1
|
Wu F, Liu Z, Chen C, Niu K. Green Pak Choi is better in suitable environment but the purple ones more resist to drought and shading. BMC PLANT BIOLOGY 2025; 25:347. [PMID: 40098092 PMCID: PMC11917144 DOI: 10.1186/s12870-025-06354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Studying how economic vegetable adapt to stressful environment is important not only for plant biology application but also to agronomy. In this study, we selected two commonly used genotypes of pak choi, i.e., larger green pak choi (Brassica rapa ssp. chinensis) and smaller purple pak choi (Brassica rapa var. chinensis, 'Rubi F1') to examine the divergent response of the two genotypes to drought and shading in the semi-arid region of Xinjiang. We compared the differences in biomass accumulation and plant morphological traits of the two pak choi in response to the interaction effects of drought (55-70% of field water capacity) and shading (24% reduction of canopy light radiation). RESULTS The results showed drought and shading significantly reduced the aboveground and belowground biomass of the two pak choi, with a particularly pronounced decrease in shoot biomass under the combined effect of shading + drought. The decline in shoot biomass was mostly resulted from decreasing in the number of leaves rather than in plant height and crown width in response to drought and shading. In terms of morphological traits, green pak choi sensitively responded to increased drought and shading, with aboveground biomass mostly determined by leaf number and root mass. In contrast, purple pak choi likely more resistant to the stressful environment, as its aboveground biomass was also influenced by plant height and crown width. CONCLUSIONS Hence it is important to consider not only the effects of drought but also the role of adequate light, which plays a key part in promoting the cultivation and growth of pak choi in stressful environments. The research and application of plant biology and agronomy in the region also need to consider the diversity of key economic plants to promote sustainability of vegetable farming in adapting to changing environmental stresses.
Collapse
Affiliation(s)
- Fan Wu
- College of Biological Science and Technology, Yili Normal University, Yining, Xinjiang, China
- Key Laboratory of Plant Protection and Utilization of Valley Resources, Yining, Xinjiang, China
| | - Zekun Liu
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chen Chen
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Kechang Niu
- College of Biological Science and Technology, Yili Normal University, Yining, Xinjiang, China.
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Wang C, Kuang L, Tian Z, Wang X, Tu J, Wang H, Dun X. Effect of Photoperiod on Ascorbic Acid Metabolism Regulation and Accumulation in Rapeseed ( Brassica napus L.) Seedlings. Antioxidants (Basel) 2025; 14:160. [PMID: 40002347 PMCID: PMC11851679 DOI: 10.3390/antiox14020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Ascorbic acid (AsA) is an important antioxidant for human health. The concept of "oil-vegetable-duel-purpose" can significantly enhance the economic benefits of the rapeseed industry. Rapeseed, when utilized as a vegetable, serves as a valuable food source of AsA. In this study, we integrated transcriptome and metabolome analyses, along with substrate feeding, to identify the L-galactose pathway as the primary source for AsA production, which is primarily regulated by light. Through seven different photoperiod treatments from 12 h/12 h (light/dark) to 24 h/0 h, we found that AsA content increased with longer photoperiods, as well as chlorophyll, carotenoids, and soluble sugars. However, an excessively long photoperiod led to photooxidative stress, which negatively affected biomass accumulation in rapeseed seedlings and subsequently impacted the total accumulation of AsA. Furthermore, different enzymes respond differently to different photoperiods. Analysis of the correlation between the expression levels of AsA biosynthesis-related genes and AsA content highlighted a dynamic balancing mechanism of AsA metabolism in response to different photoperiods. The study revealed that the 16 h/8 h photoperiod is optimal for long-term AsA accumulation in rapeseed seedlings. However, extending the photoperiod before harvest can enhance AsA content without compromising yield. These findings offer novel insights into an effective strategy for the biofortification of AsA in rapeseed.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (C.W.); (L.K.); (Z.T.); (X.W.)
| |
Collapse
|
3
|
Liu W, Liu B, Wu Q. High-Intensity Continuous Light from Red-Blue Light-Emitting Diodes Improved Yield, Nutritional Quality and Reactive Oxygen Species Accumulation in Two Leaf-Color Lettuces. BIOLOGY 2024; 13:1077. [PMID: 39765743 PMCID: PMC11674032 DOI: 10.3390/biology13121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
In an environmentally controlled plant factory with LED red-blue light, the effects of conventional light (4R:1B, 200 μmol·m-2·s-1, 18/6 h) and continuous light (CL, 24/0 h) with three light intensities (4R:1B, 200, 300 and 400 μmol·m-2·s-1, 24/0 h) on yield, nutritional quality, reactive oxygen species (ROS) content and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (DPPH) in green-leaf Yidali and purple-leaf Zishan lettuces were investigated. The results showed that the dry and fresh shoot weight of two lettuces exposed to CL tended to increase with light intensity-from 200 to 400 μmol·m-2·s-1-compared to conventional light, while the leaf area tended to decrease or remained unchanged. High-intensity CL could significantly increase soluble sugar and reduce the nitrate contents of the two lettuces. Also, the antioxidant substance (anthocyanins, flavonoids and total phenols) content of the two lettuces was improved with the increase in CL intensity. High-intensity CL could significantly increase the malondialdehyde, hydrogen peroxide and superoxide anion content and DPPH of the two lettuces. The above indices showed similar results both at 6 and 12 days after light treatment. In contrast, the Zishan cultivar contained more antioxidant substances, ROS and MDA contents and DPPH (more than 1 to 100 times) than the Yidali cultivar under high-intensity CL. In summary, high-intensity CL could improve the yield and nutritional value of both Yidali and Zishan lettuces. The high CL tolerance of Zishan was attributed to a stronger antioxidant capacity due to a greater content of antioxidant substances and DPPH, while the accumulation of ROS and the content of antioxidant substances might interact.
Collapse
Affiliation(s)
- Wenke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Bing Liu
- School of Traffic and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Qibao Wu
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| |
Collapse
|
4
|
Liang Y, Weng X, Ling H, Mustafa G, Yang B, Lu N. Transcriptomic Insights into Molecular Response of Butter Lettuce to Different Light Wavelengths. PLANTS (BASEL, SWITZERLAND) 2024; 13:1582. [PMID: 38931014 PMCID: PMC11207648 DOI: 10.3390/plants13121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Lettuce is a widely consumed leafy vegetable; it became popular due to its enhanced nutritional content. Recently, lettuce is also regarded as one of the model plants for vegetable production in plant factories. Light and nutrients are essential environmental factors that affect lettuce growth and morphology. To evaluate the impact of light spectra on lettuce, butter lettuce was grown under the light wavelengths of 460, 525, and 660 nm, along with white light as the control. Plant morphology, physiology, nutritional content, and transcriptomic analyses were performed to study the light response mechanisms. The results showed that the leaf fresh weight and length/width were higher when grown at 460 nm and lower when grown at 525 nm compared to the control treatment. When exposed to 460 nm light, the sugar, crude fiber, mineral, and vitamin concentrations were favorably altered; however, these levels decreased when exposed to light with a wavelength of 525 nm. The transcriptomic analysis showed that co-factor and vitamin metabolism- and secondary metabolism-related genes were specifically induced by 460 nm light exposure. Furthermore, the pathway enrichment analysis found that flavonoid biosynthesis- and vitamin B6 metabolism-related genes were significantly upregulated in response to 460 nm light exposure. Additional experiments demonstrated that the vitamin B6 and B2 content was significantly higher in leaves exposed to 460 nm light than those grown under the other conditions. Our findings suggested that the addition of 460 nm light could improve lettuce's biomass and nutritional value and help us to further understand how the light spectrum can be tuned as needed for lettuce production.
Collapse
Affiliation(s)
- Yongqi Liang
- Shanxi Qingmei Biotechnology Company Limited, Baoji 721000, China
| | - Xinying Weng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Hao Ling
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Na Lu
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa 277-0882, Japan
| |
Collapse
|
5
|
Lanoue J, St Louis S, Little C, Hao X. Photosynthetic adaptation strategies in peppers under continuous lighting: insights into photosystem protection. FRONTIERS IN PLANT SCIENCE 2024; 15:1372886. [PMID: 38882573 PMCID: PMC11176547 DOI: 10.3389/fpls.2024.1372886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Energy efficient lighting strategies have received increased interest from controlled environment producers. Long photoperiods (up to 24 h - continuous lighting (CL)) of lower light intensities could be used to achieve the desired daily light integral (DLI) with lower installed light capacity/capital costs and low electricity costs in regions with low night electricity prices. However, plants grown under CL tend to have higher carbohydrate and reactive oxygen species (ROS) levels which may lead to leaf chlorosis and down-regulation of photosynthesis. We hypothesize that the use of dynamic CL using a spectral change and/or light intensity change between day and night can negate CL-injury. In this experiment we set out to assess the impact of CL on pepper plants by subjecting them to white light during the day and up to 150 µmol m-2 s-1 of monochromatic blue light at night while controlling the DLI at the same level. Plants grown under all CL treatments had similar cumulative fruit number and weight compared to the 16h control indicating no reduction in production. Plants grown under CL had higher carbohydrate levels and ROS-scavenging capacity than plants grown under the 16h control. Conversely, the amount of photosynthetic pigment decreased with increasing nighttime blue light intensity. The maximum quantum yield of photosystem II (Fv/Fm), a metric often used to measure stress, was unaffected by light treatments. However, when light-adapted, the operating efficiency of photosystem II (ΦPSII) decreased and non-photochemical quenching (NPQ) increased with increasing nighttime blue light intensity. This suggests that both acclimated and instantaneous photochemistry during CL can be altered and is dependent on the nighttime light intensity. Furthermore, light-adapted chlorophyll fluorescence measurements may be more adept at detecting altered photochemical states than the conventional stress metric using dark-adapted measurements.
Collapse
Affiliation(s)
- Jason Lanoue
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Sarah St Louis
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Celeste Little
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| |
Collapse
|
6
|
Zemanová V, Lhotská M, Novák M, Hnilička F, Popov M, Pavlíková D. Multicontamination Toxicity Evaluation in the Model Plant Lactuca sativa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1356. [PMID: 38794427 PMCID: PMC11125215 DOI: 10.3390/plants13101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
Many contaminated soils contain several toxic elements (TEs) in elevated contents, and plant-TE interactions can differ from single TE contamination. Therefore, this study investigated the impact of combined contamination (As, Cd, Pb, Zn) on the physiological and metabolic processes of lettuce. After 45 days of exposure, TE excess in soil resulted in the inhibition of root and leaf biomass by 40 and 48%, respectively. Oxidative stress by TE accumulation was indicated by markers-malondialdehyde and 5-methylcytosine-and visible symptoms of toxicity (leaf chlorosis, root browning) and morpho-anatomical changes, which were related to the change in water regime (water potential decrease). An analysis of free amino acids (AAs) indicated that TEs disturbed N and C metabolism, especially in leaves, increasing the total content of free AAs and their families. Stress-induced senescence by TEs suggested changes in gas exchange parameters (increase in transpiration rate, stomatal conductance, and intercellular CO2 concentration), photosynthetic pigments (decrease in chlorophylls and carotenoids), a decrease in water use efficiency, and the maximum quantum yield of photosystem II. These results confirmed that the toxicity of combined contamination significantly affected the processes of lettuce by damaging the antioxidant system and expressing higher leaf sensitivity to TE multicontamination.
Collapse
Affiliation(s)
- Veronika Zemanová
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Marie Lhotská
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Milan Novák
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Marek Popov
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
7
|
Zhou C, Li Z, Liu W, Bian Z, Lu W, Zhou B, Wang S, Li Q, Yang Q. High-Proportion Blue Light Irradiation at the End-of-Production Stage Promotes the Biosynthesis and Recycling of Ascorbate in Lettuce. Int J Mol Sci 2023; 24:16524. [PMID: 38003716 PMCID: PMC10671776 DOI: 10.3390/ijms242216524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Ascorbate (AsA), an essential antioxidant for both plants and the human body, plays a vital role in maintaining proper functionality. Light plays an important role in metabolism of AsA in horticultural plants. Our previous research has revealed that subjecting lettuce to high light irradiation (HLI) (500 μmol·m-2·s-1) at the end-of-production (EOP) stage effectively enhances AsA levels, while the optimal light quality for AsA accumulation is still unknown. In this study, four combinations of red (R) and blue (B) light spectra with the ratio of 1:1 (1R1B), 2:1 (2R1B), 3:1 (3R1B), and 4:1 (4R1B) were applied to investigate the biosynthesis and recycling of AsA in lettuce. The results demonstrated that the AsA/total-AsA content in lettuce leaves was notably augmented upon exposure to 1R1B and 2R1B. Interestingly, AsA levels across all treatments increased rapidly at the early stage (2-8 h) of irradiation, while they increased slowly at the late stage (8-16 h). The activity of L-galactono-1,4-lactone dehydrogenase was augmented under 1R1B treatment, which is pivotal to AsA production. Additionally, the activities of enzymes key to AsA cycling were enhanced by 1R1B and 2R1B treatments, including ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase. Notably, hydrogen peroxide and malondialdehyde accumulation increased dramatically following 16 h of 1R1B and 2R1B treatments. In addition, although soluble sugar and starch contents were enhanced by EOP-HLI, this effect was comparatively subdued under the 1R1B treatment. Overall, these results indicated that AsA accumulation was improved by irradiation with a blue light proportion of over 50% in lettuce, aligning with the heightened activities of key enzymes responsible for AsA synthesis, as well as the accrual of hydrogen peroxide. The effective strategy holds the potential to enhance the nutritional quality of lettuce while bolstering its antioxidant defenses.
Collapse
Affiliation(s)
- Chengbo Zhou
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Zonggeng Li
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Wenke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhonghua Bian
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611134, China;
| | - Bo Zhou
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Sen Wang
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China; (C.Z.); (Z.L.); (Z.B.); (B.Z.); (S.W.); (Q.L.)
| |
Collapse
|
8
|
Parkes MG, Azevedo DL, Cavallo AC, Domingos T, Teixeira RFM. Life cycle assessment of microgreen production: effects of indoor vertical farm management on yield and environmental performance. Sci Rep 2023; 13:11324. [PMID: 37443192 PMCID: PMC10345114 DOI: 10.1038/s41598-023-38325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
The global production of plant-based foods is a significant contributor to greenhouse gas emissions. Indoor vertical farms (IVFs) have emerged as a promising approach to urban agriculture. However, their environmental performance is not well understood, particularly in relation to operational choices where global warming potentials (GWP) can vary between 0.01-54 kg CO2e/kg-1 of leafy greens produced. We conducted a life cycle assessment (LCA) of a building-integrated IVF for microgreen production to analyse a range of operational conditions for cultivation: air temperature, CO2 concentration, and photoperiod. We analyzed a dynamic LCA inventory that combined a process-based plant growth model and a mass balance model for air and heat exchange between the chamber and the outside. Results showed that the GWP of IVFs can vary greatly depending on the operation conditions set, ranging from 3.3 to 63.3 kg CO2e/kg-1. The optimal conditions for minimizing GWP were identified as 20 ℃, maximum CO2 concentration in the chamber, and maximum photoperiod, which led to a minimum GWP of 3.3 kg CO2e/kg-1 and maximum production of 290.5 kg fresh weight week-1. Intensification of production thus led to lower impacts because the marginal increase in yield due to increased resource use was larger than the marginal increase in impact. Therefore, adjusting growing conditions is essential for the sustainability of urban food production.
Collapse
Affiliation(s)
- Michael G Parkes
- Environment and Technology Centre, LARSyS-Laboratory of Robotics and Engineering System, MARETEC-Marine, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco País 1, 1049-001, Lisboa, Portugal.
- Canguru Foods, Lda, Social Enterprise, Rua José Dias Simão S/N, TAGUSVALLEY - Parque de Ciência e Tecnologia, 2200-062, Abrantes, Portugal.
| | - Duarte Leal Azevedo
- Environment and Technology Centre, LARSyS-Laboratory of Robotics and Engineering System, MARETEC-Marine, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco País 1, 1049-001, Lisboa, Portugal
| | - Ana Celeste Cavallo
- CIRSA - Centro Interdipartimentale Di Ricerca Per Le Scienze Ambientali, Alma Mater Studiorum - University of Bologna, Via Dell'Agricoltura 5, 48123, Ravenna, Italy
| | - Tiago Domingos
- Environment and Technology Centre, LARSyS-Laboratory of Robotics and Engineering System, MARETEC-Marine, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco País 1, 1049-001, Lisboa, Portugal
| | - Ricardo F M Teixeira
- Environment and Technology Centre, LARSyS-Laboratory of Robotics and Engineering System, MARETEC-Marine, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco País 1, 1049-001, Lisboa, Portugal
| |
Collapse
|
9
|
Sawatdee S, Jarunglumlert T, Pavasant P, Sakihama Y, Flood AE, Prommuak C. Effect of mixed light emitting diode spectrum on antioxidants content and antioxidant activity of red lettuce grown in a closed soilless system. BMC PLANT BIOLOGY 2023; 23:351. [PMID: 37415111 PMCID: PMC10324264 DOI: 10.1186/s12870-023-04364-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Light spectra have been demonstrated to result in different levels of comfort or stress, which affect plant growth and the availability of health-promoting compounds in ways that sometimes contradict one another. To determine the optimal light conditions, it is necessary to weigh the vegetable's mass against the amount of nutrients it contains, as vegetables tend to grow poorly in environments where nutrient synthesis is optimal. This study investigates the effects of varying light conditions on the growth of red lettuce and its occurring nutrients in terms of productivities, which were determined by multiplying the total weight of the harvested vegetables by their nutrient content, particularly phenolics. Three different light-emitting diode (LED) spectral mixes, including blue, green, and red, which were all supplemented by white, denoted as BW, GW, and RW, respectively, as well as the standard white as the control, were equipped in grow tents with soilless cultivation systems for such purposes. RESULTS Results demonstrated that the biomass and fiber content did not differ substantially across treatments. This could be due to the use of a modest amount of broad-spectrum white LEDs, which could help retain the lettuce's core qualities. However, the concentrations of total phenolics and antioxidant capacity in lettuce grown with the BW treatment were the highest (1.3 and 1.4-fold higher than those obtained from the control, respectively), with chlorogenic acid accumulation (8.4 ± 1.5 mg g- 1 DW) being particularly notable. Meanwhile, the study observed a high glutathione reductase (GR) activity in the plant achieved from the RW treatment, which in this study was deemed the poorest treatment in terms of phenolics accumulation. CONCLUSION In this study, the BW treatment provided the most efficient mixed light spectrum to stimulate phenolics productivity in red lettuce without a significant detrimental effect on other key properties.
Collapse
Affiliation(s)
- Sopanat Sawatdee
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong, 21210, Thailand
| | - Teeraya Jarunglumlert
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok (Rayong Campus), Ban Khai, Rayong, 21180, Thailand
| | | | - Yasuko Sakihama
- Graduate School/Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Adrian E Flood
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong, 21210, Thailand.
| | - Chattip Prommuak
- Energy Research Institute, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Lo Piccolo E, Lauria G, Guidi L, Remorini D, Massai R, Landi M. Shedding light on the effects of LED streetlamps on trees in urban areas: Friends or foes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161200. [PMID: 36581265 DOI: 10.1016/j.scitotenv.2022.161200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Streetlamp illumination disturbs the natural physiological processes and circadian rhythms of living organisms, including photosynthesizing "citizens". The light-emitting diode (LED) technology has replaced high-pressure sodium lamps. Therefore, the effects of LED streetlamps on urban trees need to be elucidated as these new lamps have a different light spectrum (with a peak in the blue and red regions of the spectrum, i.e., highly efficient wavebands for photosynthesis) compared to older technologies. To address the above-mentioned issue, two widely utilised tree species in the urban environment, including Platanus × acerifolia (P) and Tilia platyphyllos (T), were grown with or without the effect of LED streetlamps using two realistic illumination intensities (300 and 700 μmol m-2 s-1). Gas exchanges and biochemical features (starch, soluble sugar, and chlorophyll content) of illuminated vs non-illuminated trees were compared during the whole vegetative season. Our results showed that both tree species were strongly influenced by LED streetlamps at physiological and biochemical levels. Specifically, the mature leaves of P and T streetlamp-illuminated trees had a lower CO2 assimilation rate at dawn and had higher chlorophyll content, with lower starch content than controls. Our results showed that the differences between the effects of the two selected light intensities on the physiochemical attributes of P and T trees were not statistically significant, suggesting the absence of a dose-dependent effect. The most significant difference between T and P trees concerning the LED-triggered species-specific effect was that the delay in winter dormancy occurred only in P individuals. This study provided insights into the extent of LED streetlamp disturbance on trees. Our findings might raise awareness of the necessity to provide less impacting solutions to improve the wellness of trees in the urban environment.
Collapse
Affiliation(s)
- E Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - G Lauria
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - L Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy
| | - D Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy
| | - R Massai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy
| | - M Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy.
| |
Collapse
|
11
|
Lanoue J, St. Louis S, Little C, Hao X. Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens. FRONTIERS IN PLANT SCIENCE 2022; 13:983222. [PMID: 36247650 PMCID: PMC9564221 DOI: 10.3389/fpls.2022.983222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Microgreens represent a fast growing segment of the edible greens industry. They are prized for their colour, texture, and flavour. Compared to their mature counterparts, microgreens have much higher antioxidant and nutrient content categorizing them as a functional food. However, current production practices in plant factories with artificial light are energy intensive. Specifically, the lack of sunlight within the indoor structure means all of the light must be provided via energy consuming light fixtures, which is energy intensive and costly. Plant growth is usually increased with the total amount of light provided to the plants - daily light integral (DLI). Long photoperiods of low intensity lighting (greater than 18h) providing the desired/target DLI can reduce the capital costs for light fixtures and electricity costs. This is achieved by moving the electricity use from peak daytime hours (high price) to off-peak hours (low price) during the night in regions with time-based pricing scheme and lowering the electricity use for air conditioning, if plant growth is not compromised. However, lighting with photoperiods longer than tolerance thresholds (species/cultivar specific) usually leads to plant stress/damage. Therefore, we investigated the effects of continuous 24h white light (CL) at two DLIs (~14 and 21 mol m-2 d-1) on plant growth, yield, and antioxidant content on 4 types of microgreens - amaranth, collard greens, green basil, and purple basil to see if it compromises microgreen production. It was found that amaranth and green basil had larger fresh biomass when grown under CL compared to 16h when the DLIs were the same. In addition, purple basil had higher biomass at higher DLI, but was unaffected by photoperiods. Plants grown under the CL treatments had higher energy-use-efficiencies for lighting (10-42%) than plants grown under the 16h photoperiods at the same DLI. Notably, the electricity cost per unit of fresh biomass ($ g-1) was reduced (8-38%) in all microgreens studied when plants were grown under CL lighting at the same DLIs. Amaranth and collard greens also had higher antioxidant content. Taken together, growing microgreens under CL can reduce electricity costs and increase yield while maintaining or improving nutritional content.
Collapse
Affiliation(s)
| | | | | | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| |
Collapse
|
12
|
Kumar D, Singh H, Bhatt U, Soni V. Effect of continuous light on antioxidant activity, lipid peroxidation, proline and chlorophyll content in Vigna radiata L. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:145-154. [PMID: 34813420 DOI: 10.1071/fp21226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/31/2021] [Indexed: 05/28/2023]
Abstract
Longer photoperiod in form of continuous light (24-h photoperiod without dark interruption) can alter the various physiological and biochemical processes of the plant. This study aimed to evaluate the effects of continuous light on various biochemical parameters associated with the growth and development of Vigna radiata L. (mung bean). The findings showed that leaf size and chlorophyll content of seedlings grown under continuous light were significantly greater than control plants subjected to 12h light/12h dark (12/12h). The activity of antioxidant enzymes superoxide dismutase (SOD, 30.81%), catalase (CAT, 16.86%), guaiacol peroxidase (GPOD, 12.27%), malondialdehyde, (MDA, 39.31) and proline (14.81%) were notably higher in 24/0h light period than 12/12h light period grown seedling at an early stage (on Day 6) while they were constant at the later stage of development. Increased activity of amylase and invertase reveals higher assimilation and consumption of photosynthetic products. This study revealed that plants were stressed at first. However, they gradually became acclimated to continuous light and efficiently used the excess light in carbon assimilation.
Collapse
Affiliation(s)
- Deepak Kumar
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Hanwant Singh
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
13
|
The Effect of Photoperiod on Necrosis Development, Photosynthetic Efficiency and 'Green Islands' Formation in Brassica juncea Infected with Alternaria brassicicola. Int J Mol Sci 2021; 22:ijms22168435. [PMID: 34445145 PMCID: PMC8395102 DOI: 10.3390/ijms22168435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/06/2023] Open
Abstract
The main goal of growing plants under various photoperiods is to optimize photosynthesis for using the effect of day length that often acts on plants in combination with biotic and/or abiotic stresses. In this study, Brassica juncea plants were grown under four different day-length regimes, namely., 8 h day/16 h night, 12 h day/12 h night, 16 h day/8 h night, and continuous light, and were infected with a necrotrophic fungus Alternaria brassicicola. The development of necroses on B. juncea leaves was strongly influenced by leaf position and day length. The largest necroses were formed on plants grown under a 16 h day/8 h night photoperiod at 72 h post-inoculation (hpi). The implemented day-length regimes had a great impact on leaf morphology in response to A. brassicicola infection. They also influenced the chlorophyll and carotenoid contents and photosynthesis efficiency. Both the 1st (the oldest) and 3rd infected leaves showed significantly higher minimal fluorescence (F0) compared to the control leaves. Significantly lower values of other investigated chlorophyll a fluorescence parameters, e.g., maximum quantum yield of photosystem II (Fv/Fm) and non-photochemical quenching (NPQ), were observed in both infected leaves compared to the control, especially at 72 hpi. The oldest infected leaf, of approximately 30% of the B. juncea plants, grown under long-day and continuous light conditions showed a ‘green island’ phenotype in the form of a green ring surrounding an area of necrosis at 48 hpi. This phenomenon was also reflected in changes in the chloroplast’s ultrastructure and accelerated senescence (yellowing) in the form of expanding chlorosis. Further research should investigate the mechanism and physiological aspects of ‘green islands’ formation in this pathosystem.
Collapse
|
14
|
Continuous Lighting and High Daily Light Integral Enhance Yield and Quality of Mass-Produced Nasturtium ( Tropaeolum majus L.) in Plant Factories. PLANTS 2021; 10:plants10061203. [PMID: 34204820 PMCID: PMC8231634 DOI: 10.3390/plants10061203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Nasturtium (Tropaeolum majus L.), as a medicinal plant, has a high phenolic content in its leaves and flowers. It is often used in salads as a dietary vegetable. Attracting strong demand, it could be a good candidate crop for a plant factory with artificial lighting (PFAL) that can achieve the mass production of high-quality crops with high productivity by regulating environmental conditions such as light. In this study, two experiments were conducted to investigate the effects of continuous lighting (CL) and different daily light integrals (DLIs) under CL on the growth, secondary metabolites, and light use efficiency (LUE) of nasturtium, all of which are essential in the successful cultivation in PFALs. In Experiment 1, two lighting models, the same DLI of 17.3 mol m−2 d−1 but different light periods (24 and 16 h) with different light intensities (200 and 300 µmol m−2 s−1, respectively), were applied to nasturtium. The results showed that leaf production, secondary metabolites, and LUE were higher under the 24-h CL treatment than under the 16-h non-CL treatment. In Experiment 2, three DLI levels (17.3, 25.9, and 34.6 mol m−2 d−1) under the CL condition were applied. The results showed that the growth parameters were positively correlated with the DLI levels under CL. The lowest DLI had the highest LUE. We conclude that the mass production of nasturtium under CL in PFALs is feasible, and the yield increases as DLI increases from 17.3 to 34.6 mol m−2 d−1 under CL without causing physiological stress on plants.
Collapse
|
15
|
Formisano L, Ciriello M, Cirillo V, Pannico A, El-Nakhel C, Cristofano F, Duri LG, Giordano M, Rouphael Y, De Pascale S. Divergent Leaf Morpho-Physiological and Anatomical Adaptations of Four Lettuce Cultivars in Response to Different Greenhouse Irradiance Levels in Early Summer Season. PLANTS 2021; 10:plants10061179. [PMID: 34207907 PMCID: PMC8226882 DOI: 10.3390/plants10061179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Lettuce (Lactuca sativa L.) is a winter-spring leafy vegetable, but the high demand for fresh products available year-round requires off-season production. However, the warm climate of the Mediterranean areas can impair the summer production of lettuce, thus requiring the adoption of genotypes tolerant to high irradiance as well as useful agronomic strategies like shading net installations. The aim of our research was to assess the leaf morpho-physiological and anatomical changes, in addition to productive responses, of four lettuce cultivars (‘Ballerina’, ‘Maravilla De Verano Canasta’, ‘Opalix’, and ‘Integral’) grown under shading and non-shading conditions to unveil the adaptive mechanisms of this crop in response to sub-optimal microclimate (high irradiance and temperature) in a protected environment. Growth and yield parameters, leaf gas exchanges, chlorophyll fluorescence and morpho-anatomical leaf traits (i.e., leaf mass area, stomatal density and epidermal cell density) were determined. Under shading conditions, the fresh yields of the cultivars ‘Ballerina’, ‘Opalix’ (‘Oak leaf’) and ‘Integral’ (‘Romaine’) increased by 16.0%, 26.9% and 13.2% respectively, compared to non-shading conditions while both abaxial and adaxial stomatal density decreased. In contrast, ‘Canasta’ under non-shading conditions increased fresh yield, dry biomass and instantaneous water use efficiency by 9.6%, 18.0% and 15.7%, respectively, while reduced abaxial stomatal density by 30.4%, compared to shading conditions. Regardless of cultivar, the unshaded treatment increased the leaf mass area by 19.5%. Even though high light intensity and high temperature are critical limiting factors for summer lettuce cultivation in a protected environment, ‘Canasta’ showed the most effective adaptive mechanisms and had the best production performance under sub-optimal microclimatic conditions. However, greenhouse coverage with a white shading net (49% screening) proved to be a suitable agricultural practice that ensured an adequate microclimate for the off-season growth of more sensitive cultivars ‘Ballerina’, ‘Oak leaf’ and ‘Romaine’.
Collapse
|
16
|
Wen Y, Zha L, Liu W. Dynamic Responses of Ascorbate Pool and Metabolism in Lettuce to Light Intensity at Night Time under Continuous Light Provided by Red and Blue LEDs. PLANTS (BASEL, SWITZERLAND) 2021; 10:214. [PMID: 33498607 PMCID: PMC7911886 DOI: 10.3390/plants10020214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
To understand the dynamic changes of hydroponic lettuce growth, ascorbate (AsA) pool and metabolism under two different dark period light intensities (LL, 20 μmol·m-2·s-1; CL, 200 μmol·m-2·s-1) of continuous light and normal light (NL, 0 μmol·m-2·s-1) provided by red (R) and blue (B) LEDs, the chlorophyll fluorescence parameters, ascorbate pool size, AsA metabolism-related enzyme activities, and H2O2 contents of lettuce were measured at 0, 8, 16, 24, 32, 40, 48, 56, 64, and 72 h after light treatment and the lettuce growth parameters were measured on the 9th day after light treatment. The results showed that compared with the NL, CL treatment for 9 days significantly increased the biomass, dry matter content, and specific leaf weight of lettuce, but had no significant effect on the leaf area and root-to-shoot ratio; LL had no significant effect on lettuce biomass, but it would reduce the root-shoot ratio. Compared with the NL, the AsA content of CL increased significantly within 8 h after light treatment (at the end of first dark period), and then maintained at a relatively stable level with a slight increase; there was no significant difference in AsA contents between NL and LL showing the same circadian rhythm characteristics. Overall, the activities of L-galactono-1,4-lactone dehydrogenase (GalLDH), ascorbate peroxidase(APX), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) under CL were the highest among the three treatments, and the differences with the other two treatments reached significant levels at several time points; there was almost no significant difference in the activities of GalLDH, APX, MDHAR, and GR between NL and LL; there was no significant difference in the activities of dehydroascorbate reductase (DHAR) under different treatments. Compared with the NL, CL caused a sharp decrease of PSⅡ maximal photochemical efficiency (Fv/Fm) in lettuce within 0-8 h after treatment, which then stabilized at a relatively stable level; the Fv/Fm value under the LL was almost the same as the NL. Except for 32 h, the H2O2 content of lettuce under CL was the highest among the three treatments during the entire experimental period, and was significantly higher than that of NL at several time points; the H2O2 content of LL was almost the same as NL. In summary, lettuce biomass, AsA contents, AsA metabolism-related enzyme activities, chlorophyll fluorescence parameters, and H2O2 contents were regulated by the dark period light intensities of continuous light rather than continuous light signals.
Collapse
Affiliation(s)
- Yuan Wen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.Z.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lingyan Zha
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.Z.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wenke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.Z.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
17
|
Zhang Y, Zha L, Liu W, Zhou C, Shao M, Yang Q. LED Light Quality of Continuous Light before Harvest Affects Growth and AsA Metabolism of Hydroponic Lettuce Grown under Increasing Doses of Nitrogen. PLANTS (BASEL, SWITZERLAND) 2021; 10:176. [PMID: 33477815 PMCID: PMC7832877 DOI: 10.3390/plants10010176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
To study the effects of light quality of continuous light before harvest on the growth and ascorbic acid (AsA) metabolism of lettuce (Lactuca sativa L.) grown under relative high nitrogen level, lettuce plants grown under different nitrogen levels (8, 10 and 12 mmol·L-1) were subjected to continuous light with different red: blue light ratios (2R:1B and 4R:1B) before harvest. The results showed that the shoot fresh weight of lettuce under 12 mmol·L-1 nitrogen level was significantly higher than that under other treatments. There were no significant differences in shoot dry weight, root fresh weight, root dry weight, soluble sugar content, nitrate content and AsA content in leaves among the treatments at different nitrogen levels. The content of AsA in leaves was significantly higher than that in petioles before and after continuous light. Under the same nitrogen level, the fresh weight of lettuce under continuous light quality 4R:1B was significantly higher than that under other treatments. The content of AsA in lettuce leaves increased in different degrees after continuous light before harvest. High yield and AsA content could be obtained by 72 h continuous light with red and blue light 4R:1B at 12 mmol·L-1 nitrogen level. After continuous light, the content of AsA increased significantly due to the increase of the ratio of red light and nitrogen level, which increased the activities of L-galactono-1,4-lactone dehydrogenase (GalLDH) and dehydroascorbic acid reductase (DHAR) involved in AsA synthesis and in the recycling of DHAR to AsA respectively.
Collapse
Affiliation(s)
- Yubin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lingyan Zha
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Wenke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Chengbo Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Mingjie Shao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China
| |
Collapse
|
18
|
Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int J Mol Sci 2020; 21:ijms21228695. [PMID: 33218014 PMCID: PMC7698618 DOI: 10.3390/ijms21228695] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
- Correspondence: (M.H.); (M.F.)
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Tasnim Farha Bhuiyan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | | | - Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Md. Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
19
|
Khor SP, Yeow LC, Poobathy R, Zakaria R, Chew BL, Subramaniam S. Droplet-vitrification of Aranda Broga Blue orchid: Role of ascorbic acid on the antioxidant system and genetic fidelity assessments via RAPD and SCoT markers. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00448. [PMID: 32368510 PMCID: PMC7184254 DOI: 10.1016/j.btre.2020.e00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 11/07/2022]
Abstract
A droplet-vitrification cryopreservation protocol has been successfully developed for Aranda Broga Blue orchid hybrid using protocorm-like bodies (PLBs). However, maximum growth regeneration percentage was recorded at 5% only based on previous report. Thus, to improve growth recovery of cryopreserved PLBs, cryopreservation stages were supplemented with ascorbic acid, tested at 50, 100 and 150 mg/L. However, results demonstrated that exogenous ascorbic acid was not favorable in regeneration of cryopreserved explants (maximum value of 1.67 % with 50 mg/L ascorbic acid supplementation). Total soluble protein and various antioxidant enzyme activities such as catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) were evaluated after each cryopreservation stages in conjunction with the application of exogenous ascorbic acid. Addition of antioxidant must be carefully evaluated and its application may not guarantee successful growth recovery. RAPD and SCoT molecular analysis confirmed the genetic stability of regenerated cryopreserved PLBs as no polymorphism was detected compared to control PLBs culture.
Collapse
Affiliation(s)
- Soo Ping Khor
- School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia
| | - Lit Chow Yeow
- School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia
| | - Ranjetta Poobathy
- School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia
- School of Biological Sciences, Quest International University, 30250, Ipoh, Perak, Malaysia
| | - Rahmad Zakaria
- School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia
| | - Bee Lynn Chew
- School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| |
Collapse
|
20
|
Zha L, Liu W, Yang Q, Zhang Y, Zhou C, Shao M. Regulation of Ascorbate Accumulation and Metabolism in Lettuce by the Red:Blue Ratio of Continuous Light Using LEDs. FRONTIERS IN PLANT SCIENCE 2020; 11:704. [PMID: 32547589 PMCID: PMC7272677 DOI: 10.3389/fpls.2020.00704] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/05/2020] [Indexed: 05/24/2023]
Abstract
Ascorbate (AsA), an antioxidant that cannot be synthesized and stored by the human body, plays an essential role in the proper functioning of both plants and humans. With the goal of increasing the AsA level in lettuce, the effects of different ratios of red (R) to blue (B) light (75R:25B, 50R:50B, and 25R:75B) on AsA pool sizes as well as the transcript levels and activities of key enzymes involved in AsA metabolism were constantly monitored for 12 days under continuous light (200 μmol⋅m-2⋅s-1) from LEDs. The results showed that lettuce biomass was positively correlated with the ratio of red light, while the AsA pool size had a positive correlation with the ratio of blue light during the whole experiment. The 25R:75B treatment increased the expression of genes involved in AsA biosynthesis (GMP, GME, GGP, GPP, GLDH) and regeneration (APX, MDHAR, DHAR, and GR) on day 3 but only significantly elevated the activities of enzymes involved in AsA regeneration (APX, MDHAR, DHAR, and GR) subsequently. AsA regeneration enzymes (MDHAR, DHAR and GR) had greater correlations with the AsA level than the AsA synthesis enzyme (GLDH). Thus, it is concluded that a high ratio of blue light elevated the AsA level mainly by promoting AsA regeneration rather than biosynthesis. Taken together, altering the red:blue ratio of continuous light from high to low before harvest is recommended for lettuce cultivation to achieve both high yield and high quality.
Collapse
Affiliation(s)
- Lingyan Zha
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wenke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| | - Yubin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chengbo Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mingjie Shao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|