP, Dornelas MC. Morphological and anatomical traits during development: Highlighting extrafloral nectaries in Passiflora organensis. Microsc Res Tech 2022; 85:2784-2794. [PMID: 35421272 DOI: 10.1002/jemt.24127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
Passiflora organensis is a small herbaceous vine with characteristic morphological variations throughout its development. The plant bears button-shaped extrafloral nectaries exclusively in adult leaves. Extrafloral nectaries are structures that secrete nectar and play an important role in plant-animal interactions as a strategy for protecting plants against herbivory. In this work, we performed anatomical and ultrastructural studies to characterize P. organensis extrafloral nectaries during their secretory phase. We showed extrafloral nectaries in Passiflora organensis are composed of three distinct regions: nectary epidermis, nectariferous parenchyma, and subnectariferous parenchyma. Our data suggests that all nectary regions constitute a functional unit involved in nectar production and release. The high metabolic activity in the nectary cells is characterized by the juxtaposition of organelles such as mitochondria and plastids together plasmalemma. In addition, calcium oxalate crystals are frequently associated to the nectaries. An increasing concentration of calcium during leaf development and nectary differentiation was observed, corresponding to the calcium deposition as calcium oxalate crystals. This is the first description of extrafloral nectaries in Passiflora organensis that is a promising tropical model species for several studies.
Collapse
Affiliation(s)
- Tatiana S Moraes
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Mônica Lanzoni Rossi
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Adriana P Martinelli
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Marcelo C Dornelas
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
9
|
Zhang Q, Huang J, Zhou P, Hao M, Zhang M. Cytological and Transcriptomic Analysis Provide Insights into the Formation of Variegated Leaves in Ilex × altaclerensis 'Belgica Aurea'. PLANTS (BASEL, SWITZERLAND) 2021; 10:552. [PMID: 33804110 PMCID: PMC7999392 DOI: 10.3390/plants10030552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 05/08/2023]
Abstract
Ilex × altaclerensis 'Belgica Aurea' is an attractive ornamental plant bearing yellow-green variegated leaves. However, the mechanisms underlying the formation of leaf variegation in this species are still unclear. Here, the juvenile yellow leaves and mature variegated leaves of I. altaclerensis 'Belgica Aurea' were compared in terms of leaf structure, pigment content and transcriptomics. The results showed that no obvious differences in histology were noticed between yellow and variegated leaves, however, ruptured thylakoid membranes and altered ultrastructure of chloroplasts were found in yellow leaves (yellow) and yellow sectors of the variegated leaves (variegation). Moreover, the yellow leaves and the yellow sectors of variegated leaves had significantly lower chlorophyll compared to green sectors of the variegated leaves (green). In addition, transcriptomic sequencing identified 1675 differentially expressed genes (DEGs) among the three pairwise comparisons (yellow vs. green, variegation vs. green, yellow vs. variegation). Expression of magnesium-protoporphyrin IX monomethyl ester (MgPME) [oxidative] cyclase, monogalactosyldiacylglycerol (MGDG) synthase and digalactosyldiacylglycerol (DGDG) synthase were decreased in the yellow leaves. Altogether, chlorophyll deficiency might be the main factors driving the formation of leaf variegation in I.altaclerensis 'Belgica Aurea'.
Collapse
Affiliation(s)
- Qiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (Q.Z.); (M.H.)
| | - Jing Huang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing 211153, China; (J.H.); (P.Z.)
| | - Peng Zhou
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing 211153, China; (J.H.); (P.Z.)
| | - Mingzhuo Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (Q.Z.); (M.H.)
| | - Min Zhang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing 211153, China; (J.H.); (P.Z.)
| |
Collapse
|
10
|
Fulvio F, Martinelli T, Paris R. Selection and validation of reference genes for RT-qPCR normalization in different tissues of milk thistle (Silybum marianum, Gaert.). Gene 2021; 768:145272. [PMID: 33122080 DOI: 10.1016/j.gene.2020.145272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022]
Abstract
Quantitative reverse transcription PCR is a sensitive technique for evaluating transcriptional profiles in different experimental datasets. To obtain a reliable quantification of the transcripts level, data normalization with stable reference genes is required. Stable reference genes are identified after analysis of their transcripts profile in every new experiment and species of interest. In Silybum marianum, a widely cultivated officinal plant, only few gene expression studies exist, and reference genes for RT-qPCR studies in the diverse plant tissues have never been investigated before. In this work, the expression stability of 10 candidate reference genes was evaluated in leaves, roots, stems and fruits of S. marianum grown under physiological environmental condition. The stability values for each candidate reference gene were calculated by four canonical statistical algorithms GeNorm, NormFinder, Bestkeeper and ΔCt method in different subsets of samples, then they were ranked with RefFinder from the most to the least suitable for normalization. Best combinations of reference genes are finally proposed for different experimental data sets, including all tissues, vegetative, and reproductive tissues separately. Three target genes putatively involved in important biosynthetic pathway leading to key metabolites in the fruits of milk thistle, such as silymarin and fatty acids, were analyzed with the chosen panels of reference genes, in comparison to the ones used in previous papers. To the best of our knowledge, this is the first report on a reliable and systematic identification and validation of the reference genes for RT-qPCR normalization to study gene expression in S. marianum.
Collapse
Affiliation(s)
- Flavia Fulvio
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca Cerealicoltura e Colture Industriali, Via di Corticella 133, 40128 Bologna, Italy
| | - Tommaso Martinelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca Cerealicoltura e Colture Industriali, Via di Corticella 133, 40128 Bologna, Italy; Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca Difesa e Certificazione, Via di Lanciola 12/A, Loc. Cascine del Riccio, 50125 Firenze, Italy
| | - Roberta Paris
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca Cerealicoltura e Colture Industriali, Via di Corticella 133, 40128 Bologna, Italy.
| |
Collapse
|
11
|
Protective Role of Leaf Variegation in Pittosporum tobira under Low Temperature: Insights into the Physio-Biochemical and Molecular Mechanisms. Int J Mol Sci 2019; 20:ijms20194857. [PMID: 31574927 PMCID: PMC6801658 DOI: 10.3390/ijms20194857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 01/17/2023] Open
Abstract
Leaf variegation has been demonstrated to have adaptive functions such as cold tolerance. Pittosporum tobira is an ornamental plant with natural leaf variegated cultivars grown in temperate regions. Herein, we investigated the role of leaf variegation in low temperature responses by comparing variegated “Variegatum” and non-variegated “Green Pittosporum” cultivars. We found that leaf variegation is associated with impaired chloroplast development in the yellow sector, reduced chlorophyll content, strong accumulation of carotenoids and high levels of ROS. However, the photosynthetic efficiency was not obviously impaired in the variegated leaves. Also, leaf variegation plays low temperature protective function since “Variegatum” displayed strong and efficient ROS-scavenging enzymatic systems to buffer cold (10 °C)-induced damages. Transcriptome analysis under cold conditions revealed 309 differentially expressed genes between both cultivars. Distinctly, the strong cold response observed in “Variegatum” was essentially attributed to the up-regulation of HSP70/90 genes involved in cellular homeostasis; up-regulation of POD genes responsible for cell detoxification and up-regulation of FAD2 genes and subsequent down-regulation of GDSL genes leading to high accumulation of polyunsaturated fatty acids for cell membrane fluidity. Overall, our results indicated that leaf variegation is associated with changes in physiological, biochemical and molecular components playing low temperature protective function in P. tobira.
Collapse
|