1
|
Luo X, Liu Y, Lei Y, He Z, Gong X, Ye M, Xiao Q. Genetic Diversity Analysis and Polyploid Induction Identification of Idesia polycarpa. PLANTS (BASEL, SWITZERLAND) 2024; 13:3394. [PMID: 39683187 DOI: 10.3390/plants13233394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Idesia polycarpa from Sichuan is a valuable germplasm with high economic potential, but it faces variety scarcity. To address this, this study collected 16 varieties (lines), identifying IpHT1 as a promising parent due to its high oil content (38.5%) and red fruits. Polyploid induction via adding 0.50% colchicine to Murashige and Skoog (MS) medium yielded 520 IpHT1 mutagenized seedlings. Subsequently, flow cytometry (FCM) was performed on 401 morphologically variant seedlings which had been initially screened, resulting in the identification of 15 suspected triploids, 35 suspected tetraploids, and 3 chimeras. Furthermore, fluorescence in situ hybridization (FISH) analysis found that the probe (AG3T3)3 had terminal signals at both ends of each chromosome, allowing for the counting of 42 chromosomes in diploids and 84 in tetraploids. The probe 5S rDNA showed 2, 3, and 4 hybridization signals in the interphase nuclei of diploid, triploid, and tetraploid cells, respectively, but the probe (GAA)6 failed to produce any signal on I. polycarpa chromosomes. Ultimately, 18 polyploids were selected, including 7 triploids and 11 tetraploids. Triploids and tetraploids showed significant leaf morphological and physiological differences from diploids. Consequently, this study successfully established a polyploid breeding system for I. polycarpa, thereby enhancing its genetic diversity and breeding potential.
Collapse
Affiliation(s)
- Xiaomei Luo
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunke Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China
| | - Yuting Lei
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhoujian He
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao Gong
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng Ye
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiangang Xiao
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China
| |
Collapse
|
2
|
Luo X, Liu Y, Gong X, Ye M, Xiao Q, Zeng Z. Karyotype Description and Comparative Chromosomal Mapping of 5S rDNA in 42 Species. Genes (Basel) 2024; 15:647. [PMID: 38790276 PMCID: PMC11121585 DOI: 10.3390/genes15050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
This study was conducted to evaluate the 5S rDNA site number, position, and origin of signal pattern diversity in 42 plant species using fluorescence in situ hybridization. The species were selected based on the discovery of karyotype rearrangement, or because 5S rDNA had not yet been explored the species. The chromosome number varied from 14 to 160, and the chromosome length ranged from 0.63 to 6.88 μm, with 21 species having small chromosomes (<3 μm). The chromosome numbers of three species and the 5S rDNA loci of nineteen species are reported for the first time. Six 5S rDNA signal pattern types were identified. The 5S rDNA varied and was abundant in signal site numbers (2-18), positions (distal, proximal, outside of chromosome arms), and even in signal intensity. Variation in the numbers and locations of 5S rDNA was observed in 20 species, whereas an extensive stable number and location of 5S rDNA was found in 22 species. The potential origin of the signal pattern diversity was proposed and discussed. These data characterized the variability of 5S rDNA within the karyotypes of the 42 species that exhibited chromosomal rearrangements and provided anchor points for genetic physical maps.
Collapse
Affiliation(s)
- Xiaomei Luo
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (X.G.); (M.Y.)
| | - Yunke Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (Y.L.); (Q.X.); (Z.Z.)
| | - Xiao Gong
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (X.G.); (M.Y.)
| | - Meng Ye
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (X.G.); (M.Y.)
| | - Qiangang Xiao
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (Y.L.); (Q.X.); (Z.Z.)
| | - Zhen Zeng
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (Y.L.); (Q.X.); (Z.Z.)
| |
Collapse
|
3
|
He Z, Lei Y, Gong W, Ye M, Luo X. Karyotype and Phylogenetic Relationship Analysis of Five Varieties and Cultivars of Zanthoxylum armatum Based on Oligo-FISH. Genes (Basel) 2023; 14:1459. [PMID: 37510363 PMCID: PMC10379346 DOI: 10.3390/genes14071459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Green prickly ash (Zanthoxylum armatum) has edible and medicinal value and is an economically significant plant in many countries. Z. armatum has many cultivars and varieties with similar phenotypes that are difficult to distinguish via traditional methods. In this study, we utilized oligo-FISH to distinguish five varieties and cultivars of Z. armatum on the basis of three oligonucleotide probes of 5S rDNA, (AG3T3)3, and (GAA)6. Karyotype analysis of the five varieties and cultivars of Z. armatum showed that the Z. armatum 'Tengjiao' karyotype formula was 2n = 2x = 98m with karyotype type 1C and an arm ratio of 4.3237, including two pairs of 5S rDNA signals and five pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'Youkangtengjiao' was 2n = 2x = 128m + 8sm with karyotype type 2B and an arm ratio of 3.5336, including three pairs of 5S rDNA signals and 17 pairs of (GAA)6 signals. The karyotype formula of Z. armatum var. novemfolius was 2n = 2x = 134m + 2sm with karyotype type 1C and an arm ratio of 5.5224, including two pairs of 5S rDNA signals and eight pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'YT-03' was 2n = 2x = 2M + 128m + 4sm + 2st with karyotype type 2C and an arm ratio of 4.1829, including three pairs of 5S rDNA signals and nine pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'YT-06' was 2n = 2x = 126m + 10sm with cytotype 2B and an arm ratio of 3.3011, including three pairs of 5S rDNA signals and two pairs of (GAA)6 signals. The five varieties and cultivars of Z. armatum had (AG3T3)3 signals on all chromosomes. The chromosomal symmetry of Z. armatum 'Tengjiao' was high, whereas the chromosomal symmetry of Z. armatum 'YT-03' was low, with the karyotypes of the five materials showing a trend toward polyploid evolution. The phylogenetic relationship between Z. armatum 'Tengjiao' and Z. armatum var. novemfolius was the closest, while that between Z. armatum 'YT-03' and Z. armatum 'YT-06' was closer than with Z. armatum 'Youkangtengjiao' according to oligo-FISH. The results provided a karyotype profile and a physical map that contributes to the distinction of varieties and cultivars of Z. armatum and provides strategies for distinguishing other cultivated species.
Collapse
Affiliation(s)
- Zhoujian He
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuting Lei
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Gong
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng Ye
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaomei Luo
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Xu XL, Wang FH, Liu C, Yang HB, Zeng Z, Wang BX, Liu YG, Yang CL. Morphology and phylogeny of ascomycetes associated with walnut trees ( Juglans regia) in Sichuan province, China. Front Microbiol 2022; 13:1016548. [PMID: 36338097 PMCID: PMC9632355 DOI: 10.3389/fmicb.2022.1016548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 01/28/2023] Open
Abstract
In Sichuan province, walnuts, consisting of Juglans regia, Juglans sigillata, and the hybrid J. regia × J. sigillata, are commercially important edible nuts, and J. regia is the most widespread plant. To date, the diversity and distribution of fungi inhabiting on Juglans have not received enough attention, although there have been studies focusing on pathogens from fruit and stem. In order to update the checklist of fungi associated with Sichuan walnuts, a survey on fungi associated with the three Juglans species from 15 representative regions in Sichuan was conducted. In this article, ten fungi distributed in two classes of Ascomycota (Dothideomycetes and Sordariomycetes) were described based on morpho-molecular analyses, and two novel species, Neofusicoccum sichuanense and Sphaerulina juglandina, a known species of Ophiognomonia leptostyla, and seven new hosts or geographical records of Cladosporium tenuissimum, Diatrypella vulgaris, Helminthosporium juglandinum, Helminthosporium velutinum, Loculosulcatispora hongheensis, Periconia byssoides, and Rhytidhysteron subrufulum were included. Morphological descriptions and illustrations of these fungi are provided.
Collapse
Affiliation(s)
- Xiu-Lan Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China,Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, China
| | - Fei-Hu Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chao Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Han-Bo Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Zeng
- Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, China,*Correspondence: Zhen Zeng,
| | - Bao-Xin Wang
- Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, China
| | - Ying-Gao Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chun-Lin Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China,Chun-Lin Yang,
| |
Collapse
|
5
|
Wen Y, Qin Y, Shao B, Li J, Ma C, Liu Y, Yang B, Jin X. The extremely reduced, diverged and reconfigured plastomes of the largest mycoheterotrophic orchid lineage. BMC PLANT BIOLOGY 2022; 22:448. [PMID: 36123622 PMCID: PMC9487142 DOI: 10.1186/s12870-022-03836-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/09/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Plastomes of heterotrophic plants have been greatly altered in structure and gene content, owing to the relaxation of selection on photosynthesis-related genes. The orchid tribe Gastrodieae is the largest and probably the oldest mycoheterotrophic clade of the extant family Orchidaceae. To characterize plastome evolution across members of this key important mycoheterotrophic lineage, we sequenced and analyzed the plastomes of eleven Gastrodieae members, including representative species of two genera, as well as members of the sister group Nervilieae. RESULTS The plastomes of Gastrodieae members contain 20 protein-coding, four rRNA and five tRNA genes. Evolutionary analysis indicated that all rrn genes were transferred laterally and together, forming an rrn block in the plastomes of Gastrodieae. The plastome GC content of Gastrodia species ranged from 23.10% (G. flexistyla) to 25.79% (G. javanica). The plastome of Didymoplexis pallens contains two copies each of ycf1 and ycf2. The synonymous and nonsynonymous substitution rates were very high in the plastomes of Gastrodieae among mycoheterotrophic species in Orchidaceae and varied between genes. CONCLUSIONS The plastomes of Gastrodieae are greatly reduced and characterized by low GC content, rrn block formation, lineage-specific reconfiguration and gene content, which might be positively selected. Overall, the plastomes of Gastrodieae not only serve as an excellent model for illustrating the evolution of plastomes but also provide new insights into plastome evolution in parasitic plants.
Collapse
Affiliation(s)
- Yingying Wen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Ying Qin
- Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin, 541006, Guangxi, China
| | - Bingyi Shao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jianwu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan, 666303, China
| | - Chongbo Ma
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yan Liu
- Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin, 541006, Guangxi, China.
| | - Boyun Yang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Xiaohua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
6
|
Luo X, He Z, Liu J, Wu H, Gong X. FISH Mapping of Telomeric and Non-Telomeric (AG3T3)3 Reveal the Chromosome Numbers and Chromosome Rearrangements of 41 Woody Plants. Genes (Basel) 2022; 13:genes13071239. [PMID: 35886022 PMCID: PMC9323580 DOI: 10.3390/genes13071239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Data for the chromosomal FISH mapping localization of (AG3T3)3 are compiled for 37 species belonging 27 families; for 24 species and 14 families, this is the first such report. The chromosome number and length ranged from 14–136 and 0.56–14.48 μm, respectively. A total of 23 woody plants presented chromosome length less than 3 μm, thus belonging to the small chromosome group. Telomeric signals were observed at each chromosome terminus in 38 plants (90.5%) and were absent at several chromosome termini in only four woody plants (9.5%). Non-telomeric signals were observed in the chromosomes of 23 plants (54.8%); in particular, abundant non-telomeric (AG3T3)3 was obviously observed in Chimonanthus campanulatus. Telomeric signals outside of the chromosome were observed in 11 woody plants (26.2%). Overall, ten (AG3T3)3 signal pattern types were determined, indicating the complex genome architecture of the 37 considered species. The variation in signal pattern was likely due to chromosome deletion, duplication, inversion, and translocation. In addition, large primary constriction was observed in some species, probably due to or leading to chromosome breakage and the formation of new chromosomes. The presented results will guide further research focused on determining the chromosome number and disclosing chromosome rearrangements of woody plants.
Collapse
|
7
|
Magige EA, Fan PZ, Wambulwa MC, Milne R, Wu ZY, Luo YH, Khan R, Wu HY, Qi HL, Zhu GF, Maity D, Khan I, Gao LM, Liu J. Genetic Diversity and Structure of Persian Walnut ( Juglans regia L.) in Pakistan: Implications for Conservation. PLANTS (BASEL, SWITZERLAND) 2022; 11:1652. [PMID: 35807604 PMCID: PMC9269025 DOI: 10.3390/plants11131652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 12/02/2022]
Abstract
Persian (Common) walnut (Juglans regia L.) is a famous fruit tree species valued for its nutritious nuts and high-quality wood. Although walnut is widely distributed and plays an important role in the economy and culture of Pakistan, the genetic diversity and structure of its populations in the country remains poorly understood. Therefore, using 31 nuclear microsatellites, we assessed the genetic diversity and population structure of 12 walnut populations sampled across Pakistan. We also implemented the geostatistical IDW technique in ArcGIS to reveal "hotspots" of genetic diversity. Generally, the studied populations registered relatively low indices of genetic diversity (NA = 3.839, HO = 0.558, UHE = 0.580), and eight populations had positive inbreeding coefficient (FIS) values. Low among-population differentiation was indicated by AMOVA, pairwise FST and DC. STRUCTURE, PCoA and neighbor joining (NJ) analysis revealed a general lack of clear clustering in the populations except that one population in Upper Dir was clearly genetically distinct from the rest. Furthermore, the Mantel test showed no correlation between the geographic and genetic distance (r = 0.14, p = 0.22), while barrier analysis suggested three statistically significant genetic barriers. Finally, the spatial interpolation results indicated that populations in Ziarat, Kashmir, Dir, Swat, Chitral, and upper Dir had high intrapopulation genetic diversity, suggesting the need to conserve populations in those areas. The results from this study will be important for future breeding improvement and conservation of walnuts in Pakistan.
Collapse
Affiliation(s)
- Ephie A. Magige
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.A.M.); (M.C.W.); (Z.-Y.W.); (Y.-H.L.); (H.-Y.W.)
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (P.-Z.F.); (G.-F.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Zhen Fan
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (P.-Z.F.); (G.-F.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moses C. Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.A.M.); (M.C.W.); (Z.-Y.W.); (Y.-H.L.); (H.-Y.W.)
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (P.-Z.F.); (G.-F.Z.)
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, Kitui 170-90200, Kenya
| | - Richard Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK;
| | - Zeng-Yuan Wu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.A.M.); (M.C.W.); (Z.-Y.W.); (Y.-H.L.); (H.-Y.W.)
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (P.-Z.F.); (G.-F.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.A.M.); (M.C.W.); (Z.-Y.W.); (Y.-H.L.); (H.-Y.W.)
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (P.-Z.F.); (G.-F.Z.)
| | - Raees Khan
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Hong-Yu Wu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.A.M.); (M.C.W.); (Z.-Y.W.); (Y.-H.L.); (H.-Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ling Qi
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China;
| | - Guang-Fu Zhu
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (P.-Z.F.); (G.-F.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debabrata Maity
- Department of Botany, University of Calcutta, Kolkata 700019, India;
| | - Ikramullah Khan
- Department of Botany, Abdul Wali Khan University Mardan, KP, Mardan 23200, Pakistan;
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.A.M.); (M.C.W.); (Z.-Y.W.); (Y.-H.L.); (H.-Y.W.)
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (P.-Z.F.); (G.-F.Z.)
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (E.A.M.); (M.C.W.); (Z.-Y.W.); (Y.-H.L.); (H.-Y.W.)
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (P.-Z.F.); (G.-F.Z.)
| |
Collapse
|
8
|
Huan J, He Z, Lei Y, Li W, Jiang L, Luo X. The Genetic Diversity of Bletilla spp. Based on SLAF-seq and Oligo-FISH. Genes (Basel) 2022; 13:genes13071118. [PMID: 35885901 PMCID: PMC9318928 DOI: 10.3390/genes13071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Bletilla spp. Rchb. F. is a traditional Chinese medicinal material. In this study, Bletilla striata (Thunb. ex A. Murray) Rchb F, Bletilla formosana (Hayata) Schltr, and Bletilla ochracea Schltr were collected to analyze the genetic diversity of 16 materials using specific site-amplified fragment sequencing (SLAF-seq) and fluorescence in situ hybridization (FISH). The results showed that the phylogenetic tree of the single-nucleotide polymorphism (SNP) data rendering system was correlated with the shape and geographical distribution of the material. The results of the population structural analysis showed that all the materials containing yellow labellum came from the same ancestor. The results of the principal component analysis were able to preliminarily judge the genetic distance and provided a reference for the selection of hybrid parents. The FISH analysis showed that the chromosomes of B. striata were 2n = 32 and the chromosomes of the B. striata (safflower) mutant were 2n = 34 and the chromosomes of B. ochracea and B. formosana were 2n = 34–36. The (AG3T3)3 non-terminal signal was different from the 5S rDNA signal. These results revealed that the 16 materials had rich genetic diversity, which can provide molecular and cytogenetic data for the study of the genus and its relatives and serve as a reference for the breeding of new genus varieties and improve breeding efficiency and cost.
Collapse
Affiliation(s)
- Jie Huan
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, China; (J.H.); (Z.H.); (Y.L.)
- Institute of Forestry, Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (W.L.); (L.J.)
| | - Zhoujian He
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, China; (J.H.); (Z.H.); (Y.L.)
| | - Yuting Lei
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, China; (J.H.); (Z.H.); (Y.L.)
| | - Wenjun Li
- Institute of Forestry, Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (W.L.); (L.J.)
| | - Liqiong Jiang
- Institute of Forestry, Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (W.L.); (L.J.)
| | - Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, China; (J.H.); (Z.H.); (Y.L.)
- Correspondence: ; Tel.: +86-028-86291456
| |
Collapse
|
9
|
Luo X, Liu J, He Z. Oligo-FISH Can Identify Chromosomes and Distinguish Hippophaë rhamnoides L. Taxa. Genes (Basel) 2022; 13:genes13020195. [PMID: 35205242 PMCID: PMC8872433 DOI: 10.3390/genes13020195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Oligo-fluorescence in situ hybridization (FISH) facilitates precise chromosome identification and comparative cytogenetic analysis. Detection of autosomal chromosomes of Hippophaë rhamnoides has not been achieved using oligonucleotide sequences. Here, the chromosomes of five H. rhamnoides taxa in the mitotic metaphase and mitotic metaphase to anaphase were detected using the oligo-FISH probes (AG3T3)3, 5S rDNA, and (TTG)6. In total, 24 small chromosomes were clearly observed in the mitotic metaphase (0.89–3.03 μm), whereas 24–48 small chromosomes were observed in the mitotic metaphase to anaphase (0.94–3.10 μm). The signal number and intensity of (AG3T3)3, 5S rDNA, and (TTG)6 in the mitotic metaphase to anaphase chromosomes were nearly consistent with those in the mitotic metaphase chromosomes when the two split chromosomes were integrated as one unit. Of note, 14 chromosomes (there is a high chance that sex chromosomes are included) were exclusively identified by (AG3T3)3, 5S rDNA, and (TTG)6. The other 10 also showed a terminal signal with (AG3T3)3. Moreover, these oligo-probes were able to distinguish one wild H. rhamnoides taxon from four H. rhamnoides taxa. These chromosome identification and taxa differentiation data will help in elucidating visual and elaborate physical mapping and guide breeders’ utilization of wild resources of H. rhamnoides.
Collapse
|
10
|
Abstract
Hibiscus exhibits high variation in chromosome number both within and among species. The Hibiscus mutabilis L. karyotype was analyzed in detail using fluorescence in situ hybridization (FISH) with oligonucleotide probes for (AG3T3)3 and 5S rDNA, which were tested here for the first time. In total, 90 chromosomes were counted in prometaphase and metaphase, and all exhibited similarly intense (AG3T3)3 signals at both ends. (AG3T3)3 showed little variation and thus did not allow discrimination among H. mutabilis chromosomes, but its location at both ends confirmed the integrity of each chromosome, thus contributing to accurate counting of the numerous, small chromosomes. Oligo-5S rDNA marked the proximal/distal regions of six chromosomes: weak signals on chromosomes 7 and 8, slightly stronger signals on chromosomes 15 and 16, and very strong signals on chromosomes 17 and 18. Therefore, 5S rDNA could assist in chromosome identification in H. mutabilis. Metaphase chromosome lengths ranged from 3.00 to 1.18 μm, indicating small chromosomes. The ratios of longest to shortest chromosome length in prometaphase and metaphase were 2.58 and 2.54, respectively, indicating karyotype asymmetry in H. mutabilis. These results provide an exact chromosome number and a physical map, which will be useful for genome assembly and contribute to molecular cytogenetics in the genus Hibiscus.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| | - Zhoujian He
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| |
Collapse
|