1
|
Nawaz M, Sun J, Bo Y, He F, Shabbir S, Hassan MU, Pan L, Ahmad P, Sonne C, Du D. Cadmium induced defense enhance the invasive potential of Wedelia trilobata under herbivore infestation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133931. [PMID: 38447369 DOI: 10.1016/j.jhazmat.2024.133931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Cadmium (Cd) pollution is on the rise due to rapid urbanization, which emphasize the potential adverse effects on plant biodiversity and human health. Wedelia as a dominant invasive species, is tested for its tolerance to Cd-toxicity and herbivore infestation. We investigate defense mechanism system of invasive Wedelia trilobata and its native congener Wedelia chinensis against the Cd-pollution and Spodoptera litura infestation. We found that Cd-toxicity significantly increase hydrogen peroxide (H2O2), Malondialdehyde (MDA) and hydroxyl ions (O2•) in W. chinensis 20.61%, 4.78% and 15.68% in leave and 27.44%, 25.52% and 30.88% in root, respectively. The photosynthetic pigments (Chla, Chla and Caro) and chlorophyll florescence (Fo and Fv/Fm) declined by (60.23%, 58.48% and 51.96%), and (73.29% and 55.75%) respectively in W. chinensis and (44.76%, 44.24% and 44.30%), and (54.66% and 45.36%) in W. trilobata under Cd treatment and S. litura. Invasive W. trilobata had higher enzymatic antioxidant SOD 126.9/71.64%, POD 97.24/94.92%, CAT 53.99/25.62% and APX 82.79/50.19%, and nonenzymatic antioxidant ASA 10.47/16.87%, DHA 15.07/27.88%, GSH 15.91/10.03% and GSSG 13.56/17.93% activity in leaf/root, respectively. Overall, W. trilobata accumulate higher Cd content 55.41%, 50.61% and 13.95% in root, shoot and leaf tissues respectively, than its native congener W. chinensis. While, nutrient profile of W. chinensis reveals less uptake of Fe, Cu and Zn than W. trilobata. W. trilobata showed efficient alleviation of oxidative damage through upregulating the genes related to key defense such as SOD, POD, CAT, APX, GR, PROL, FLV, ABA and JAZ, and metal transporter in leaves, shoot and root tissues, respectively. Conclusively, W. trilobata efficiently employed Cd-triggered defense for successful invasion, even under S. litura infestation, in Cd-contaminated soil.
Collapse
Affiliation(s)
- Mohsin Nawaz
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feng He
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Samina Shabbir
- Department of Chemistry, The Women University Multan, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences Jiangxi Agricultural University, Nanchang 330045, China
| | - Linxuan Pan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Kashmir, Jammu and Kashmir 192301, India
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Verbeecke V, Custódio L, Strobbe S, Van Der Straeten D. The role of orphan crops in the transition to nutritional quality-oriented crop improvement. Biotechnol Adv 2023; 68:108242. [PMID: 37640278 DOI: 10.1016/j.biotechadv.2023.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Micronutrient malnutrition is a persisting problem threatening global human health. Biofortification via metabolic engineering has been proposed as a cost-effective and short-term means to alleviate this burden. There has been a recent rise in the recognition of potential that underutilized, orphan crops can hold in decreasing malnutrition concerns. Here, we illustrate how orphan crops can serve as a medium to provide micronutrients to populations in need, whilst promoting and maintaining dietary diversity. We provide a roadmap, illustrating which aspects to be taken into consideration when evaluating orphan crops. Recent developments have shown successful biofortification via metabolic engineering in staple crops. This review provides guidance in the implementation of these successes to relevant orphan crop species, with a specific focus on the relevant micronutrients iron, zinc, provitamin A and folates.
Collapse
Affiliation(s)
- Vincent Verbeecke
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Laura Custódio
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Luyckx A, Lutts S, Quinet M. Comparison of Salt Stress Tolerance among Two Leaf and Six Grain Cultivars of Amaranthus cruentus L. PLANTS (BASEL, SWITZERLAND) 2023; 12:3310. [PMID: 37765474 PMCID: PMC10535409 DOI: 10.3390/plants12183310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/19/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Amaranths (Amaranthus L.) are multi-use crop species renowned for their nutritional quality and their tolerance to biotic and abiotic stresses. Since the soil salinity of croplands is a growing problem worldwide, we tested the salinity tolerance of six grain and two leaf cultivars of Amaranthus cruentus L. The plants were grown for 53 days under hydroponic conditions at 0, 50 and 100 mM NaCl. We investigated the growth rate, photosynthetic activity, mineral content, pigments and biochemical compounds involved in oxidative stress. Although 100 mM NaCl always decreased biomass production, we highlighted Don Leon and K91 as tolerant cultivars under moderate salt stress (50 mM NaCl). Under salinity, sodium accumulated more in the shoots than in the roots, particularly in the stems. Sodium accumulation in the plants decreased the net photosynthetic rate, transpiration rate and stomatal conductance but increased water use efficiency, and it decreased chlorophyll, betalain and polyphenol content in the leaves. It also decreased the foliar content of calcium, magnesium and potassium but not the iron and zinc content. The physiological parameters responded differently to sodium accumulation depending on the cultivar, suggesting a different relative importance of ionic and osmotic phases of salt stress among cultivars. Our results allowed us to identify the morpho-physiological traits of the cultivars with different salt tolerance levels.
Collapse
Affiliation(s)
| | | | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (S.L.)
| |
Collapse
|
4
|
Nampeera EL, O'Neal ME, Nonnecke GR, Murungi LK, Abukutsa-Onyango MO, Wesonga JM. Effects of seed treatments and storage duration on Myzus persicae (Hemiptera: Aphididae) and amaranth fresh leaf yield. ENVIRONMENTAL ENTOMOLOGY 2023; 52:360-370. [PMID: 36939151 DOI: 10.1093/ee/nvad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 06/17/2023]
Abstract
The green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), is a key insect pest of amaranth in East Africa. Pest management has been restricted to indiscriminate application of insecticides to foliage. Applying systemic insecticides to seeds has been shown to manage aphid infestations in other crop systems. We evaluated two commercially available seed treatments in East Africa, Apron Star (thiamethoxam 20 g/kg + metalaxyl-M 20 g/kg + difenoconazole 2 g/kg) and Menceron (imidacloprid 233 g/L + pencycuron 50 g/L + thiram 107 g/L) for their efficacy against M. persicae and impact on fresh leaf yield with two Amaranthus species, Amaranthus blitum (2 selections), Amaranthus hybridus (4 selections) and untreated control. Two storage periods (24 h and 3 months) with seed treatments were used. Each amaranth selection was treated individually with Apron and Monceren or untreated, and seeds were planted either 24 h or 3 months after treatment. Significant reduction in live aphids was observed with A. blitum and A. hybridus selections grown with seed treatment, at 6, 8 and 10 d after infestation (DAI) when compared with seeds grown without seed treatment. Untreated seeds of A. hybridus (selection 5) had significantly higher number of live aphids up to 243, greater percentage of damaged leaves and leaf damage score up to 84% and 64% respectively when compared with treated seeds of specific amaranth at 10 DAI. No significant difference was noted between seed treatment and storage time. Amaranth seeds treated with Monceren offered more protection against infestations of Myzus persicae than amaranth seeds treated with Apron under high tunnel experiments.
Collapse
Affiliation(s)
- Esther L Nampeera
- Horticulture and Oil Palm Program, National Crops Resources Research Institute, NaCRRI, P.O. Box, 7084, Kampala, Uganda
| | - Matthew E O'Neal
- Department of Entomology, Iowa State University, Ames, Iowa 50011-1100, USA
| | - Gail R Nonnecke
- Department of Horticulture, Iowa State University, Ames, Iowa 50011-1100, USA
| | - Lucy K Murungi
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200 Nairobi, Kenya
| | - Mary O Abukutsa-Onyango
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200 Nairobi, Kenya
| | - John M Wesonga
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200 Nairobi, Kenya
| |
Collapse
|
5
|
Reyes-Rosales A, Cabrales-Orona G, Martínez-Gallardo NA, Sánchez-Segura L, Padilla-Escamilla JP, Palmeros-Suárez PA, Délano-Frier JP. Identification of genetic and biochemical mechanisms associated with heat shock and heat stress adaptation in grain amaranths. FRONTIERS IN PLANT SCIENCE 2023; 14:1101375. [PMID: 36818889 PMCID: PMC9932720 DOI: 10.3389/fpls.2023.1101375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Heat stress is poised to become a major factor negatively affecting plant performance worldwide. In terms of world food security, increased ambient temperatures are poised to reduce yields in cereals and other economically important crops. Grain amaranths are known to be productive under poor and/or unfavorable growing conditions that significantly affect cereals and other crops. Several physiological and biochemical attributes have been recognized to contribute to this favorable property, including a high water-use efficiency and the activation of a carbon starvation response. This study reports the behavior of the three grain amaranth species to two different stress conditions: short-term exposure to heat shock (HS) conditions using young plants kept in a conditioned growth chamber or long-term cultivation under severe heat stress in greenhouse conditions. The latter involved exposing grain amaranth plants to daylight temperatures that hovered around 50°C, or above, for at least 4 h during the day and to higher than normal nocturnal temperatures for a complete growth cycle in the summer of 2022 in central Mexico. All grain amaranth species showed a high tolerance to HS, demonstrated by a high percentage of recovery after their return to optimal growing conditions. The tolerance observed coincided with increased expression levels of unknown function genes previously shown to be induced by other (a)biotic stress conditions. Included among them were genes coding for RNA-binding and RNA-editing proteins, respectively. HS tolerance was also in accordance with favorable changes in several biochemical parameters usually induced in plants in response to abiotic stresses. Conversely, exposure to a prolonged severe heat stress seriously affected the vegetative and reproductive development of all three grain amaranth species, which yielded little or no seed. The latter data suggested that the usually stress-tolerant grain amaranths are unable to overcome severe heat stress-related damage leading to reproductive failure.
Collapse
Affiliation(s)
- Alejandra Reyes-Rosales
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Gabriela Cabrales-Orona
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Norma A. Martínez-Gallardo
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Lino Sánchez-Segura
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Jazmín P. Padilla-Escamilla
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Paola A. Palmeros-Suárez
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - John P. Délano-Frier
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
6
|
Pulvento C, Sellami MH, Lavini A. Yield and quality of Amaranthus hypochondriacus grain amaranth under drought and salinity at various phenological stages in southern Italy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5022-5033. [PMID: 33448400 DOI: 10.1002/jsfa.11088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Several studies have shown that grain amaranth (Amaranthus spp.) is tolerant to abiotic stresses such as drought and salinity. Irrigation applied only during sensitive growth stages can stabilize yield and improve water use efficiency. Given the increasing frequency of salinity and drought stress in European countries and the scarcity of information on grain amaranth responses to combined salt and drought stress, an open field trial was carried out in Italy in order to evaluate the response of one accession of Amaranthus hypochondriacus to various irrigation strategies. RESULTS Grain amaranth yield components were not negatively affected either by different irrigation volumes or by irrigation time. Some differences in seed yield were caused by water quality; salinity significantly reduced seed yield. The combined effect of irrigation time and irrigation volume significantly influenced seed yield. The quality of amaranth seeds was preserved; no significant differences due to simple or combined stresses were found during the three-year field experiment. CONCLUSIONS The overall results from this study suggest that A. hypochondriacus can be cultivated in a more sustainable way compared to other protein crops, thus reducing water use and using saline water. It could be introduced to marginal European environments where traditional crops cannot be cultivated. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cataldo Pulvento
- National Research Council of Italy (CNR), Institute for Biosciences and Bioresources (IBBR), Bari, Italy
| | - Mohamed Houssemeddine Sellami
- National Research Council of Italy (CNR), Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFOM), Portici, Italy
| | - Antonella Lavini
- National Research Council of Italy (CNR), Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFOM), Portici, Italy
| |
Collapse
|
7
|
Lin YP, Wu TH, Chan YK, van Zonneveld M, Schafleitner R. De novo SNP calling reveals the genetic differentiation and morphological divergence in genus Amaranthus. THE PLANT GENOME 2022; 15:e20206. [PMID: 35470587 DOI: 10.1002/tpg2.20206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Amaranth species (Amaranthus spp.) serve as pseudo cereals and also as traditional leafy vegetables worldwide. In addition to high vigor and richness in nutrients, drought and salinity tolerance makes amaranth a promising vegetable to acclimatize to the effects of global climate change. The World Vegetable Center gene bank conserves ∼1,000 amaranth accessions, and various agronomic properties of these accessions were recorded during seed regeneration over decades. In this study, we verified the taxonomic annotation of the germplasm based on a 15K single-nucleotide polymorphism (SNP) set. Given that the yield components of grain amaranth are different from those of leaf amaranth, we observed that grain amaranth species presented larger inflorescences and earlier flowering than leaf amaranth species. Dual-purpose amaranth showed larger leaves than leaf amaranth and later flowering than grain amaranth, which seemed reasonable because farmers can harvest more leaves during the prolonged vegetable stage, which also provides recovery time to enrich grain production. Considering frequent interspecific hybridization among species of the grain amaranth complex, we performed an interspecific genome-wide association study (GWAS) for days to flowering, identifying a AGL20/SOC1 homolog. Another GWAS using only A. tricolor L. accessions revealed six candidate genes homologous to lba1, bri1, sgs1, and fca. These homologous genes were involved in the regulation of flowering time in Arabidopsis thaliana (L.) Heynh. This study revealed the usefulness of genotypic data for species demarcation in the genus Amaranthus and the potential of interspecific GWAS to detect quantitative trait loci (QTL) across different species, opening up the possibility of targeted introduction of specific genetic variants into different Amaranthus species.
Collapse
Affiliation(s)
- Ya-Ping Lin
- Biotechnology, World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
| | - Tien-Hor Wu
- Genetic Resources and Seed Unit, World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
| | - Yan-Kuang Chan
- Genetic Resources and Seed Unit, World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
| | - Maarten van Zonneveld
- Genetic Resources and Seed Unit, World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
| | - Roland Schafleitner
- Biotechnology, World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
| |
Collapse
|
8
|
Carreón-Hidalgo JP, Franco-Vásquez DC, Gómez-Linton DR, Pérez-Flores LJ. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res Int 2022; 151:110821. [PMID: 34980373 DOI: 10.1016/j.foodres.2021.110821] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022]
Abstract
Betalains are plant pigments with functional properties used mainly as food dyes. However, they have been shown to be unstable to different environmental factors. This paper provides a review of (1) Betalain plant sources within several plant families such as Amaranthaceae, Basellaceae, Cactaceae, Portulacaceae, and Nyctaginaceae, (2) The biosynthesis pathway of betalains for both betacyanins and betaxanthins, (3) Betalain extraction process, including non-conventional technologies like microwave-assisted, ultrasound-assisted, and pulsed electrical field extraction, (4) Factors affecting their stability, mainly temperature, water activity, light incidence, as well as oxygen concentration, metals, and the presence of antioxidants, as well as activation energy as a mean to assess stability, and novel food-processing technologies able to prevent betalain degradation, (5) Methods to increase shelf life, mainly encapsulation by spray drying, freeze-drying, double emulsions, ionic gelation, nanoliposomes, hydrogels, co-crystallization, and unexplored methods such as complex coacervation and electrospraying, (6) Biological properties of betalains such as their antioxidant, hepatoprotective, antitumoral, and anti-inflammatory activities, among others, and (7) Applications in foods and other products such as cosmetics, textiles and solar cells, among others. Additionally, study perspectives for further research are provided for each section.
Collapse
Affiliation(s)
| | | | - Darío R Gómez-Linton
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico
| | - Laura J Pérez-Flores
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico.
| |
Collapse
|
9
|
Riggins CW, Barba de la Rosa AP, Blair MW, Espitia-Rangel E. Editorial: Amaranthus: Naturally Stress-Resistant Resources for Improved Agriculture and Human Health. FRONTIERS IN PLANT SCIENCE 2021; 12:726875. [PMID: 34335674 PMCID: PMC8320349 DOI: 10.3389/fpls.2021.726875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Chance W. Riggins
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Matthew W. Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Eduardo Espitia-Rangel
- Campo Experimental Valle de México, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Texcoco, Mexico
| |
Collapse
|
10
|
Ma X, Vaistij FE, Li Y, Jansen van Rensburg WS, Harvey S, Bairu MW, Venter SL, Mavengahama S, Ning Z, Graham IA, Van Deynze A, Van de Peer Y, Denby KJ. A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:613-628. [PMID: 33960539 DOI: 10.1111/tpj.15298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Traditional crops have historically provided accessible and affordable nutrition to millions of rural dwellers but have been neglected, with most modern agricultural systems over-reliant on a small number of internationally traded crops. Traditional crops are typically well-adapted to local agro-ecological conditions and many are nutrient-dense. They can play a vital role in local food systems through enhanced nutrition (particularly where diets are dominated by starch crops), food security and livelihoods for smallholder farmers, and a climate-resilient and biodiverse agriculture. Using short-read, long-read and phased sequencing technologies, we generated a high-quality chromosome-level genome assembly for Amaranthus cruentus, an under-researched crop with micronutrient- and protein-rich leaves and gluten-free seed, but lacking improved varieties, with respect to productivity and quality traits. The 370.9 Mb genome demonstrates a shared whole genome duplication with a related species, Amaranthus hypochondriacus. Comparative genome analysis indicates chromosomal loss and fusion events following genome duplication that are common to both species, as well as fission of chromosome 2 in A. cruentus alone, giving rise to a haploid chromosome number of 17 (versus 16 in A. hypochondriacus). Genomic features potentially underlying the nutritional value of this crop include two A. cruentus-specific genes with a likely role in phytic acid synthesis (an anti-nutrient), expansion of ion transporter gene families, and identification of biosynthetic gene clusters conserved within the amaranth lineage. The A. cruentus genome assembly will underpin much-needed research and global breeding efforts to develop improved varieties for economically viable cultivation and realization of the benefits to global nutrition security and agrobiodiversity.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9054, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9054, Belgium
| | - Fabián E Vaistij
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Yi Li
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Willem S Jansen van Rensburg
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants Research Campus, Private Bag X293, Pretoria, 0001, South Africa
| | - Sarah Harvey
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Michael W Bairu
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants Research Campus, Private Bag X293, Pretoria, 0001, South Africa
| | - Sonja L Venter
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants Research Campus, Private Bag X293, Pretoria, 0001, South Africa
| | - Sydney Mavengahama
- Crop Science Department, Faculty of Natural and Agricultural Sciences, North West University, P/Bag X2046, Mmabatho, 2735, South Africa
| | - Zemin Ning
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ian A Graham
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Allen Van Deynze
- Department of Plant Sciences, Seed Biotechnology Center, University of California, Davis, CA, 95616, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9054, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9054, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Katherine J Denby
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
11
|
Cisneros-Hernández I, Vargas-Ortiz E, Sánchez-Martínez ES, Martínez-Gallardo N, Soto González D, Délano-Frier JP. Highest Defoliation Tolerance in Amaranthus cruentus Plants at Panicle Development Is Associated With Sugar Starvation Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:658977. [PMID: 34163500 PMCID: PMC8215675 DOI: 10.3389/fpls.2021.658977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 05/15/2023]
Abstract
Defoliation tolerance (DT) in Amaranthus cruentus is known to reach its apex at the panicle emergence (PE) phase and to decline to minimal levels at flowering (FL). In this study, defoliation-induced changes were recorded in the content of non-structural carbohydrates and raffinose family oligosaccharides (RFOs), and in the expression and/or activity of sugar starvation response-associated genes in plants defoliated at different vegetative and reproductive stages. This strategy identified sugar-starvation-related factors that explained the opposite DT observed at these key developmental stages. Peak DT at PE was associated with increased cytosolic invertase (CI) activity in all organs and with the extensive induction of various class II trehalose-phosphate synthase (TPS) genes. Contrariwise, least DT at FL coincided with a sharp depletion of starch reserves and with sucrose (Suc) accumulation, in leaves and stems, the latter of which was consistent with very low levels of CI and vacuolar invertase activities that were not further modified by defoliation. Increased Suc suggested growth-inhibiting conditions associated with altered cytosolic Suc-to-hexose ratios in plants defoliated at FL. Augmented cell wall invertase activity in leaves and roots, probably acting in a regulatory rather than hydrolytic role, was also associated with minimal DT observed at FL. The widespread contrast in gene expression patterns in panicles also matched the opposite DT observed at PE and FL. These results reinforce the concept that a localized sugar starvation response caused by C partitioning is crucial for DT in grain amaranth.
Collapse
Affiliation(s)
| | - Erandi Vargas-Ortiz
- Facultad de Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| | | | | | | | - John Paul Délano-Frier
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
12
|
Palanivel H, Shah S. Unlocking the inherent potential of plant genetic resources: food security and climate adaptation strategy in Fiji and the Pacific. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2021; 23:14264-14323. [PMID: 33619427 PMCID: PMC7888530 DOI: 10.1007/s10668-021-01273-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Pacific Island Countries (PICs) are the center of origin and diversity for several root, fruit and nut crops, which are indispensable for food security, rural livelihoods, and cultural identity of local communities. However, declining genetic diversity of traditional food crops and high vulnerability to climate change are major impediments for maintaining agricultural productivity. Limited initiatives to achieve food self-sufficiency and utilization of Plant Genetic Resources (PGR) for enhancing resilience of agro-ecosystems are other serious constraints. This review focuses on the visible and anticipated impacts of climate ge, on major food and tree crops in agriculture and agroforestry systems in the PICs. We argue that crop improvement through plant breeding is a viable strategy to enhance food security and climatic resilience in the region. The exploitation of adaptive traits: abiotic and biotic stress tolerance, yield and nutritional efficiency, is imperative in a world threatened by climatic extremes. However, the insular constraints of Fiji and other small PICs are major limitations for the utilization of PGR through high throughput techniques which are also cost prohibitive. Crop Improvement programs should instead focus on the identification, conservation, documentation and dissemination of information on unique landraces, community seed banks, introduction of new resistant genotypes, and sustaining and enhancing allelic diversity.
Collapse
Affiliation(s)
- Hemalatha Palanivel
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Shipra Shah
- Department of Forestry, College of Agriculture, Fisheries and Forestry, Koronivia Campus, Fiji National University, PO Box 1544, Nausori, Republic of Fiji
| |
Collapse
|
13
|
Mateos-Maces L, Chávez-Servia JL, Vera-Guzmán AM, Aquino-Bolaños EN, Alba-Jiménez JE, Villagómez-González BB. Edible Leafy Plants from Mexico as Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: A Review. Antioxidants (Basel) 2020; 9:E541. [PMID: 32575671 PMCID: PMC7346153 DOI: 10.3390/antiox9060541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/22/2022] Open
Abstract
A review of indigenous Mexican plants with edible stems and leaves and their nutritional and nutraceutical potential was conducted, complemented by the authors' experiences. In Mexico, more than 250 species with edible stems, leaves, vines and flowers, known as "quelites," are collected or are cultivated and consumed. The assessment of the quelite composition depends on the chemical characteristics of the compounds being evaluated; the protein quality is a direct function of the amino acid content, which is evaluated by high-performance liquid chromatography (HPLC), and the contribution of minerals is evaluated by atomic absorption spectrometry, inductively coupled plasma-optical emission spectrometry (ICP-OES) or ICP mass spectrometry. The total contents of phenols, flavonoids, carotenoids, saponins and other general compounds have been analyzed using UV-vis spectrophotometry and by HPLC. For the determination of specific compounds such as phenolic compounds, flavonoids, organic acids and other profiles, it is recommended to use HPLC-DAD, UHPLC-DAD, UFLC-PDA or gas chromatography-mass spectrometry. The current biochemical analysis and biological evaluations were performed to understand the mechanisms of action that lead to decreased glucose levels and lipid peroxidation, increased hypoglycemic and antitumor activity, immune system improvement, increased antibacterial and antifungal activity and, in some cases, anti-Helicobacter pylori activity.
Collapse
Affiliation(s)
- Lourdes Mateos-Maces
- Recursos Genéticos y Productividad-Genética, Colegio de Posgraduados, Carr. México-Texcoco Km. 36.5, Montecillo, Texcoco 56230, Mexico;
| | - José Luis Chávez-Servia
- CIIDIR-Oaxaca, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (A.M.V.-G.); (B.B.V.-G.)
| | | | - Elia Nora Aquino-Bolaños
- Centro de Investigación y Desarrollo de Alimentos, Universidad Veracruzana, Xalapa-Enríquez 1090, Mexico;
| | - Jimena E. Alba-Jiménez
- CONACyT-Centro de Investigación y Desarrollo de Alimentos, Universidad Veracruzana, Xalapa-Enríquez 1090, Mexico;
| | | |
Collapse
|